Skip to content
2000
image of Evaluation of FOXP3 Exons 2 and 7 Variants in Recurrent Pregnancy Loss among South Indian Women

Abstract

Introduction

One to two percent of women worldwide experience recurrent pregnancy loss (RPL), defined as the loss of two or more consecutive pregnancies before 20 weeks of gestation. Genetic factors, including variations in the gene, have been implicated in the unexplained etiology of RPL. This study aimed to identify and characterize novel genetic variants in exons 2 and 7 of the gene in South Indian women with idiopathic RPL and to analyze their potential impact on protein structure.

Materials and Methods

This case-control study involved DNA extraction from 300 participants,including 150 recurrent pregnancy loss (RPL)cases and 150 non-recurrent pregnancy loss (NRPL) controls. Polymerase chain reaction (PCR) and Sanger sequencing were used to identify genetic variants. The identified single-nucleotide polymorphisms (SNPs) were analyzed for frequency differences between the RPL and control groups. Additionally, bioinformatics tools were employed to assess the structural impact of the identified mutations on the FOXP3 protein.

Results

Seven novel single-nucleotide polymorphisms (SNPs) were identified, with four SNPs (-11InsT, 206G>A in exon 2, and 433InsT, 726A>T in exon 7), showing significant frequency variations between RPL and NRPL groups. The modeled structures of FOXP3 apo and mutant proteins displayed similar structural features, including a DNA-binding domain. Molecular dynamics simulation studies revealed comparable stability between the apo and mutant forms of FOXP3.

Discussion

The identified mutations in the gene can potentially disrupt its critical immune-regulatory functions, leading to impaired immune tolerance during pregnancy, a key factor in the development of RPL. These mutations may alter the activity or stability of regulatory T cells, which are essential for maintaining pregnancy by preventing immune rejection of the fetus.

Conclusion

These findings provide new insights into the genetic underpinnings of idiopathic RPL and underscore the importance of genetic testing for a better understanding of this condition.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037401980250815111716
2025-09-05
2025-11-17
Loading full text...

Full text loading...

References

  1. Ford H.B. Schust D.J. Recurrent pregnancy loss: Etiology, diagnosis, and therapy. Rev. Obstet. Gynecol. 2009 2 2 76 83 19609401
    [Google Scholar]
  2. Bavache A.B. Gawali U.G. Aher G.S. An evaluation of etiology of recurrent pregnancy loss: Prospective observational study. Int. J. Reprod. Contracept. Obstet. Gynecol. 2022 11 5 1422 1425 10.18203/2320‑1770.ijrcog20221271
    [Google Scholar]
  3. Grandone E. Piazza G. Thrombophilia, inflammation, and recurrent pregnancy loss: A case-based review. Semin Reprod Med 2021 39 1-02 62 68 10.1055/s‑0041‑1731827 34215013
    [Google Scholar]
  4. Sonehara K. Yano Y. Naito T. Goto S. Yoshihara H. Otani T. Ozawa F. Kitaori T. Yamanashi Y. Furukawa Y. Morisaki T. Murakami Y. Kamatani Y. Muto K. Nagai A. Nakamura Y. Obara W. Yamaji K. Takahashi K. Asai S. Takahashi Y. Higashiue S. Kobayashi S. Yamaguchi H. Nagata Y. Wakita S. Nito C. Iwasaki Y. Murayama S. Yoshimori K. Miki Y. Obata D. Higashiyama M. Masumoto A. Koga Y. Koretsune Y. Matsuda K. Nishiyama T. Okada Y. Sugiura-Ogasawara M. Common and rare genetic variants predisposing females to unexplained recurrent pregnancy loss. Nat. Commun. 2024 15 1 5744 10.1038/s41467‑024‑49993‑5 39019884
    [Google Scholar]
  5. Jameel S. Bhuwalka R. Begum M. Bonu R. Jahan P. Circulating levels of cytokines (IL-6, IL-10 and TGF- β) and CD4+CD25+FOXP3+Treg cell population in recurrent pregnancy loss. Reprod. Biol. 2024 24 1 100842 10.1016/j.repbio.2023.100842 38176116
    [Google Scholar]
  6. Rai R. Regan L. Recurrent miscarriage. Lancet 2006 368 9535 601 611 10.1016/S0140‑6736(06)69204‑0 16905025
    [Google Scholar]
  7. Cao C. Bai S. Zhang J. Sun X. Meng A. Chen H. Understanding recurrent pregnancy loss: Recent advances on its etiology, clinical diagnosis, and management. Medical Review 2023 2 6 570 589 10.1515/mr‑2022‑0030 37724255
    [Google Scholar]
  8. Magon N. Kumar P. Hormones in pregnancy. Niger. Med. J. 2012 53 4 179 183 10.4103/0300‑1652.107549 23661874
    [Google Scholar]
  9. Napso T. Yong H.E.J. Lopez-Tello J. Sferruzzi-Perri A.N. The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front. Physiol. 2018 9 1091 10.3389/fphys.2018.01091 30174608
    [Google Scholar]
  10. Kaymaz K. Beikler T. Th17 cells and the IL-23/IL-17 axis in the pathogenesis of periodontitis and immune-mediated inflammatory diseases. Int. J. Mol. Sci. 2019 20 14 3394 10.3390/ijms20143394 31295952
    [Google Scholar]
  11. Huangfu L. Li R. Huang Y. Wang S. The IL-17 family in diseases: From bench to bedside. Signal Transduct. Target. Ther. 2023 8 1 402 10.1038/s41392‑023‑01620‑3 37816755
    [Google Scholar]
  12. Huang N. Chi H. Qiao J. Role of regulatory T cells in regulating fetal-maternal immune tolerance in healthy pregnancies and reproductive diseases. Front. Immunol. 2020 11 1023 10.3389/fimmu.2020.01023 32676072
    [Google Scholar]
  13. Krop J. Heidt S. Claas F.H.J. Eikmans M. Regulatory T cells in pregnancy: It is not all about FoxP3. Front. Immunol. 2020 11 1182 10.3389/fimmu.2020.01182 32655556
    [Google Scholar]
  14. Komai T. Inoue M. Okamura T. Morita K. Iwasaki Y. Sumitomo S. Shoda H. Yamamoto K. Fujio K. Transforming growth factor-β and interleukin-10 synergistically regulate humoral immunity via modulating metabolic signals. Front. Immunol. 2018 9 1364 10.3389/fimmu.2018.01364 29963056
    [Google Scholar]
  15. Li M.O. Flavell R.A. Contextual regulation of inflammation: A duet by transforming growth factor-β and interleukin-10. Immunity 2008 28 4 468 476 10.1016/j.immuni.2008.03.003 18400189
    [Google Scholar]
  16. Popko K. Gorska E. Stelmaszczyk-Emmel A. Plywaczewski R. Stoklosa A. Gorecka D. Pyrzak B. Demkow U. Proinflammatory cytokines IL-6 and TNF-α and the development of inflammation in obese subjects. Eur. J. Med. Res. 2010 15 S2 120 122 10.1186/2047‑783X‑15‑S2‑120 21147638
    [Google Scholar]
  17. Schuerwegh A.J. Dombrecht E.J. Stevens W.J. Van Offel J.F. Bridts C.H. De Clerck L.S. Influence of pro-inflammatory (IL-1α, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4) cytokines on chondrocyte function. Osteoarthritis Cartilage 2003 11 9 681 687 10.1016/S1063‑4584(03)00156‑0 12954239
    [Google Scholar]
  18. Wawrusiewicz-Kurylonek N. Chorąży M. Posmyk R. Zajkowska O. Zajkowska A. Krętowski A.J. Tarasiuk J. Kochanowicz J. Kułakowska A. The FOXP3 rs3761547 gene polymorphism in multiple sclerosis as a male-specific risk factor. Neuromolecular Med. 2018 20 4 537 543 10.1007/s12017‑018‑8512‑z 30229436
    [Google Scholar]
  19. Bamba C. Rohilla M. Kumari A. Kaur A. Srivastava P. Influence of forkhead box protein 3 gene polymorphisms in recurrent pregnancy loss: A meta-analysis. Placenta 2024 146 79 88 10.1016/j.placenta.2024.01.003 38198891
    [Google Scholar]
  20. Pandith A.A. Manzoor U. Amin I. Rasool S.U.A. Wani Z.A. Qasim I. HLA-G polymorphic variation (G*0104N exon 3) confers potential risk for recurrent pregnancy losses: A study in a high incidence zone (Kashmir, North India). Gene Expr. 2025 25 1 45 52 10.14218/GE.2023.00144
    [Google Scholar]
  21. Nasiri M. Rasti Z. CTLA-4 and IL-6 gene polymorphisms: Risk factors for recurrent pregnancy loss. Hum. Immunol. 2016 77 12 1271 1274 10.1016/j.humimm.2016.07.236 27480842
    [Google Scholar]
  22. Hwang K.R. Choi Y.M. Kim J.J. Lee S.K. Yang K.M. Paik E.C. Jeong H.J. Jun J.K. Yoon S.H. Hong M.A. Methylenetetrahydrofolate reductase polymorphisms and risk of recurrent pregnancy loss: A case-control study. J. Korean Med. Sci. 2017 32 12 2029 2034 10.3346/jkms.2017.32.12.2029 29115087
    [Google Scholar]
  23. Cho H.Y. Park H.S. Ahn E.H. Ko E.J. Park H.W. Kim Y.R. Kim J.H. Lee W.S. Kim N.K. Association of polymorphisms in plasminogen activator inhibitor-1 (PAI-1), tissue plasminogen activator (tPA), and renin (REN) with recurrent pregnancy loss in Korean women. J. Pers. Med. 2021 11 12 1378 10.3390/jpm11121378 34945850
    [Google Scholar]
  24. Zhuang B. Shang J. Yao Y. HLA-G: An important mediator of maternal-fetal immune-tolerance. Front. Immunol. 2021 12 744324 10.3389/fimmu.2021.744324 34777357
    [Google Scholar]
  25. Jiang H. Chess L. Regulation of immune responses by T cells. N. Engl. J. Med. 2006 354 11 1166 1176 10.1056/NEJMra055446 16540617
    [Google Scholar]
  26. Williams L.M. Rudensky A.Y. Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat. Immunol. 2007 8 3 277 284 10.1038/ni1437 17220892
    [Google Scholar]
  27. Marques C.R. Costa R.S. Costa G.N.O. da Silva T.M. Teixeira T.O. de Andrade E.M.M. Galvão A.A. Carneiro V.L. Figueiredo C.A. Genetic and epigenetic studies of FOXP3 in asthma and allergy. Asthma Res. Pract. 2015 1 1 10 10.1186/s40733‑015‑0012‑4 27965764
    [Google Scholar]
  28. Corthay A. How do regulatory T cells work? Scand. J. Immunol. 2009 70 4 326 336 10.1111/j.1365‑3083.2009.02308.x 19751267
    [Google Scholar]
  29. Webb B. Sali A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 2016 54 5.6.1 5.6.37 10.1002/cpbi.3 27322406
    [Google Scholar]
  30. Jorgensen W.L. Maxwell D.S. Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996 118 45 11225 11236 10.1021/ja9621760
    [Google Scholar]
  31. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  32. Kumar J. Qureshi R. Sagurthi S.R. Qureshi I.A. Designing of nucleocapsid protein based novel multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. Int. J. Pept. Res. Ther. 2021 27 2 941 956 10.1007/s10989‑020‑10140‑5 33192207
    [Google Scholar]
  33. Gorelov S. Titov A. Tolicheva O. Konevega A. Shvetsov A. DSSP in GROMACS: Tool for defining secondary structures of proteins in trajectories. J. Chem. Inf. Model. 2024 64 9 3593 3598 10.1021/acs.jcim.3c01344 38655711
    [Google Scholar]
  34. Jyotisha Qureshi R. Qureshi I.A. Exploration of membrane-bound ecto-phosphatase to identify potential therapeutic target for leishmaniasis. Int. J. Biol. Macromol. 2025 307 Pt 1 141820 10.1016/j.ijbiomac.2025.141820 40057095
    [Google Scholar]
  35. Wu H.M. Chen L.H. Hsu L.T. Lai C.H. Immune tolerance of embryo implantation and pregnancy: The role of human decidual stromal cell- and embryonic-derived extracellular vesicles. Int. J. Mol. Sci. 2022 23 21 13382 10.3390/ijms232113382 36362169
    [Google Scholar]
  36. Guzman-Genuino R.M. Diener K.R. Regulatory B. Regulatory B cells in pregnancy: Lessons from autoimmunity, graft tolerance, and cancer. Front. Immunol. 2017 8 172 10.3389/fimmu.2017.00172 28261223
    [Google Scholar]
  37. Pereira L.M.S. Gomes S.T.M. Ishak R. Vallinoto A.C.R. Regulatory T. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front. Immunol. 2017 8 605 10.3389/fimmu.2017.00605 28603524
    [Google Scholar]
  38. Mercer F. Unutmaz D. The biology of FoxP3: A key player in immune suppression during infections, autoimmune diseases and cancer. Adv. Exp. Med. Biol. 2009 665 47 59 10.1007/978‑1‑4419‑1599‑3_4 20429415
    [Google Scholar]
  39. Turesheva A. Aimagambetova G. Ukybassova T. Marat A. Kanabekova P. Kaldygulova L. Amanzholkyzy A. Ryzhkova S. Nogay A. Khamidullina Z. Ilmaliyeva A. Almawi W.Y. Atageldiyeva K. Recurrent pregnancy loss etiology, risk factors, diagnosis, and management. Fresh look into a full box. J. Clin. Med. 2023 12 12 4074 10.3390/jcm12124074 37373766
    [Google Scholar]
  40. Luo J. Zhou C. Wang S. Tao S. Liao Y. Shi Z. Tang Z. Wu Y. Liu Y. Yang P. Cortisol synergizing with endoplasmic reticulum stress induces regulatory T‐cell dysfunction. Immunology 2023 170 3 334 343 10.1111/imm.13669 37475539
    [Google Scholar]
  41. Du J. Wang Q. Yang S. Chen S. Fu Y. Spath S. Domeier P. Hagin D. Anover-Sombke S. Haouili M. Liu S. Wan J. Han L. Liu J. Yang L. Sangani N. Li Y. Lu X. Janga S.C. Kaplan M.H. Torgerson T.R. Ziegler S.F. Zhou B. FOXP3 exon 2 controls T reg stability and autoimmunity. Sci. Immunol. 2022 7 72 eabo5407 10.1126/sciimmunol.abo5407 35749515
    [Google Scholar]
  42. Mailer R.K.W. Alternative splicing of FOXP3—Virtue and vice. Front. Immunol. 2018 9 530 10.3389/fimmu.2018.00530 29593749
    [Google Scholar]
  43. Yang D. Dai F. Yuan M. Zheng Y. Liu S. Deng Z. Tan W. Chen L. Zhang Q. Zhao X. Cheng Y. Role of transforming growth factor-β1 in regulating fetal-maternal immune tolerance in normal and pathological pregnancy. Front. Immunol. 2021 12 689181 10.3389/fimmu.2021.689181 34531852
    [Google Scholar]
  44. Niu T. Liu N. Zhao M. Xie G. Zhang L. Li J. Pei Y.F. Shen H. Fu X. He H. Lu S. Chen X.D. Tan L.J. Yang T.L. Guo Y. Leo P.J. Duncan E.L. Shen J. Guo Y.F. Nicholson G.C. Prince R.L. Eisman J.A. Jones G. Sambrook P.N. Hu X. Das P.M. Tian Q. Zhu X.Z. Papasian C.J. Brown M.A. Uitterlinden A.G. Wang Y.P. Xiang S. Deng H.W. Identification of a novel FGFRL1 MicroRNA target site polymorphism for bone mineral density in meta-analyses of genome-wide association studies. Hum. Mol. Genet. 2015 24 16 4710 4727 10.1093/hmg/ddv144 25941324
    [Google Scholar]
  45. Chen B. Li N. Bao W. CLPr_in_ML: Cleft lip and palate reconstructed features with Machine Learning. Curr. Bioinform. 2025 20 2 179 193 10.2174/0115748936330499240909082529
    [Google Scholar]
  46. Bao W. Yang B. Protein acetylation sites with complex-valued polynomial model. Front. Comput. Sci. 2024 18 3 183904 10.1007/s11704‑023‑2640‑9
    [Google Scholar]
  47. Dees N.D. Zhang Q. Kandoth C. Wendl M.C. Schierding W. Koboldt D.C. Mooney T.B. Callaway M.B. Dooling D. Mardis E.R. Wilson R.K. Ding L. MuSiC: Identifying mutational significance in cancer genomes. Genome Res. 2012 22 8 1589 1598 10.1101/gr.134635.111 22759861
    [Google Scholar]
  48. Golzari-Sorkheh M. Zúñiga-Pflücker J.C. Development and function of FOXP3+ regulators of immune responses. Clin. Exp. Immunol. 2023 213 1 13 22 10.1093/cei/uxad048 37085947
    [Google Scholar]
  49. Rahaman M.M. Islam R. Jewel G.M.N.A. Hoque H. Implementation of computational approaches to explore the deleterious effects of non-synonymous SNPs on pRB protein. J. Biomol. Struct. Dyn. 2022 40 16 7256 7273 10.1080/07391102.2021.1896385 33682629
    [Google Scholar]
  50. Nasim F. Jakkula P. Kumar M.S. Alvala M. Qureshi I.A. Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis. Int. J. Biol. Macromol. 2024 282 Pt 6 137357 10.1016/j.ijbiomac.2024.137357 39515693
    [Google Scholar]
  51. Ng P. C. Henikoff S. Predicting the effects of amino acid substitutions on protein function. Annu. Rev. Genomics Hum. Genet. 2006 7 61 80 10.1146/annurev.genom.7.080505.115630 16824020
    [Google Scholar]
  52. Kamal M.M. Mia M.S. Faruque M.O. Rabby M.G. Islam M.N. Talukder M.E.K. Wani T.A. Rahman M.A. Hasan M.M. In silico functional, structural and pathogenicity analysis of missense single nucleotide polymorphisms in human MCM6 gene. Sci. Rep. 2024 14 1 11607 10.1038/s41598‑024‑62299‑2 38773180
    [Google Scholar]
  53. Lu L. Barbi J. Pan F. The regulation of immune tolerance by FOXP3. Nat. Rev. Immunol. 2017 17 11 703 717 10.1038/nri.2017.75 28757603
    [Google Scholar]
  54. Borna S. Meffre E. Bacchetta R. FOXP3 deficiency, from the mechanisms of the disease to curative strategies. Immunol. Rev. 2024 322 1 244 258 10.1111/imr.13289 37994657
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037401980250815111716
Loading
/content/journals/cpps/10.2174/0113892037401980250815111716
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test