Skip to content
2000
Volume 20, Issue 4
  • ISSN: 2772-4328
  • E-ISSN: 2772-4336

Abstract

Fatty liver disease (FLD) is a well-known metabolic disorder associated with hepatic steatosis and tissue lipid accumulation. Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent and challenging condition that is linked to obesity, diabetes, and other metabolic disorders. MAFLD, previously called NAFLD or nonalcoholic fatty liver disease, is associated with pathological changes in liver tissue. In recent decades, there has been a growing interest in the potential of metformin, a commonly used medication for type-2 diabetes, to help treat MAFLD. Metformin has shown promising potential in treating MAFLD through its ability to modify ferroptosis, a novel form of programmed cell death. In this critical review, we explain the current knowledge about MAFLD, the potential role of ferroptosis in its pathogenesis, and the mechanisms by which metformin may modulate ferroptosis in the context of MAFLD. Additionally, evidence supporting the usage of metformin in treating MAFLD is explained. Overall, this review explains the potential of metformin as a novel therapeutic approach for MAFLD by targeting ferroptosis and provides valuable insights for future research in this area.

Loading

Article metrics loading...

/content/journals/crcep/10.2174/0127724328328193241029103831
2024-11-11
2025-10-18
Loading full text...

Full text loading...

References

  1. RojasL.B.A. GomesM.B. Metformin: An old but still the best treatment for type 2 diabetes.Diabetol. Metab. Syndr.201351610.1186/1758‑5996‑5‑623415113
    [Google Scholar]
  2. GreenC.J. MarjotT. Walsby-TickleJ. CharltonC. CornfieldT. WestcottF. PinnickK.E. MoollaA. HazlehurstJ.M. McCullaghJ. TomlinsonJ.W. HodsonL. Metformin maintains intrahepatic triglyceride content through increased hepatic de novo lipogenesis.Eur. J. Endocrinol.2022186336737710.1530/EJE‑21‑085035038311
    [Google Scholar]
  3. EslamM SanyalAJ GeorgeJ SanyalA Neuschwander-TetriB TiribelliC MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease.Gastroenterology202015871999201410.1053/j.gastro.2019.11.312
    [Google Scholar]
  4. XianY.X. WengJ.P. XuF. MAFLD vs. NAFLD: shared features and potential changes in epidemiology, pathophysiology, diagnosis, and pharmacotherapy.Chin. Med. J. (Engl.)2021134181910.1097/CM9.000000000000126333323806
    [Google Scholar]
  5. MokhtareM. AbdiA. SadeghianA.M. SotoudeheianM. NamaziA. KhalighiS.M. Investigation about the correlation between the severity of metabolic-associated fatty liver disease and adherence to the Mediterranean diet.Clin. Nutr. ESPEN20235822122710.1016/j.clnesp.2023.10.00138057010
    [Google Scholar]
  6. MokhtareM. SadeghianA.M. SotoudeheianM. S1390 The accuracy and reliability of AST to platelet ratio index, FIB-4, FIB-5, and NAFLD fibrosis scores in detecting advanced fibrosis in patients with metabolic-associated fatty liver disease.ACG2023118S1064-S5
    [Google Scholar]
  7. ScorlettiE. ByrneC.D. Omega-3 fatty acids, hepatic lipid metabolism, and nonalcoholic fatty liver disease.Annu. Rev. Nutr.201333123124810.1146/annurev‑nutr‑071812‑16123023862644
    [Google Scholar]
  8. ChanK.E. KohT.J.L. TangA.S.P. QuekJ. YongJ.N. TayP. TanD.J.H. LimW.H. LinS.Y. HuangD. ChanM. KhooC.M. ChewN.W.S. KaewdechA. ChamroonkulN. DanY.Y. NoureddinM. MuthiahM. EslamM. NgC.H. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease: a meta-analysis and systematic review of 10 739 607 individuals.J. Clin. Endocrinol. Metab.202210792691270010.1210/clinem/dgac32135587339
    [Google Scholar]
  9. KurylowiczA. The role of diet in the management of MAFLD—why does a new disease require a novel, individualized approach?Hepatobiliary Surg. Nutr.202211341942110.21037/hbsn‑21‑56235693417
    [Google Scholar]
  10. CiardulloS. PerseghinG. Prevalence of NAFLD, MAFLD and associated advanced fibrosis in the contemporary United States population.Liver Int.20214161290129310.1111/liv.1482833590934
    [Google Scholar]
  11. WuJ. TianS. LiH. XuZ. LiS. ChenY. LiangX. XiaoJ. SongJ. SheR. MaC. FengJ. LiZ. JiangZ. ZhangZ. WuK. KongL. Population-specific cut-off points of fatty liver index: a study based on the national health and nutrition examination survey data.BMC Gastroenterol.202222126510.1186/s12876‑022‑02303‑z35624410
    [Google Scholar]
  12. YuanQ. WangH. GaoP. ChenW. LvM. BaiS. WuJ. Prevalence and risk factors of metabolic-associated fatty liver disease among 73,566 individuals in Beijing, China.Int. J. Environ. Res. Public Health2022194209610.3390/ijerph1904209635206282
    [Google Scholar]
  13. TaheriE. MoslemA. Mousavi-JarrahiA. HatamiB. PourhoseingholiM.A. Asadzadeh AghdaeiH. ZaliM.R. Predictors of metabolic-associated fatty liver disease (MAFLD) in adults: a population-based study in Northeastern Iran.Gastroenterol. Hepatol. Bed Bench202114Suppl. 1S102S11135154609
    [Google Scholar]
  14. LiuJ. AyadaI. ZhangX. WangL. LiY. WenT. MaZ. BrunoM.J. de KnegtR.J. CaoW. PeppelenboschM.P. GhanbariM. LiZ. PanQ. Estimating global prevalence of metabolic dysfunction-associated fatty liver disease in overweight or obese adults.Clin. Gastroenterol. Hepatol.2022203e573e58210.1016/j.cgh.2021.02.03033618024
    [Google Scholar]
  15. AnguloP. Nonalcoholic fatty liver disease.N. Engl. J. Med.2002346161221123110.1056/NEJMra01177511961152
    [Google Scholar]
  16. ChenJ. LiX. GeC. MinJ. WangF. The multifaceted role of ferroptosis in liver disease.Cell Death Differ.202229346748010.1038/s41418‑022‑00941‑035075250
    [Google Scholar]
  17. Macías-RodríguezR.U. InzaugaratM.E. Ruiz-MargáinA. NelsonL.J. TrautweinC. CuberoF.J. Reclassifying hepatic cell death during liver damage: ferroptosis—a novel form of non-apoptotic cell death?Int. J. Mol. Sci.2020215165110.3390/ijms2105165132121273
    [Google Scholar]
  18. Arroyave-OspinaJ.C. WuZ. GengY. MoshageH. Role of oxidative stress in the pathogenesis of non-alcoholic fatty liver disease: Implications for prevention and therapy.Antioxidants202110217410.3390/antiox1002017433530432
    [Google Scholar]
  19. WuJ. WangY. JiangR. XueR. YinX. WuM. MengQ. Ferroptosis in liver disease: new insights into disease mechanisms.Cell Death Discov.20217127610.1038/s41420‑021‑00660‑434611144
    [Google Scholar]
  20. WooS.L. Beneficial effects of metformin in diet-induced obesity associated non-alcoholic fatty liver disease.2020264430443
    [Google Scholar]
  21. MaW.Q. SunX.J. ZhuY. LiuN.F. Metformin attenuates hyperlipidaemia-associated vascular calcification through anti-ferroptotic effects.Free Radic. Biol. Med.202116522924210.1016/j.freeradbiomed.2021.01.03333513420
    [Google Scholar]
  22. ZhangT. WangM.Y. WangG.D. LvQ.Y. HuangY.Q. ZhangP. WangW. ZhangY. BaiY.P. GuoL.Q. Metformin improves nonalcoholic fatty liver disease in db/db mice by inhibiting ferroptosis.Eur. J. Pharmacol.202496617634110.1016/j.ejphar.2024.17634138244761
    [Google Scholar]
  23. KuchayM.S. ChoudharyN.S. MishraS.K. Pathophysiological mechanisms underlying MAFLD.Diabetes Metab. Syndr.20201461875188710.1016/j.dsx.2020.09.02632998095
    [Google Scholar]
  24. SotoudeheianM. Galectin-3 and severity of liver fibrosis in metabolic dysfunction-associated fatty liver disease.Protein Pept. Lett.202431429030410.2174/010929866530169824040406130038715329
    [Google Scholar]
  25. SotoudeheianM. Value of Mac-2 binding protein glycosylation isomer (M2BPGi) in assessing liver fibrosis in metabolic dysfunction-associated liver disease: A comprehensive review of its serum biomarker role.Curr Protein Pept Sci.2025261621
    [Google Scholar]
  26. ZiolkowskaS. BiniendaA. JabłkowskiM. SzemrajJ. CzarnyP. The interplay between insulin resistance, inflammation, oxidative stress, base excision repair and metabolic syndrome in nonalcoholic fatty liver disease.Int. J. Mol. Sci.202122201112810.3390/ijms22201112834681787
    [Google Scholar]
  27. SangroP. de la TorreA.M. SangroB. D’AvolaD. Metabolic dysfunction–associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment.J. Physiol. Biochem.202379486987910.1007/s13105‑023‑00954‑436976456
    [Google Scholar]
  28. SotoudeheianM. HoseiniS. MirahmadiS.M.S. FarahmandianN. Pazoki-ToroudiH. Oleuropein as a therapeutic agent for non-alcoholic fatty liver disease during hepatitis C.Rev. Bras. Farmacogn.202333468869510.1007/s43450‑023‑00396‑5
    [Google Scholar]
  29. MocciaroG. AllisonM. JenkinsB. AzzuV. Huang-DoranI. Herrera-MarcosL.V. HallZ. MurgiaA. SusanD. FrontiniM. Vidal-PuigA. KoulmanA. GriffinJ.L. VaccaM. Non-alcoholic fatty liver disease is characterised by a reduced polyunsaturated fatty acid transport via free fatty acids and high-density lipoproteins (HDL).Mol. Metab.20237310172810.1016/j.molmet.2023.10172837084865
    [Google Scholar]
  30. ZhuZ. ZhangX. PanQ. ZhangL. ChaiJ. In-depth analysis of de novo lipogenesis in non-alcoholic fatty liver disease: Mechanism and pharmacological interventions.Liver Res.20237428529510.1016/j.livres.2023.11.003
    [Google Scholar]
  31. HeerenJ. SchejaL. Metabolic-associated fatty liver disease and lipoprotein metabolism.Mol. Metab.20215010123810.1016/j.molmet.2021.10123833892169
    [Google Scholar]
  32. QiuY.Y. ZhangJ. ZengF.Y. ZhuY.Z. Roles of the peroxisome proliferator-activated receptors (PPARs) in the pathogenesis of nonalcoholic fatty liver disease (NAFLD).Pharmacol. Res.202319210678610.1016/j.phrs.2023.10678637146924
    [Google Scholar]
  33. FerréP. PhanF. FoufelleF. SREBP-1c and lipogenesis in the liver: an update.Biochem. J.2021478203723373910.1042/BCJ2021007134673919
    [Google Scholar]
  34. IannoneV. LokJ. BabuA.F. Gómez-GallegoC. WillmanR.M. KoistinenV.M. KlåvusA. KettunenM.I. KårlundA. SchwabU. HanhinevaK. KolehmainenM. El-NezamiH. Associations of altered hepatic gene expression in American lifestyle-induced obesity syndrome diet-fed mice with metabolic changes during NAFLD development and progression.J. Nutr. Biochem.202311510930710.1016/j.jnutbio.2023.10930736868506
    [Google Scholar]
  35. DuanY. PanX. LuoJ. XiaoX. LiJ. BestmanP.L. LuoM. Association of inflammatory cytokines with non-alcoholic fatty liver disease.Front. Immunol.20221388029810.3389/fimmu.2022.88029835603224
    [Google Scholar]
  36. ThibautR. GageM.C. Pineda-TorraI. ChabrierG. VenteclefN. AlzaidF. Liver macrophages and inflammation in physiology and physiopathology of non‐alcoholic fatty liver disease.FEBS J.2022289113024305710.1111/febs.1587733860630
    [Google Scholar]
  37. AlisiA CarpinoG OliveiraFL PaneraN NobiliV GaudioE The role of tissue macrophage-mediated inflammation on NAFLD pathogenesis and its clinical implications.Mediators Inflamm.20172017816242110.1155/2017/8162421
    [Google Scholar]
  38. PatelS. BawankuleS. AcharyaS. KumarS. Cytokines and inflammatory markers in nonalcoholic fatty liver disease: A narrative review.J Sci Soc202350330731110.4103/jss.jss_237_22
    [Google Scholar]
  39. JungU. ChoiM.S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease.Int. J. Mol. Sci.20141546184622310.3390/ijms1504618424733068
    [Google Scholar]
  40. KhanmohammadiS. KuchayM.S. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease.Pharmacol. Res.202218510650710.1016/j.phrs.2022.10650736252773
    [Google Scholar]
  41. ShiH. DongL. JiangJ. ZhaoJ. ZhaoG. DangX. LuX. JiaM. Chlorogenic acid reduces liver inflammation and fibrosis through inhibition of toll-like receptor 4 signaling pathway.Toxicology201330310711410.1016/j.tox.2012.10.02523146752
    [Google Scholar]
  42. PhamD.V. ParkP.H. Recent insights on modulation of inflammasomes by adipokines: a critical event for the pathogenesis of obesity and metabolism-associated diseases.Arch. Pharm. Res.20204310997101610.1007/s12272‑020‑01274‑733078304
    [Google Scholar]
  43. ChangM.L. YangZ. YangS.S. Roles of adipokines in digestive diseases: markers of inflammation, metabolic alteration and disease progression.Int. J. Mol. Sci.20202121830810.3390/ijms2121830833167521
    [Google Scholar]
  44. ClareK. DillonJ.F. BrennanP.N. Reactive oxygen species and oxidative stress in the pathogenesis of MAFLD.J. Clin. Transl. Hepatol.202210593994610.14218/JCTH.2022.0006736304513
    [Google Scholar]
  45. Martín-FernándezM. ArroyoV. CarniceroC. SigüenzaR. BustaR. MoraN. AntolínB. TamayoE. AspichuetaP. Carnicero-FrutosI. Gonzalo-BenitoH. AllerR. Role of oxidative stress and lipid peroxidation in the pathophysiology of NAFLD.Antioxidants20221111221710.3390/antiox1111221736358589
    [Google Scholar]
  46. Conde de la RosaL. GoicoecheaL. TorresS. Garcia-RuizC. Fernandez-ChecaJ.C. Role of oxidative stress in liver disorders.Livers20222428331410.3390/livers2040023
    [Google Scholar]
  47. ChenZ. TianR. SheZ. CaiJ. LiH. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease.Free Radic. Biol. Med.202015211614110.1016/j.freeradbiomed.2020.02.02532156524
    [Google Scholar]
  48. GabbiaD. CannellaL. De MartinS. The role of oxidative stress in NAFLD–NASH–HCC transition—focus on NADPH oxidases.Biomedicines20219668710.3390/biomedicines906068734204571
    [Google Scholar]
  49. NascèA. GarianiK. JornayvazF.R. SzantoI. NADPH oxidases connecting fatty liver disease, insulin resistance and type 2 diabetes: Current knowledge and therapeutic outlook.Antioxidants2022116113110.3390/antiox1106113135740032
    [Google Scholar]
  50. MaY. LeeG. HeoS.Y. RohY.S. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease.Antioxidants20211119110.3390/antiox1101009135052595
    [Google Scholar]
  51. García-RuizC. Fernández-ChecaJ.C. Mitochondrial oxidative stress and antioxidants balance in fatty liver disease.Hepatol. Commun.20182121425143910.1002/hep4.127130556032
    [Google Scholar]
  52. LebeaupinC. ValléeD. HazariY. HetzC. ChevetE. Bailly-MaitreB. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease.J. Hepatol.201869492794710.1016/j.jhep.2018.06.00829940269
    [Google Scholar]
  53. SongM.J. MalhiH. The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease.Pharmacol. Ther.201920310740110.1016/j.pharmthera.2019.10740131419516
    [Google Scholar]
  54. FujiiJ. HommaT. KobayashiS. SeoH.G. Mutual interaction between oxidative stress and endoplasmic reticulum stress in the pathogenesis of diseases specifically focusing on non-alcoholic fatty liver disease.World J. Biol. Chem.20189111510.4331/wjbc.v9.i1.130364769
    [Google Scholar]
  55. FlessaC.M. KyrouI. Nasiri-AnsariN. KaltsasG. KassiE. RandevaH.S. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD).J. Cell. Biochem.2022123101585160610.1002/jcb.3024735490371
    [Google Scholar]
  56. AjoolabadyA. KaplowitzN. LebeaupinC. KroemerG. KaufmanR.J. MalhiH. RenJ. Endoplasmic reticulum stress in liver diseases.Hepatology202377261963935524448
    [Google Scholar]
  57. ZhaoJ. HuY. PengJ. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): a promising new therapy.Cell. Mol. Biol. Lett.20212611710.1186/s11658‑021‑00254‑z33962586
    [Google Scholar]
  58. KandaT. MatsuokaS. YamazakiM. ShibataT. NireiK. TakahashiH. KanekoT. FujisawaM. HiguchiT. NakamuraH. MatsumotoN. YamagamiH. OgawaM. ImazuH. KurodaK. MoriyamaM. Apoptosis and non-alcoholic fatty liver diseases.World J. Gastroenterol.201824252661267210.3748/wjg.v24.i25.266129991872
    [Google Scholar]
  59. AlkhouriN. Carter-KentC. FeldsteinA.E. Apoptosis in nonalcoholic fatty liver disease: diagnostic and therapeutic implications.Expert Rev. Gastroenterol. Hepatol.20115220121210.1586/egh.11.621476915
    [Google Scholar]
  60. XuH. WanS. AnY. WuQ. XingY. DengC. ZhangP. LongY. XuB. JiangZ. Targeting cell death in NAFLD: mechanisms and targeted therapies.Cell Death Discov.202410139910.1038/s41420‑024‑02168‑z39244571
    [Google Scholar]
  61. SotoudeheianM SoleimaniM FarahmandianN. Molecular pathways disturbances during COVID-19 lead to cardiomyocyte necroptosis.Preprints20232023202304088210.20944/preprints202304.0882.v1
    [Google Scholar]
  62. DhuriyaY.K. SharmaD. Necroptosis: a regulated inflammatory mode of cell death.J. Neuroinflammation201815119910.1186/s12974‑018‑1235‑029980212
    [Google Scholar]
  63. ZhouY. WuR. WangX. BaoX. LuC. Roles of necroptosis in alcoholic liver disease and hepatic pathogenesis.Cell Prolif.2022553e1319310.1111/cpr.1319335083817
    [Google Scholar]
  64. HirsovaP. GoresG.J. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis.Cell. Mol. Gastroenterol. Hepatol.201511172710.1016/j.jcmgh.2014.11.00525729762
    [Google Scholar]
  65. XiaoZ. LiuM. YangF. LiuG. LiuJ. ZhaoW. MaS. DuanZ. Programmed cell death and lipid metabolism of macrophages in NAFLD.Front. Immunol.202314111844910.3389/fimmu.2023.111844936742318
    [Google Scholar]
  66. VachliotisI.D. PolyzosS.A. The role of tumor necrosis factor-alpha in the pathogenesis and treatment of nonalcoholic fatty liver disease.Curr. Obes. Rep.202312319120610.1007/s13679‑023‑00519‑y37407724
    [Google Scholar]
  67. PeiselerM. SchwabeR. HampeJ. KubesP. HeikenwälderM. TackeF. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease – novel insights into cellular communication circuits.J. Hepatol.20227741136116010.1016/j.jhep.2022.06.01235750137
    [Google Scholar]
  68. WangH. MehalW. NagyL.E. RotmanY. Immunological mechanisms and therapeutic targets of fatty liver diseases.Cell. Mol. Immunol.2021181739110.1038/s41423‑020‑00579‑333268887
    [Google Scholar]
  69. WandrerF. LiebigS. MarhenkeS. VogelA. JohnK. MannsM.P. TeufelA. ItzelT. LongerichT. MaierO. FischerR. KontermannR.E. PfizenmaierK. Schulze-OsthoffK. BantelH. TNF-Receptor-1 inhibition reduces liver steatosis, hepatocellular injury and fibrosis in NAFLD mice.Cell Death Dis.202011321210.1038/s41419‑020‑2411‑632235829
    [Google Scholar]
  70. IchimiyaT. YamakawaT. HiranoT. YokoyamaY. HayashiY. HirayamaD. WagatsumaK. ItoiT. NakaseH. Autophagy and autophagy-related diseases: a review.Int. J. Mol. Sci.20202123897410.3390/ijms2123897433255983
    [Google Scholar]
  71. KouroumalisE. VoumvourakiA. AugoustakiA. SamonakisD.N. Autophagy in liver diseases.World J. Hepatol.202113166510.4254/wjh.v13.i1.633584986
    [Google Scholar]
  72. ZhangS. PengX. YangS. LiX. HuangM. WeiS. LiuJ. HeG. ZhengH. YangL. LiH. FanQ. The regulation, function, and role of lipophagy, a form of selective autophagy, in metabolic disorders.Cell Death Dis.202213213210.1038/s41419‑022‑04593‑335136038
    [Google Scholar]
  73. FlessaC.M. KyrouI. Nasiri-AnsariN. KaltsasG. PapavassiliouA.G. KassiE. RandevaH.S. Endoplasmic reticulum stress and autophagy in the pathogenesis of non-alcoholic fatty liver disease (NAFLD): current evidence and perspectives.Curr. Obes. Rep.202110213416110.1007/s13679‑021‑00431‑333751456
    [Google Scholar]
  74. ArmandiA. RossoC. CavigliaG.P. BugianesiE. Insulin resistance across the spectrum of nonalcoholic fatty liver disease.Metabolites202111315510.3390/metabo1103015533800465
    [Google Scholar]
  75. PalS.C. EslamM. Mendez-SanchezN. Detangling the interrelations between MAFLD, insulin resistance, and key hormones.Hormones (Athens)202221457358910.1007/s42000‑022‑00391‑w35921046
    [Google Scholar]
  76. ZhangC. ZhouB. ShengJ. ChenY. CaoY. ChenC. Molecular mechanisms of hepatic insulin resistance in nonalcoholic fatty liver disease and potential treatment strategies.Pharmacol. Res.202015910498410.1016/j.phrs.2020.10498432502637
    [Google Scholar]
  77. SurenG.S. KushwahaK. DubeyR. GuptaJ. Association between obesity, inflammation and insulin resistance: Insights into signaling pathways and therapeutic interventions.Diabetes Res. Clin. Pract.202320011069110.1016/j.diabres.2023.11069137150407
    [Google Scholar]
  78. FengJ. LuS. OuB. LiuQ. DaiJ. JiC. ZhouH. HuangH. MaY. The role of JNk signaling pathway in obesity-driven insulin resistance.Diabetes Metab. Syndr. Obes.2020131399140610.2147/DMSO.S23612732425571
    [Google Scholar]
  79. HrncirT. HrncirovaL. KverkaM. HromadkaR. MachovaV. TrckovaE. KostovcikovaK. KralickovaP. KrejsekJ. Tlaskalova-HogenovaH. Gut microbiota and NAFLD: pathogenetic mechanisms, microbiota signatures, and therapeutic interventions.Microorganisms20219595710.3390/microorganisms905095733946843
    [Google Scholar]
  80. Di VincenzoF. Del GaudioA. PetitoV. LopetusoL.R. ScaldaferriF. Gut microbiota, intestinal permeability, and systemic inflammation: A narrative review.Intern. Emerg. Med.202319227529337505311
    [Google Scholar]
  81. AlbillosA. de GottardiA. RescignoM. The gut-liver axis in liver disease: Pathophysiological basis for therapy.J. Hepatol.202072355857710.1016/j.jhep.2019.10.00331622696
    [Google Scholar]
  82. LuukkonenP.K. QadriS. AhlholmN. PorthanK. MännistöV. SammalkorpiH. PenttiläA.K. HakkarainenA. LehtimäkiT.E. GagginiM. GastaldelliA. Ala-KorpelaM. Orho-MelanderM. ArolaJ. JuutiA. PihlajamäkiJ. HodsonL. Yki-JärvinenH. Distinct contributions of metabolic dysfunction and genetic risk factors in the pathogenesis of non-alcoholic fatty liver disease.J. Hepatol.202276352653510.1016/j.jhep.2021.10.01334710482
    [Google Scholar]
  83. SakuraiY. KubotaN. YamauchiT. KadowakiT. Role of insulin resistance in MAFLD.Int. J. Mol. Sci.2021228415610.3390/ijms2208415633923817
    [Google Scholar]
  84. SookoianS. PirolaC.J. ValentiL. DavidsonN.O. Genetic pathways in nonalcoholic fatty liver disease: insights from systems biology.Hepatology202072133034610.1002/hep.3122932170962
    [Google Scholar]
  85. JonasW. SchürmannA. Genetic and epigenetic factors determining NAFLD risk.Mol. Metab.20215010111110.1016/j.molmet.2020.10111133160101
    [Google Scholar]
  86. SharmaD. MandalP. NAFLD: genetics and its clinical implications.Clin. Res. Hepatol. Gastroenterol.202246910200310.1016/j.clinre.2022.10200335963605
    [Google Scholar]
  87. VachliotisI. GoulasA. PapaioannidouP. PolyzosS.A. Nonalcoholic fatty liver disease: lifestyle and quality of life.Hormones (Athens)2022211414910.1007/s42000‑021‑00339‑634854066
    [Google Scholar]
  88. JuanolaO. Martínez-LópezS. FrancésR. Gómez-HurtadoI. Non-alcoholic fatty liver disease: metabolic, genetic, epigenetic and environmental risk factors.Int. J. Environ. Res. Public Health20211810522710.3390/ijerph1810522734069012
    [Google Scholar]
  89. PrasoppokakornT. PitisuttithumP. TreeprasertsukS. Pharmacological therapeutics: current trends for metabolic dysfunction-associated fatty liver disease (MAFLD).J. Clin. Transl. Hepatol.202100000000010.14218/JCTH.2021.0018934966657
    [Google Scholar]
  90. NguyenV. GeorgeJ. Nonalcoholic fatty liver disease management: dietary and lifestyle modifications.Seminars in Liver Disease.2015318337
    [Google Scholar]
  91. OrdonezR. Carbajo-PescadorS. MaurizJ.L. Gonzalez-GallegoJ. Understanding nutritional interventions and physical exercise in non-alcoholic fatty liver disease.Curr. Mol. Med.201515132610.2174/156652401566615011411055125601465
    [Google Scholar]
  92. BarbD. Portillo-SanchezP. CusiK. Pharmacological management of nonalcoholic fatty liver disease.Metabolism20166581183119510.1016/j.metabol.2016.04.00427301803
    [Google Scholar]
  93. TackeF. WeiskirchenR. Non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH)-related liver fibrosis: mechanisms, treatment and prevention.Ann. Transl. Med.20219872910.21037/atm‑20‑435433987427
    [Google Scholar]
  94. SandhuN. AuJ. Herbal medicines for the treatment of nonalcoholic steatohepatitis.Curr. Hepatol. Rep.202120111110.1007/s11901‑020‑00558‑2
    [Google Scholar]
  95. CespiatiA. YoungsonN.A. TournaA. ValentiL. Genetics and epigenetics in the clinic: precision medicine in the management of fatty liver disease.Curr. Pharm. Des.20202610998100910.2174/138161282666620012215125131969087
    [Google Scholar]
  96. WongV.W.S. AdamsL.A. de LédinghenV. WongG.L.H. SookoianS. Noninvasive biomarkers in NAFLD and NASH — current progress and future promise.Nat. Rev. Gastroenterol. Hepatol.201815846147810.1038/s41575‑018‑0014‑929844588
    [Google Scholar]
  97. PapatheodoridiM. CholongitasE. Diagnosis of non-alcoholic fatty liver disease (NAFLD): current concepts.Curr. Pharm. Des.201924384574458610.2174/138161282566619011710211130652642
    [Google Scholar]
  98. NegiC.K. BabicaP. BajardL. Bienertova-VaskuJ. TarantinoG. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease.Metabolism202212615492510.1016/j.metabol.2021.15492534740573
    [Google Scholar]
  99. FrancqueS.M. Towards precision medicine in non-alcoholic fatty liver disease.Rev. Endocr. Metab. Disord.202324588589910.1007/s11154‑023‑09820‑637477772
    [Google Scholar]
  100. LazarusJ.V. AnsteeQ.M. HagströmH. CusiK. Cortez-PintoH. MarkH.E. RodenM. TsochatzisE.A. WongV.W.S. YounossiZ.M. Zelber-SagiS. Romero-GómezM. SchattenbergJ.M. Defining comprehensive models of care for NAFLD.Nat. Rev. Gastroenterol. Hepatol.2021181071772910.1038/s41575‑021‑00477‑734172937
    [Google Scholar]
  101. LeiP. BaiT. SunY. Mechanisms of ferroptosis and relations with regulated cell death: a review.Front. Physiol.20191013910.3389/fphys.2019.0013930863316
    [Google Scholar]
  102. ZhuL. LuoS. ZhuY. TangS. LiC. JinX. WuF. JiangH. WuL. XuY. The emerging role of ferroptosis in various chronic liver diseases: opportunity or challenge.J. Inflamm. Res.20231638138910.2147/JIR.S38597736748023
    [Google Scholar]
  103. RochetteL. DogonG. RigalE. ZellerM. CottinY. VergelyC. Lipid peroxidation and iron metabolism: two corner stones in the homeostasis control of ferroptosis.Int. J. Mol. Sci.202224144910.3390/ijms2401044936613888
    [Google Scholar]
  104. HeY.J. LiuX.Y. XingL. WanX. ChangX. JiangH.L. Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator.Biomaterials202024111991110.1016/j.biomaterials.2020.11991132143060
    [Google Scholar]
  105. ChenX. YuC. KangR. TangD. Iron metabolism in ferroptosis.Front. Cell Dev. Biol.2020859022610.3389/fcell.2020.59022633117818
    [Google Scholar]
  106. DixonS.J. StockwellB.R. The hallmarks of ferroptosis.Annu. Rev. Cancer Biol.201931355410.1146/annurev‑cancerbio‑030518‑055844
    [Google Scholar]
  107. YangW.S. KimK.J. GaschlerM.M. PatelM. ShchepinovM.S. StockwellB.R. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis.Proc. Natl. Acad. Sci. USA201611334E4966E497510.1073/pnas.160324411327506793
    [Google Scholar]
  108. SuL-J ZhangJ-H GomezH MuruganR HongX XuD Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis.Oxid Med Cell Longev.20192019508084310.1155/2019/5080843
    [Google Scholar]
  109. LiuJ. KangR. TangD. Signaling pathways and defense mechanisms of ferroptosis.FEBS J.2022289227038705010.1111/febs.1605934092035
    [Google Scholar]
  110. MaoL. ZhaoT. SongY. LinL. FanX. CuiB. FengH. WangX. YuQ. ZhangJ. JiangK. WangB. SunC. The emerging role of ferroptosis in non-cancer liver diseases: hype or increasing hope?Cell Death Dis.202011751810.1038/s41419‑020‑2732‑532647111
    [Google Scholar]
  111. ShiJ.F. LiuY. WangY. GaoR. WangY. LiuJ. Targeting ferroptosis, a novel programmed cell death, for the potential of alcohol-related liver disease therapy.Front. Pharmacol.202314119434310.3389/fphar.2023.119434337214434
    [Google Scholar]
  112. LiuJ. HeH. WangJ. GuoX. LinH. ChenH. JiangC. ChenL. YaoP. TangY. Oxidative stress-dependent frataxin inhibition mediated alcoholic hepatocytotoxicity through ferroptosis.Toxicology202044515258410.1016/j.tox.2020.15258433017621
    [Google Scholar]
  113. FengG. ByrneC.D. TargherG. WangF. ZhengM.H. Ferroptosis and metabolic dysfunction-associated fatty liver disease: Is there a link?Liver Int.20224271496150210.1111/liv.1516335007392
    [Google Scholar]
  114. JiaM. ZhangH. QinQ. HouY. ZhangX. ChenD. ZhangH. ChenY. Ferroptosis as a new therapeutic opportunity for nonviral liver disease.Eur. J. Pharmacol.202190817431910.1016/j.ejphar.2021.17431934252441
    [Google Scholar]
  115. LiY. QinM. ZhongW. LiuC. DengG. YangM. LiJ. YeH. ShiH. WuC. LinH. ChenY. HuangS. ZhouC. LvZ. GaoL. RAGE promotes dysregulation of iron and lipid metabolism in alcoholic liver disease.Redox Biol.20235910255910.1016/j.redox.2022.10255936502724
    [Google Scholar]
  116. ShiJ LiuZ LiW WangD. Selenium donor inhibited hepatitis B virus associated hepatotoxicity via the apoptosis and ferroptosis pathways.Anal Cell Pathol202320236681065
    [Google Scholar]
  117. YamaneD HayashiY MatsumotoM NakanishiH ImagawaH KoharaM FADS2-dependent fatty acid desaturation dictates cellular sensitivity to ferroptosis and permissiveness for hepatitis C virus replication.Cell Chem Biol.202229579981010.1016/j.chembiol.2021.07.022
    [Google Scholar]
  118. WangM. JoshuaB. JinN. DuS. LiC. Ferroptosis in viral infection: the unexplored possibility.Acta Pharmacol. Sin.20224381905191510.1038/s41401‑021‑00814‑134873317
    [Google Scholar]
  119. WangQ. BinC. XueQ. GaoQ. HuangA. WangK. TangN. GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis.Cell Death Dis.202112542610.1038/s41419‑021‑03718‑433931597
    [Google Scholar]
  120. YaoX. LiW. FangD. XiaoC. WuX. LiM. LuoZ. Emerging roles of energy metabolism in ferroptosis regulation of tumor cells.Adv. Sci. (Weinh.)2021822210099710.1002/advs.20210099734632727
    [Google Scholar]
  121. MoY. ZouZ. ChenE. Targeting ferroptosis in hepatocellular carcinoma.Hepatol. Int.202311837880567
    [Google Scholar]
  122. QiJ. KimJ.W. ZhouZ. LimC.W. KimB. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation–mediated cell death in mice.Am. J. Pathol.20201901688110.1016/j.ajpath.2019.09.01131610178
    [Google Scholar]
  123. JiangX. StockwellB.R. ConradM. Ferroptosis: mechanisms, biology and role in disease.Nat. Rev. Mol. Cell Biol.202122426628210.1038/s41580‑020‑00324‑833495651
    [Google Scholar]
  124. MortensenM.S. RuizJ. WattsJ.L. Polyunsaturated fatty acids drive lipid peroxidation during ferroptosis.Cells202312580410.3390/cells1205080436899940
    [Google Scholar]
  125. PopeL.E. DixonS.J. Regulation of ferroptosis by lipid metabolism.Trends Cell Biol.202333121077108710.1016/j.tcb.2023.05.00337407304
    [Google Scholar]
  126. UrsiniF. MaiorinoM. Lipid peroxidation and ferroptosis: The role of GSH and GPx4.Free Radic. Biol. Med.202015217518510.1016/j.freeradbiomed.2020.02.02732165281
    [Google Scholar]
  127. WangB. WangY. ZhangJ. HuC. JiangJ. LiY. PengZ. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis.Arch. Toxicol.20239761439145110.1007/s00204‑023‑03476‑637127681
    [Google Scholar]
  128. MaC. HanL. ZhuZ. HengP.C. PanG. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases.Biochem. Pharmacol.202220511524210.1016/j.bcp.2022.11524236084708
    [Google Scholar]
  129. GenslucknerS. WernlyB. DatzC. AignerE. Iron, oxidative stress, and metabolic dysfunction—associated steatotic liver disease.Antioxidants202413220810.3390/antiox1302020838397806
    [Google Scholar]
  130. CaiX. HuaS. DengJ. DuZ. ZhangD. LiuZ. KhanN.U. ZhouM. ChenZ. Astaxanthin activated the Nrf2/HO-1 pathway to enhance autophagy and inhibit ferroptosis, ameliorating acetaminophen-induced liver injury.ACS Appl. Mater. Interfaces20221438428874290310.1021/acsami.2c1050636094079
    [Google Scholar]
  131. DodsonM. Castro-PortuguezR. ZhangD.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis.Redox Biol.20192310110710.1016/j.redox.2019.10110730692038
    [Google Scholar]
  132. ChenG.H. SongC.C. PantopoulosK. WeiX.L. ZhengH. LuoZ. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway.Free Radic. Biol. Med.20221809510710.1016/j.freeradbiomed.2022.01.01235045311
    [Google Scholar]
  133. TongJ. LiD. MengH. SunD. LanX. NiM. MaJ. ZengF. SunS. FuJ. LiG. JiQ. ZhangG. ShenQ. WangY. ZhuJ. ZhaoY. WangX. LiuY. OuyangS. ShengC. ShenF. WangP. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease.Acta Pharm. Sin. B20221293650366610.1016/j.apsb.2022.02.00336176906
    [Google Scholar]
  134. XieY. KangR. KlionskyD.J. TangD. GPX4 in cell death, autophagy, and disease.Autophagy202319102621263810.1080/15548627.2023.221876437272058
    [Google Scholar]
  135. ZhangH. ZhangE. HuH. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies.Biomedicines2021911166010.3390/biomedicines911166034829889
    [Google Scholar]
  136. LiuS. GaoZ. HeW. WuY. LiuJ. ZhangS. YanL. MaoS. ShiX. FanW. SongS. The gut microbiota metabolite glycochenodeoxycholate activates TFR-ACSL4-mediated ferroptosis to promote the development of environmental toxin–linked MAFLD.Free Radic. Biol. Med.2022193Pt 121322610.1016/j.freeradbiomed.2022.10.27036265794
    [Google Scholar]
  137. NamY. Cadmium-Induced Nonalcoholic Fatty Liver Disease: Implications of the Heme Oxygenase 1/Biliverdin Reductase Enzymatic Pathway.The University of Alabama2022
    [Google Scholar]
  138. CaoJ. Progress of heme oxygenase-1 mediated ferroptosis in non-alcoholic fatty liver disease.Chinese General Practice2024
    [Google Scholar]
  139. CarottiS. AquilanoK. ValentiniF. RuggieroS. AllettoF. MoriniS. PicardiA. Antonelli-IncalziR. Lettieri-BarbatoD. Vespasiani-GentilucciU. An overview of deregulated lipid metabolism in nonalcoholic fatty liver disease with special focus on lysosomal acid lipase.Am. J. Physiol. Gastrointest. Liver Physiol.20203194G469G48010.1152/ajpgi.00049.202032812776
    [Google Scholar]
  140. ZhaoT. YuZ. ZhouL. WangX. HuiY. MaoL. FanX. WangB. ZhaoX. SunC. Regulating Nrf2-GPx4 axis by bicyclol can prevent ferroptosis in carbon tetrachloride-induced acute liver injury in mice.Cell Death Discov.20228138010.1038/s41420‑022‑01173‑436071041
    [Google Scholar]
  141. ChoS.S. YangJ.H. LeeJ.H. BaekJ.S. KuS.K. ChoI.J. KimK.M. KiS.H. Ferroptosis contribute to hepatic stellate cell activation and liver fibrogenesis.Free Radic. Biol. Med.2022193Pt 262063710.1016/j.freeradbiomed.2022.11.01136370962
    [Google Scholar]
  142. MazzaA. FruciB. GarinisG.A. GiulianoS. MalaguarneraR. BelfioreA. The role of metformin in the management of NAFLD.Exp. Diabetes Res.2012201211310.1155/2012/71640422194737
    [Google Scholar]
  143. LinC.S. MaH. The therapeutic potential of metformin for metabolic associated fatty liver disease: Bioinformatics analysis.Arch. Clin. Med. Case Rep.202481162210.26502/acmcr.96550652
    [Google Scholar]
  144. AraújoA.R. RossoN. BedogniG. TiribelliC. BellentaniS. Global epidemiology of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis: What we need in the future.Liver Int.201838S1Suppl. 1475110.1111/liv.1364329427488
    [Google Scholar]
  145. ZhouJ. MasseyS. StoryD. LiL. Metformin: an old drug with new applications.Int. J. Mol. Sci.20181910286310.3390/ijms1910286330241400
    [Google Scholar]
  146. SmithB.K. MarcinkoK. DesjardinsE.M. LallyJ.S. FordR.J. SteinbergG.R. Treatment of nonalcoholic fatty liver disease: role of AMPK.Am. J. Physiol. Endocrinol. Metab.20163114E730E74010.1152/ajpendo.00225.201627577854
    [Google Scholar]
  147. BaiB. ChenH. Metformin: a novel weapon against inflammation.Front. Pharmacol.20211262226210.3389/fphar.2021.62226233584319
    [Google Scholar]
  148. DrzewoskiJ. HanefeldM. The current and potential therapeutic use of metformin—the good old drug.Pharmaceuticals (Basel)202114212210.3390/ph1402012233562458
    [Google Scholar]
  149. BhatA. SebastianiG. BhatM. Systematic review: Preventive and therapeutic applications of metformin in liver disease.World J. Hepatol.20157121652165910.4254/wjh.v7.i12.165226140084
    [Google Scholar]
  150. RuanG. WuF. ShiD. SunH. WangF. XuC. Metformin: update on mechanisms of action on liver diseases.Front. Nutr.202310132781410.3389/fnut.2023.132781438192642
    [Google Scholar]
  151. YueF. ShiY. WuS. XingL. HeD. WeiL. QiuA. RussellR. ZhangD. Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD.iScience2023261210856010.1016/j.isci.2023.10856038089577
    [Google Scholar]
  152. BaoJ. ZhaoY. XuX. LingS. Advance of metformin in liver disease.Curr. Med. Chem.20243110.2174/010929867327426823121511033038299294
    [Google Scholar]
  153. ZhangD. MaY. LiuJ. DengY. ZhouB. WenY. LiM. WenD. YingY. LuoS. ShiC. PuG. MiaoY. ZouC. ChenY. MaL. Metformin alleviates hepatic steatosis and insulin resistance in a mouse model of high-fat diet-induced nonalcoholic fatty liver disease by promoting transcription factor EB-dependent autophagy.Front. Pharmacol.20211268911110.3389/fphar.2021.68911134366846
    [Google Scholar]
  154. NiranjanS. PhillipsB.E. GiannoukakisN. Uncoupling hepatic insulin resistance – hepatic inflammation to improve insulin sensitivity and to prevent impaired metabolism-associated fatty liver disease in type 2 diabetes.Front. Endocrinol. (Lausanne)202314119337310.3389/fendo.2023.119337337396181
    [Google Scholar]
  155. SotoudeheianM HoseiniS Therapeutic properties of polyphenols affect AMPK molecular pathway in hyperlipidemia.Preprints20232023202301052810.20944/preprints202301.0528.v1
    [Google Scholar]
  156. DehkordiA.H. AbbaszadehA. MirS. HasanvandA. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts.J. Renal Inj. Prev.201881546110.15171/jrip.2019.11
    [Google Scholar]
  157. ZhangA. QianF. LiY. LiB. YangF. HuC. SunW. HuangY. Research progress of metformin in the treatment of liver fibrosis.Int. Immunopharmacol.202311610973810.1016/j.intimp.2023.10973836696857
    [Google Scholar]
  158. BuczyńskaA. SidorkiewiczI. KrętowskiA.J. AdamskaA. Examining the clinical relevance of metformin as an antioxidant intervention.Front. Pharmacol.202415133079710.3389/fphar.2024.133079738362157
    [Google Scholar]
  159. HaberR. ZarzourF. GhezzawiM. SaadehN. BachaD.S. Al JebbawiL. ChakhtouraM. MantzorosC.S. The impact of metformin on weight and metabolic parameters in patients with obesity: A systematic review and meta-analysis of randomized controlled trials.Diabetes Obes. Metab.20242651850186710.1111/dom.1550138468148
    [Google Scholar]
  160. LavineJ.E. SchwimmerJ.B. Van NattaM.L. MollestonJ.P. MurrayK.F. RosenthalP. AbramsS.H. ScheimannA.O. SanyalA.J. ChalasaniN. TonasciaJ. ÜnalpA. ClarkJ.M. BruntE.M. KleinerD.E. HoofnagleJ.H. RobuckP.R. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial.JAMA2011305161659166810.1001/jama.2011.52021521847
    [Google Scholar]
  161. HomaeiA AlhadadM AradB SaffariF Effect of Metformin or Vitamin E on ultrasonographic grade and biochemical findings of children and adolescents with nonalcoholic fatty liver disease: A randomized clinical trial.J. Compr. Pediatr.202213210.5812/compreped‑123944
    [Google Scholar]
  162. NadeauK.J. EhlersL.B. ZeitlerP.S. Love-OsborneK. Treatment of non-alcoholic fatty liver disease with metformin versus lifestyle intervention in insulin-resistant adolescents.Pediatr. Diabetes200910151310.1111/j.1399‑5448.2008.00450.x18721166
    [Google Scholar]
  163. GkiourtzisN. MichouP. MoutafiM. GlavaA. CheirakisK. ChristakopoulosA. VouksinouE. FotoulakiM. The benefit of metformin in the treatment of pediatric non-alcoholic fatty liver disease: a systematic review and meta-analysis of randomized controlled trials.Eur. J. Pediatr.2023182114795480610.1007/s00431‑023‑05169‑937639015
    [Google Scholar]
  164. PinyopornpanishK. LeerapunA. PinyopornpanishK. ChattipakornN. Effects of metformin on hepatic steatosis in adults with nonalcoholic fatty liver disease and diabetes: insights from the cellular to patient levels.Gut Liver202115682784010.5009/gnl2036733820884
    [Google Scholar]
  165. ZhangR. ChengK. XuS. LiS. ZhouY. ZhouS. KongR. LiL. LiJ. FengJ. WuL. LiuT. XiaY. LuJ. GuoC. ZhouY. Metformin and diammonium glycyrrhizinate enteric-coated capsule versus metformin alone versus diammonium glycyrrhizinate enteric-coated capsule alone in patients with nonalcoholic fatty liver disease and type 2 diabetes mellitus.Gastroenterol. Res. Pract.2017201711110.1155/2017/849174228133479
    [Google Scholar]
  166. FanH. PanQ. XuY. YangX. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease.Arq. Bras. Endocrinol. Metabol201357970270810.1590/S0004‑2730201300090000524402015
    [Google Scholar]
  167. FengW. GaoC. BiY. WuM. LiP. ShenS. ChenW. YinT. ZhuD. Randomized trial comparing the effects of gliclazide, liraglutide, and metformin on diabetes with non-alcoholic fatty liver disease.J. Diabetes20179880080910.1111/1753‑0407.1255528332301
    [Google Scholar]
  168. YabikuK. MutohA. MiyagiK. TakasuN. Effects of oral antidiabetic drugs on changes in the liver-to-spleen ratio on computed tomography and inflammatory biomarkers in patients with type 2 diabetes and nonalcoholic fatty liver disease.Clin. Ther.201739355856610.1016/j.clinthera.2017.01.01528185715
    [Google Scholar]
  169. TianF. ZhengZ. ZhangD. HeS. ShenJ. Efficacy of liraglutide in treating type 2 diabetes mellitus complicated with non-alcoholic fatty liver disease.Biosci. Rep.2018386BSR2018130410.1042/BSR2018130430473540
    [Google Scholar]
  170. ZsóriG. IllésD. IványE. KosárK. HolzingerG. TajtiM. PálinkásE. SzabovikG. NagyA. PalkóA. CzakóL. In new-onset diabetes mellitus, metformin reduces fat accumulation in the liver, but not in the pancreas or pericardium.Metab. Syndr. Relat. Disord.201917528929510.1089/met.2018.008631013454
    [Google Scholar]
  171. ShibuyaT. FushimiN. KawaiM. YoshidaY. HachiyaH. ItoS. KawaiH. OhashiN. MoriA. Luseogliflozin improves liver fat deposition compared to metformin in type 2 diabetes patients with non-alcoholic fatty liver disease: A prospective randomized controlled pilot study.Diabetes Obes. Metab.201820243844210.1111/dom.1306128719078
    [Google Scholar]
  172. HuangY. WangX. YanC. LiC. ZhangL. ZhangL. LiangE. LiuT. MaoJ. Effect of metformin on nonalcoholic fatty liver based on meta-analysis and network pharmacology.Medicine (Baltimore)202210143e3143710.1097/MD.000000000003143736316840
    [Google Scholar]
  173. CaturanoA. GalieroR. LoffredoG. VetranoE. MedicamentoG. AciernoC. RinaldiL. MarroneA. SalvatoreT. MondaM. SarduC. MarfellaR. SassoF.C. Effects of a combination of empagliflozin plus metformin vs. metformin monotherapy on NAFLD progression in type 2 diabetes: the IMAGIN pilot study.Biomedicines202311232210.3390/biomedicines1102032236830859
    [Google Scholar]
  174. LavinB. EykynT.R. PhinikaridouA. XavierA. KumarS. BuquéX. AspichuetaP. Sing-LongC. ArreseM. BotnarR.M. AndiaM.E. Characterization of hepatic fatty acids using magnetic resonance spectroscopy for the assessment of treatment response to metformin in an eNOS −/− mouse model of metabolic nonalcoholic fatty liver disease/nonalcoholic steatohepatitis.NMR Biomed.2023368e493210.1002/nbm.493236940044
    [Google Scholar]
  175. ChiuHY TsaiSC TsaiFJ Liraglutide with metformin therapy ameliorates hepatic steatosis and liver injury in a mouse model of non-alcoholic steatohepatitis.In Vivo.202337310371065
    [Google Scholar]
  176. ShaabanH.H. AlzaimI. El-MallahA. AlyR.G. El-YazbiA.F. WahidA. Metformin, pioglitazone, dapagliflozin and their combinations ameliorate manifestations associated with NAFLD in rats via anti-inflammatory, anti-fibrotic, anti-oxidant and anti-apoptotic mechanisms.Life Sci.202230812095610.1016/j.lfs.2022.12095636103959
    [Google Scholar]
  177. MuzurovićE. MikhailidisD.P. MantzorosC. Non-alcoholic fatty liver disease, insulin resistance, metabolic syndrome and their association with vascular risk.Metabolism202111915477010.1016/j.metabol.2021.15477033864798
    [Google Scholar]
  178. RajgopalR.K. KochharR.S. Efficacy and cardiovascular safety of metformin.Curr. Drug Saf.202116216517710.2174/157488631566621010614224433413067
    [Google Scholar]
  179. CaussyC. AubinA. LoombaR. The relationship between type 2 diabetes, NAFLD, and cardiovascular risk.Curr. Diab. Rep.20212151510.1007/s11892‑021‑01383‑733742318
    [Google Scholar]
  180. PerazzaF. LeoniL. ColosimoS. MusioA. BocediG. D’AvinoM. AgnelliG. NicastriA. RossettiC. SacilottoF. MarchesiniG. PetroniM.L. RavaioliF. Metformin and the liver: Unlocking the full therapeutic potential.Metabolites202414418610.3390/metabo1404018638668314
    [Google Scholar]
  181. SmithF.C. StockerS.L. DantaM. CarlandJ.E. KumarS.S. LiuZ. GreenfieldJ.R. BraithwaiteH.E. ChengT.S. GrahamG.G. WilliamsK.M. DayR.O. The safety and pharmacokinetics of metformin in patients with chronic liver disease.Aliment. Pharmacol. Ther.202051556557510.1111/apt.1563531960986
    [Google Scholar]
  182. SunY. GuoL. WangD. XingY. BaiY. ZhangT. WangW. ZhouS. YaoX. ChengJ. ChangW. LvK. LiC. KongX. Metformin alleviates glucolipotoxicity-induced pancreatic β cell ferroptosis through regulation of the GPX4/ACSL4 axis.Eur. J. Pharmacol.202395617596710.1016/j.ejphar.2023.17596737549729
    [Google Scholar]
  183. ZhaoY. ZhaoY. TianY. ZhouY. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox-LDL-induced THP-1 monocytes.Exp. Ther. Med.202224463610.3892/etm.2022.1157336160906
    [Google Scholar]
  184. TangK. ChenQ. LiuY. WangL. LuW. Combination of metformin and sorafenib induces ferroptosis of hepatocellular carcinoma through p62-keap1-nrf2 pathway.J. Cancer202213113234324310.7150/jca.7661836118519
    [Google Scholar]
  185. DengC. XiongL. ChenY. WuK. WuJ. Metformin induces ferroptosis through the Nrf2/HO-1 signaling in lung cancer.BMC Pulm. Med.202323136010.1186/s12890‑023‑02655‑637749553
    [Google Scholar]
  186. WuX. XuW.W. HuanX. WuG. LiG. ZhouY.H. NajafiM. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways.Mol. Cell. Biochem.2023478119721410.1007/s11010‑022‑04502‑435771397
    [Google Scholar]
  187. WangZ. WuZ. XieZ. ZhouW. LiM. Metformin attenuates ferroptosis and promotes functional recovery of spinal cord injury.World Neurosurg.2022167e929e93910.1016/j.wneu.2022.08.12136058489
    [Google Scholar]
  188. WangZ. ZhouW. ZhangZ. ZhangL. LiM. Metformin alleviates spinal cord injury by inhibiting nerve cell ferroptosis through upregulation of heme oxygenase-1 expression.Neural Regen. Res.20241992041204910.4103/1673‑5374.39096038227534
    [Google Scholar]
  189. ZhuJ WangP WangX LiuT LvJ YuanJ. Metformin prevents dopaminergic neuron death in MPTP/P-induced mouse model of Parkinson's disease via autophagy and mitochondrial ROS clearance.Int J Neuropsychopharmacol.2023199pyw047
    [Google Scholar]
  190. HuZ. ZhaoY. LiL. JiangJ. LiW. MangY. GaoY. DongY. ZhuJ. YangC. RanJ. LiL. ZhangS. Metformin promotes ferroptosis and sensitivity to sorafenib in hepatocellular carcinoma cells via ATF4/STAT3.Mol. Biol. Rep.20235086399641310.1007/s11033‑023‑08492‑437326750
    [Google Scholar]
  191. OzbeyG. Nemutlu-SamurD. ParlakH. YildirimS. AslanM. TanrioverG. AgarA. Metformin protects rotenone-induced dopaminergic neurodegeneration by reducing lipid peroxidation.Pharmacol. Rep.20207251397140610.1007/s43440‑020‑00095‑132207092
    [Google Scholar]
  192. ChenH. WangC. LiuZ. HeX. TangW. HeL. FengY. LiuD. YinY. LiT. Ferroptosis and its multifaceted role in cancer: mechanisms and therapeutic approach.Antioxidants2022118150410.3390/antiox1108150436009223
    [Google Scholar]
  193. HungC.H. ChanS.H. ChuP.M. LinH.C. TsaiK.L. Metformin regulates oxLDL-facilitated endothelial dysfunction by modulation of SIRT1 through repressing LOX-1-modulated oxidative signaling.Oncotarget2016710107731078710.18632/oncotarget.738726885898
    [Google Scholar]
  194. LiX. WangX. SnyderM.P. Metformin affects heme function as a possible mechanism of action. G3: Genes, Genomes.G3 (Bethesda)20199251352210.1534/g3.118.20080330554148
    [Google Scholar]
  195. HouY. CaiS. YuS. LinH. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer.Acta Biochim. Biophys. Sin. (Shanghai)202153333334110.1093/abbs/gmaa18033522578
    [Google Scholar]
  196. HowellJ.J. HellbergK. TurnerM. TalbottG. KolarM.J. RossD.S. HoxhajG. SaghatelianA. ShawR.J. ManningB.D. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex.Cell Metab.201725246347110.1016/j.cmet.2016.12.00928089566
    [Google Scholar]
  197. LeiG. ZhuangL. GanB. mTORC1 and ferroptosis: Regulatory mechanisms and therapeutic potential.BioEssays2021438210009310.1002/bies.20210009334121197
    [Google Scholar]
  198. LiuY. WangY. LiuJ. KangR. TangD. Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death.Cancer Gene Ther.2021281-2556310.1038/s41417‑020‑0182‑y32457486
    [Google Scholar]
  199. KitaY TakamuraT MisuH OtaT KuritaS TakeshitaY Metformin prevents and reverses inflammation in a non-diabetic mouse model of nonalcoholic steatohepatitis.PLoS One.201279e4305610.1371/journal.pone.0043056
    [Google Scholar]
  200. TehraniS.S. GoodarziG. PanahiG. Zamani-GarmsiriF. MeshkaniR. The combination of metformin with morin alleviates hepatic steatosis via modulating hepatic lipid metabolism, hepatic inflammation, brown adipose tissue thermogenesis, and white adipose tissue browning in high-fat diet-fed mice.Life Sci.202332312170610.1016/j.lfs.2023.12170637075944
    [Google Scholar]
  201. LeeH.W. LeeJ.S. KimB.K. ParkJ.Y. KimD.Y. AhnS.H. KimS.U. Evolution of liver fibrosis and steatosis markers in patients with type 2 diabetes after metformin treatment for 2 years.J. Diabetes Complications202135110774710.1016/j.jdiacomp.2020.10774733616043
    [Google Scholar]
  202. YangT. GuanQ. ShiJ.S. XuZ.H. GengY. Metformin alleviates liver fibrosis in mice by enriching Lactobacillus sp. MF-1 in the gut microbiota.Biochim. Biophys. Acta Mol. Basis Dis.20231869516666410.1016/j.bbadis.2023.16666436893671
    [Google Scholar]
  203. FanK. WuK. LinL. GeP. DaiJ. HeX. HuK. ZhangL. Metformin mitigates carbon tetrachloride-induced TGF-β1/Smad3 signaling and liver fibrosis in mice.Biomed. Pharmacother.20179042142610.1016/j.biopha.2017.03.07928390311
    [Google Scholar]
  204. SongY.M. LeeY. KimJ.W. HamD.S. KangE.S. ChaB.S. LeeH.C. LeeB.W. Metformin alleviates hepatosteatosis by restoring SIRT1-mediated autophagy induction via an AMP-activated protein kinase-independent pathway.Autophagy2015111465910.4161/15548627.2014.98427125484077
    [Google Scholar]
  205. LuJ.L. YuC.X. SongL.J. Programmed cell death in hepatic fibrosis: current and perspectives.Cell Death Discov.20239144910.1038/s41420‑023‑01749‑838086792
    [Google Scholar]
/content/journals/crcep/10.2174/0127724328328193241029103831
Loading
/content/journals/crcep/10.2174/0127724328328193241029103831
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): apoptosis; Biguanides; cell death; dimethylguanylguanidine; GPX4; hepatocyte; NAFLD; necroptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test