Skip to content
2000
image of Enzymatic Synthesis of β-lactam Antibiotics: From Enzyme Dataset Construction to Action Mechanism and Semi-Rational Design

Abstract

β-lactam Antibiotics (BLA) are characterized by the presence of lactam rings, which are widely used and have a huge market scale. Currently, the production of BLA is primarily achieved through a chemical process, which introduces a large number of toxic compounds, resulting in relatively high environmental costs. As a part of green chemistry, the enzymatic production of BLA is gaining attention because it is non-toxic and pollution-free. This review focuses on industrial enzymes for BLA biosynthesis, which is critical for understanding the reaction process and addressing the deficiencies of low enzyme stability and activity. In this work, a focused dataset of industrial enzymes involved in BLA biosynthesis was constructed, and the structural characteristics of these enzymes were analyzed based on substrate specificity. Subsequently, eight representative enzyme molecules from the database were selected for detailed analyses, particularly focusing on substrate recognition and action mechanisms. Finally, some suggestions for the semi-rational design of enzymes are put forward given the defects existing in BLA biosynthesis. This review not only partially reveals the structure-function relationship of industrial enzyme molecules used in BLA enzymatic synthesis, but also contributes to the semi-rational design of subsequent enzymes, showing certain theoretical significance and application value.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037376289250825072957
2025-09-17
2025-11-17
Loading full text...

Full text loading...

References

  1. Sklyarenko A.V. El’darov M.A. Kurochkina V.B. Yarotsky S.V. Enzymatic synthesis of β-lactam acids. Appl. Biochem. Microbiol. 2015 51 6 627 640 10.1134/S0003683815060150
    [Google Scholar]
  2. Qu F. Li D.H. Wang G.L. Yi B.X. Progress in enzymatic synthesis of β-lactam antibiotics with α-amino acid ester hydrolase. Chung Kuo Yao Hsueh Tsa Chih 2012 43 5 381 385
    [Google Scholar]
  3. Dörr T. Moynihan P.J. Mayer C. Editorial: Bacterial cell wall structure and dynamics. Front. Microbiol. 2019 10 2051 2054 10.3389/fmicb.2019.02051 31551985
    [Google Scholar]
  4. Zervosen A. Sauvage E. Frère J.M. Charlier P. Luxen A. Development of new drugs for an old target: The penicillin binding proteins. Molecules 2012 17 11 12478 12505 10.3390/molecules171112478 23095893
    [Google Scholar]
  5. Cambau E. Guillard T. Antimicrobials that affect the synthesis and conformation of nucleic acids. Rev. Sci. Tech. 2012 31 (1) 77-87 65-76 10.20506/rst.31.1.2102 22849269
    [Google Scholar]
  6. Chandel A.K. Rao L.V. Narasu M.L. Singh O.V. The realm of penicillin G acylase in β-lactam antibiotics. Enzyme Microb. Technol. 2008 42 3 199 207 10.1016/j.enzmictec.2007.11.013
    [Google Scholar]
  7. Rodríguez-Herrera R. Puc C.L.E. Sobrevilla V.J.M. Luque D. Cardona-Felix C.S. Aguilar-González C.N. Flores-Gallegos A.C. Enzymes in the Pharmaceutical Industry for β-Lactam Antibiotic Production. In:Enzymes in Food. Biotechnology. Kuddus M. Cambridge, MA Academic Press 2019 627 643 10.1016/B978‑0‑12‑813280‑7.00036‑0
    [Google Scholar]
  8. Verweij J. de Vroom E. Industrial transformations of penicillins and cephalosporins. Recl. Trav. Chim. Pays Bas 1993 112 2 66 81 10.1002/recl.19931120203
    [Google Scholar]
  9. Barends T.R.M. Hensgens C.M.H. Polderman-Tijmes J.J. Jekel P.A. de Vries E. Janssen D.B. Dijkstra B.W. X-ray analysis of two antibiotic-synthesizing bacterial ester hydrolases: Preliminary results. Acta Crystallogr. D Biol. Crystallogr. 2003 59 1 158 160 10.1107/S090744490201836X 12499556
    [Google Scholar]
  10. Bruggink A. Synthesis of ß-lactam antibiotics. Springer Nature 2001
    [Google Scholar]
  11. Pollegioni L. Rosini E. Molla G. Cephalosporin C acylase: dream and(/or) reality. Appl. Microbiol. Biotechnol. 2013 97 6 2341 2355 10.1007/s00253‑013‑4741‑0 23417342
    [Google Scholar]
  12. Weissenburger H.W.O. van der Hoeven M.G. An efficient nonenzymatic conversion of benzylpenicillin to 6‐aminopenicillanic acid. Recl. Trav. Chim. Pays Bas 1970 89 10 1081 1084 10.1002/recl.19700891011
    [Google Scholar]
  13. Santos J.C.S. Barbosa O. Ortiz C. Berenguer-Murcia A. Rodrigues R.C. Fernandez-Lafuente R. Importance of the support properties for immobilization or purification of enzymes. ChemCatChem 2015 7 16 2413 2432 10.1002/cctc.201500310
    [Google Scholar]
  14. Mazzeo P. Romeo A. Enzymic and chemical transformations of the side chain of cephalosporin C. J. Chem. Soc., Perkin Trans. 1 1972 20 2532 2532 10.1039/p19720002532 4405023
    [Google Scholar]
  15. Volpato G. Rodrigues R.C. Fernandez-Lafuente R. Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: Drawbacks and perspectives. Curr. Med. Chem. 2010 17 32 3855 3873 10.2174/092986710793205435 20858215
    [Google Scholar]
  16. Pollegioni L. Lorenzi S. Rosini E. Marcone G.L. Molla G. Verga R. Cabri W. Pilone M.S. Evolution of an acylase active on cephalosporin C. Protein Sci. 2005 14 12 3064 3076 10.1110/ps.051671705 16260759
    [Google Scholar]
  17. Ulijn R.V. De Martin L. Halling P.J. Moore B.D. Janssen A.E.M. Enzymatic synthesis of β-lactam antibiotics via direct condensation. J. Biotechnol. 2002 99 3 215 222 10.1016/S0168‑1656(02)00211‑0 12385710
    [Google Scholar]
  18. Rajendhran J. Gunasekaran P. Recent biotechnological interventions for developing improved penicillin G acylases. J. Biosci. Bioeng. 2004 97 1 1 13 10.1016/S1389‑1723(04)70157‑7 16233581
    [Google Scholar]
  19. Lutz S. Beyond directed evolution—semi-rational protein engineering and design. Curr. Opin. Biotechnol. 2010 21 6 734 743 10.1016/j.copbio.2010.08.011 20869867
    [Google Scholar]
  20. Braun A. Halwachs B. Geier M. Weinhandl K. Guggemos M. Marienhagen J. Ruff A.J. Schwaneberg U. Rabin V. Torres Pazmiño D.E. Thallinger G.G. Glieder A. Mutein D.B. The mutein database linking substrates, products and enzymatic reactions directly with genetic variants of enzymes. Database 2012 2012 bas028 10.1093/database/bas028 22730453
    [Google Scholar]
  21. Fasim A. More V.S. More S.S. Large-scale production of enzymes for biotechnology uses. Curr. Opin. Biotechnol. 2021 69 68 76 10.1016/j.copbio.2020.12.002 33388493
    [Google Scholar]
  22. Dilokpimol A. Mäkelä M.R. Cerullo G. Zhou M. Varriale S. Gidijala L. Brás J.L.A. Jütten P. Piechot A. Verhaert R. Faraco V. Hilden K.S. de Vries R.P. Fungal glucuronoyl esterases: Genome mining based enzyme discovery and biochemical characterization. N. Biotechnol 2018 40 (PtB) 282 287 10.1016/j.nbt.2017.10.003 29051046
    [Google Scholar]
  23. Nagano N. Nakayama N. Ikeda K. Fukuie M. Yokota K. Doi T. Kato T. Tomii K. Ezcat D.B. EzCatDB: the enzyme reaction database, 2015 update. Nucleic Acids Res. 2015 43 D1 D453 D458 10.1093/nar/gku946 25324316
    [Google Scholar]
  24. Ayakar S.R. Yadav G.D. Development of novel support for penicillin acylase and its application in 6-aminopenicillanic acid production. Molecular Catalysis 2019 476 110484 110495 10.1016/j.mcat.2019.110484
    [Google Scholar]
  25. Lodola A. Branduardi D. De Vivo M. Capoferri L. Mor M. Piomelli D. Cavalli A. A catalytic mechanism for cysteine N-terminal nucleophile hydrolases, as revealed by free energy simulations. PLoS One 2012 7 2 e32397 10.1371/journal.pone.0032397 22389698
    [Google Scholar]
  26. Linhorst A. Lübke T. The human Ntn-hydrolase superfamily: structure, functions and perspectives. Cells 2022 11 10 1592 1609 10.3390/cells11101592 35626629
    [Google Scholar]
  27. Dai M.H. Wang E.D. Xie Y. Jiang W.H. Zhao G.P. Site-directed mutagenesis of the active center of penicillin acylase from E. coli ATCC 11105. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao 1999 31 5 558 562 12114970
    [Google Scholar]
  28. Mcdonough M.A. Klei H.E. Kelly J.A. Crystal structure of penicillin G acylase from the bro1 mutant strain of Providencia rettgeri. Protein Sci. 1999 8 10 1971 1981 10.1110/ps.8.10.1971 10548042
    [Google Scholar]
  29. Varshney N.K. Suresh Kumar R. Ignatova Z. Prabhune A. Pundle A. Dodson E. Suresh C.G. Crystallization and x-ray structure analysis of a thermostable penicillin g acylase from alcaligenes faecalis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012 68 3 273 277 10.1107/S1744309111053930 22442220
    [Google Scholar]
  30. Tishkov V.I. Savin S.S. Yasnaya A.S. Protein engineering of penicillin acylase. Acta. Nat. 2010 2 3 47 61 10.32607/20758251‑2010‑2‑3‑47‑61 22649651
    [Google Scholar]
  31. McVey C.E. Walsh M.A. Dodson G.G. Wilson K.S. Brannigan J.A. J.A. Crystal structures of penicillin acylase enzyme-substrate complexes: Structural insights into the catalytic mechanism 11 Edited by K. Nagai. J. Mol. Biol. 313 (1) 139 150 2001 10.1006/jmbi.2001.5043] 11601852
    [Google Scholar]
  32. Oh B. Kim K. Park J. Yoon J. Han D. Kim Y. Modifying the substrate specificity of penicillin G acylase to cephalosporin acylase by mutating active-site residues. Biochem. Biophys. Res. Commun. 2004 319 2 486 492 10.1016/j.bbrc.2004.05.017 15178432
    [Google Scholar]
  33. Srirangan K. Orr V. Akawi L. Westbrook A. Moo-Young M. Chou C.P. Biotechnological advances on Penicillin G acylase: Pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol. Adv. 2013 31 8 1319 1332 10.1016/j.biotechadv.2013.05.006 23721991
    [Google Scholar]
  34. De León A. García B. Barba de la Rosa A.P. Villaseñor F. Estrada A. López-Revilla R. Periplasmic penicillin G acylase activity in recombinant Escherichia coli cells permeabilized with organic solvents. Process Biochem. 2003 39 3 301 305 10.1016/S0032‑9592(03)00079‑7
    [Google Scholar]
  35. Amin A.M. Aniqah S.S. Zakiyah L.N. Rasyidah M. Purwanto. manipulation strategy to increase expression level of soluble recombinant protein penicillin g acylase in Escherichia coli bacteria: A review article. Indones. J. Pharm. 2024 35 1 20 36
    [Google Scholar]
  36. Wichmann J. Mayer J. Hintmann M. Lukat P. Blankenfeldt W. Biedendieck R. Multistep engineering of a penicillin g acylase for systematic improvement of crystallization efficiency. Cryst. Growth Des. 2023 23 5 3230 3243 10.1021/acs.cgd.2c01408
    [Google Scholar]
  37. Sunder A.V. Utari P.D. Ramasamy S. van Merkerk R. Quax W. Pundle A. Penicillin V acylases from gram-negative bacteria degrade N-acylhomoserine lactones and attenuate virulence in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2017 101 6 2383 2395 10.1007/s00253‑016‑8031‑5 27933456
    [Google Scholar]
  38. Torres-Bacete J. Hormigo D. Torres-Gúzman R. Arroyo M. Castillón M.P. García J.L. Acebal C. de la Mata I. Overexpression of penicillin V acylase from Streptomyces lavendulae and elucidation of its catalytic residues. Appl. Environ. Microbiol. 2015 81 4 1225 1233 10.1128/AEM.02352‑14 25501472
    [Google Scholar]
  39. Daly J.W. Keely S.J. Gahan C.G.M. Functional and phylogenetic diversity of BSH and PVA enzymes. Microorganisms 2021 9 4 732 759 10.3390/microorganisms9040732 33807488
    [Google Scholar]
  40. Dong Z. Lee B.H. Bile salt hydrolases: Structure and function, substrate preference, and inhibitor development. Protein Sci. 2018 27 10 1742 1754 10.1002/pro.3484 30098054
    [Google Scholar]
  41. Avinash V.S. Panigrahi P. Suresh C.G. Pundle A.V. Ramasamy S. Structural modelling of substrate binding and inhibition in penicillin V acylase from pectobacterium atrosepticum. Biochem. Biophys. Res. Commun. 2013 437 4 538 543 10.1016/j.bbrc.2013.06.109 23850621
    [Google Scholar]
  42. Zhang D. Koreishi M. Imanaka H. Imamura K. Nakanishi K. Cloning and characterization of penicillin V acylase from Streptomyces mobaraensis. J. Biotechnol. 2007 128 4 788 800 10.1016/j.jbiotec.2006.12.017 17289203
    [Google Scholar]
  43. Xu G. Zhao Q. Huang B. Zhou J. Cao F. Directed evolution of a penicillin V acylase from Bacillus sphaericus to improve its catalytic efficiency for 6-APA production. Enzyme Microb. Technol. 2018 119 65 70 10.1016/j.enzmictec.2018.08.006 30243389
    [Google Scholar]
  44. Shewale J.G. Sudhakaran V.K. Penicillin V acylase: Its potential in the production of 6-aminopenicillanic acid. Enzyme Microb. Technol. 1997 20 6 402 410 10.1016/S0141‑0229(96)00176‑7
    [Google Scholar]
  45. Markolovic S. Leissing T.M. Chowdhury R. Wilkins S.E. Lu X. Schofield C.J. Structure–function relationships of human JmjC oxygenases—demethylases versus hydroxylases. Curr. Opin. Struct. Biol. 2016 41 62 72 10.1016/j.sbi.2016.05.013 27309310
    [Google Scholar]
  46. Gaskell A. Crennell S. Taylor G. The three domains of a bacterial sialidase: A β-propeller, an immunoglobulin module and a galactose-binding jelly-roll. Structure 1995 3 11 1197 1205 10.1016/S0969‑2126(01)00255‑6 8591030
    [Google Scholar]
  47. Zhang H. Che S. Wang R. Liu R. Zhang Q. Bartlam M. Structural characterization of an isopenicillin N synthase family oxygenase from pseudomonas aeruginosa PAO1. Biochem. Biophys. Res. Commun. 2019 514 4 1031 1036 10.1016/j.bbrc.2019.05.062 31097228
    [Google Scholar]
  48. Kreisberg-Zakarin R. Borovok I. Yanko M. Aharonowitz Y. Cohen G. Recent advances in the structure and function of isopenicillin N synthase. Antonie van Leeuwenhoek 1999 75 1-2 33 39 10.1023/A:1001723202234 10422580
    [Google Scholar]
  49. Marahiel M.A. Protein templates for the biosynthesis of peptide antibiotics. Chem. Biol. 1997 4 8 561 567 10.1016/S1074‑5521(97)90242‑8 9281530
    [Google Scholar]
  50. Islam M.S. Leissing T.M. Chowdhury R. Hopkinson R.J. Schofield C.J. Schofield C.J. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 2018 87 1 585 620 10.1146/annurev‑biochem‑061516‑044724 29494239
    [Google Scholar]
  51. Hamed R.B. Gomez-Castellanos J.R. Henry L. Ducho C. McDonough M.A. Schofield C.J. The enzymes of β-lactam biosynthesis. Nat. Prod. Rep. 2013 30 1 21 107 10.1039/C2NP20065A 23135477
    [Google Scholar]
  52. Tahlan K. Jensen S.E. Origins of the β-lactam rings in natural products. J. Antibiot. 2013 66 7 401 410 10.1038/ja.2013.24 23531986
    [Google Scholar]
  53. Strieker M. Kopp F. Mahlert C. Essen L.O. Marahiel M.A. Mechanistic and structural basis of stereospecific Cbeta-hydroxylation in calcium-dependent antibiotic, a daptomycin-type lipopeptide. ACS Chem. Biol. 2007 2 3 187 196 10.1021/cb700012y 17373765
    [Google Scholar]
  54. Lloyd M.D. Lee H.J. Harlos K. Zhang Z.H. Baldwin J.E. Schofield C.J. Charnock J.M. Garner C.D. Hara T. Terwisscha van Scheltinga A.C. Valegård K. Viklund J.A.C. Hajdu J. Andersson I. Danielsson Å. Bhikhabhai R. Studies on the active site of deacetoxycephalosporin C synthase. J. Mol. Biol. 1999 287 5 943 960 10.1006/jmbi.1999.2594 10222202
    [Google Scholar]
  55. Pessina A. Lüthi P. Luisi P.L. Prenosil J. Zhang Y.S. Amide‐bond syntheses catalyzed by penicillin acylase. Helv. Chim. Acta 1988 71 3 631 641 10.1002/hlca.19880710317
    [Google Scholar]
  56. Lee H.J. Dai Y.F. Shiau C.Y. Schofield C.J. Lloyd M.D. The kinetic properties of various R258 mutants of deacetoxycephalosporin C synthase. Eur. J. Biochem. 2003 270 6 1301 1307 10.1046/j.1432‑1033.2003.03500.x 12631288
    [Google Scholar]
  57. Hamilton C.S. Yasuhara A. Baldwin J.E. Lloyd M.D. Rutledge P.J. Contrasting fates for 6-α-methylpenicillin N upon oxidation by deacetoxycephalosporin C synthase (DAOCS) and deacetoxy/deacetylcephalosporin C synthase (DAOC/DACS). Bioorg. Med. Chem. Lett. 2001 11 18 2511 2514 10.1016/S0960‑894X(01)00470‑X 11549458
    [Google Scholar]
  58. Fan K. Lin B. Tao Y. Yang K. Engineering deacetoxycephalosporin C synthase as a catalyst for the bioconversion of penicillins. J. Ind. Microbiol. Biotechnol. 2017 44 4-5 705 710 10.1007/s10295‑016‑1857‑0 27826726
    [Google Scholar]
  59. Stapon A. Li R. Townsend C.A. Synthesis of (3S,5R)-carbapenam-3-carboxylic acid and its role in carbapenem biosynthesis and the stereoinversion problem. J. Am. Chem. Soc. 2003 125 51 15746 15747 10.1021/ja037665w 14677956
    [Google Scholar]
  60. Sleeman M.C. Smith P. Kellam B. Chhabra S.R. Bycroft B.W. Schofield C.J. Biosynthesis of carbapenem antibiotics: new carbapenam substrates for carbapenem synthase (CarC). ChemBioChem 2004 5 6 879 882 10.1002/cbic.200300908 15174175
    [Google Scholar]
  61. Tan Q. Qiu J. Luo X. Zhang Y. Liu Y. Chen Y. Yuan J. Liao W. Progress in one-pot bioconversion of cephalosporin C to 7-aminocephalosporanic acid. Curr. Pharm. Biotechnol. 2018 19 1 30 42 10.2174/1389201019666180509093956 29745327
    [Google Scholar]
  62. Sonawane V.C. Enzymatic modifications of cephalosporins by cephalosporin acylase and other enzymes. Crit. Rev. Biotechnol. 2006 26 2 95 120 10.1080/07388550600718630 16809100
    [Google Scholar]
  63. Li Y. Chen J. Jiang W. Mao X. Zhao G. Wang E. In vivo post‐translational processing and subunit reconstitution of cephalosporin acylase from pseudomonas sp. 130. Eur. J. Biochem. 1999 262 3 713 719 10.1046/j.1432‑1327.1999.00417.x 10411632
    [Google Scholar]
  64. Xu Z. Tian Y. Zhu Y. Computational design of thermostable mutants for cephalosporin C acylase from Pseudomonas strain SE83. Comput. Chem. Eng. 2018 116 112 121 10.1016/j.compchemeng.2018.05.014
    [Google Scholar]
  65. Tian Y. Huang X. Li Q. Zhu Y. Computational design of variants for cephalosporin C acylase from Pseudomonas strain N176 with improved stability and activity. Appl. Microbiol. Biotechnol. 2017 101 2 621 632 10.1007/s00253‑016‑7796‑x 27557716
    [Google Scholar]
  66. Li X. Wang J. Su W. Li C. Qu G. Yuan B. Sun Z. Characterization and engineering of cephalosporin C acylases to produce 7-Aminocephalosporanic acid. Molecular Catalysis 2023 550 113595 113601 10.1016/j.mcat.2023.113595
    [Google Scholar]
  67. Fritz-Wolf K. Koller K.P. Lange G. Liesum A. Sauber K. Schreuder H. Aretz W. Kabsch W. Structure-based prediction of modifications in glutarylamidase to allow single-step enzymatic production of 7-aminocephalosporanic acid from cephalosporin C. Protein Sci. 2002 11 1 92 103 11742126
    [Google Scholar]
  68. Cabri W. Industrial synthesis design with low environmental impact in the pharma industry. Mordini A, Faigl F, editors New Methodologies and Techniques for a Sustainable Organic Chemistry. Springer Dordrecht 2008 119 129 10.1007/978‑1‑4020‑6793‑8_6
    [Google Scholar]
  69. Gröger H. Pieper M. König B. Bayer T. Schleich H. Industrial landmarks in the development of sustainable production processes for the β-lactam antibiotic key intermediate 7-aminocephalosporanic acid (7-ACA). Sustain. Chem. Pharm. 2017 5 72 79 10.1016/j.scp.2016.08.001
    [Google Scholar]
  70. Lin X. Lambertz J. Dahlmann T.A. Nowaczyk M.M. König B. Kück U. A straightforward approach to synthesize 7-Aminocephalosporanic acid in vivo in the cephalosporin C producer Acremonium chrysogenum. J. Fungi 2022 8 5 450 469 10.3390/jof8050450 35628706
    [Google Scholar]
  71. Liederer B.M. Borchardt R.T. Enzymes involved in the bioconversion of ester-based prodrugs. J. Pharm. Sci. 2006 95 6 1177 1195 10.1002/jps.20542 16639719
    [Google Scholar]
  72. Zarubina S.A. Uporov I.V. Fedorchuk E.A. Fedorchuk V.V. Sklyarenko A.V. Yarotsky S.V. Tishkov V.I. 3D structure modeling of alpha-amino acid ester hydrolase from Xanthomonas rubrilineans. Acta. Nat. 2013 5 4 62 70 10.32607/20758251‑2013‑5‑4‑62‑70 24455184
    [Google Scholar]
  73. Blum J.K. Ricketts M.D. Bommarius A.S. Improved thermostability of AEH by combining B-FIT analysis and structure-guided consensus method. J. Biotechnol. 2012 160 3-4 214 221 10.1016/j.jbiotec.2012.02.014 22426092
    [Google Scholar]
  74. Lagerman C.E. Joe E.A. Grover M.A. Rousseau R.W. Bommarius A.S. Improvement of α-amino ester hydrolase stability via computational protein design. Protein J. 2023 42 6 675 684 10.1007/s10930‑023‑10155‑z 37819423
    [Google Scholar]
  75. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  76. Schrödinger L.L.C. The PyMOL Molecular Graphics System, Version 2.0. DeLano WL, developer. 2020 Available from:www.pymol.org/pymol
    [Google Scholar]
  77. Halgren T.A. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 1996 17 5-6 490 519 10.1002/(SICI)1096‑987X(199604)17:5/6<490:AID‑JCC1>3.0.CO;2‑P
    [Google Scholar]
  78. Boudreau J.A. Williams A. Hydrolyses of O-acylglycolamides as models of the deacylation step in the mechanism of action of serine proteases: Function of the oxyanion pocket. J. Chem. Soc. 1977 9 1221 1225
    [Google Scholar]
  79. Quiroga I. Hernández-González J.A. Bautista-Rodríguez E. Benítez-Rojas A.C. Exploring the structurally conserved regions and functional significance in bacterial N-terminal nucleophile (Ntn) amide-hydrolases. Int. J. Mol. Sci. 2024 25 13 6850 6866 10.3390/ijms25136850 38999960
    [Google Scholar]
  80. Li K. Mohammed M.A.A. Zhou Y. Tu H. Zhang J. Liu C. Chen Z. Burns R. Hu D. Ruso J.M. Tang Z. Liu Z. Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: A mini‐review. Polym. Adv. Technol. 2020 31 3 368 388 10.1002/pat.4791
    [Google Scholar]
  81. Kirilin E.M. Bochkova A.A. Panin N.V. Pochinok I.V. Švedas V. Molecular modeling of penicillin acylase binding with a penicillin nucleus by high performance computing: Can enzyme or its mutants possess β-lactamase activity? Supercomput. Front. Innov. 2022 9 2 68 78
    [Google Scholar]
  82. Grigorenko B.L. Khrenova M.G. Nilov D.K. Nemukhin A.V. Švedas V.K. Catalytic cycle of penicillin acylase from Escherichia coli: QM/MM modeling of chemical transformations in the enzyme active site upon penicillin G hydrolysis. ACS Catal. 2014 4 8 2521 2529 10.1021/cs5002898
    [Google Scholar]
  83. Chilov G.G. Sidorova A.V. Švedas V.K. Quantum chemical studies of the catalytic mechanism of N-terminal nucleophile hydrolase. Biochemistry 2007 72 5 495 500 10.1134/S0006297907050057 17573703
    [Google Scholar]
  84. Torres-Guzmán R. de la Mata I. Torres-Bacete J. Arroyo M. Castillón M.P. Acebal C. Chemical mechanism of penicillin V acylase from Streptomyces lavendulae: pH-dependence of kinetic parameters. J. Mol. Catal., B Enzym. 2001 16 1 33 41 10.1016/S1381‑1177(01)00042‑X
    [Google Scholar]
  85. Golden E. Paterson R. Tie W.J. Anandan A. Flematti G. Molla G. Rosini E. Pollegioni L. Vrielink A. Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity. Biochem. J. 2013 451 2 217 226 10.1042/BJ20121715 23373797
    [Google Scholar]
  86. Yin J. Deng Z. Zhao G. Huang X. The N-terminal nucleophile serine of cephalosporin acylase executes the second autoproteolytic cleavage and acylpeptide hydrolysis. J. Biol. Chem. 2011 286 27 24476 24486 10.1074/jbc.M111.242313 21576250
    [Google Scholar]
  87. Conti G. Pollegioni L. Molla G. Rosini E. Strategic manipulation of an industrial biocatalyst – evolution of a cephalosporin C acylase. FEBS J. 2014 281 10 2443 2455 10.1111/febs.12798 24684708
    [Google Scholar]
  88. Oh B. Kim M. Yoon J. Chung K. Shin Y. Lee D. Kim Y. Deacylation activity of cephalosporin acylase to cephalosporin C is improved by changing the side-chain conformations of active-site residues. Biochem. Biophys. Res. Commun. 2003 310 1 19 27 10.1016/j.bbrc.2003.08.110 14511642
    [Google Scholar]
  89. Mao X. Wang W. Jiang W. Zhao G.P. His23β and Glu455β of the Pseudomonas sp. 130 glutaryl-7-amino cephalosporanic acid acylase are crucially important for efficient autoproteolysis and enzymatic catalysis. Protein J. 2004 23 3 197 204 10.1023/B:JOPC.0000026415.96041.27 15200051
    [Google Scholar]
  90. Kim Y. Hol W.G.J. Structure of cephalosporin acylase in complex with glutaryl-7-aminocephalosporanic acid and glutarate: Insight into the basis of its substrate specificity. Chem. Biol. 2001 8 12 1253 1264 10.1016/S1074‑5521(01)00092‑8 11755403
    [Google Scholar]
  91. Lee Y.S. Kim H.W. Park S.S. The role of α-amino group of the N-terminal serine of β subunit for enzyme catalysis and autoproteolytic activation of glutaryl 7-aminocephalosporanic acid acylase. J. Biol. Chem. 2000 275 50 39200 39206 10.1074/jbc.M002504200 10991936
    [Google Scholar]
  92. Satyanarayana U. Chakrapani U. Biochemistry. 4th revised edition Elsevier Health Sciences 2013 812 ISBN 978-81-312-3601-7
    [Google Scholar]
  93. Roach P.L. Clifton I.J. Fülöp V. Harlos K. Barton G.J. Hajdu J. Andersson I. Schofield C.J. Baldwin J.E. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 1995 375 6533 700 704 10.1038/375700a0 7791906
    [Google Scholar]
  94. Borovok I. Landman O. Kreisberg-Zakarin R. Aharonowitz Y. Cohen G. Ferrous active site of isopenicillin N synthase: Genetic and sequence analysis of the endogenous ligands. Biochemistry 1996 35 6 1981 1987 10.1021/bi951534t 8639682
    [Google Scholar]
  95. Liu H. Llano J. Gauld J.W. A DFT study of nucleobase dealkylation by the DNA repair enzyme AlkB. J. Phys. Chem. B 2009 113 14 4887 4898 10.1021/jp810715t 19338370
    [Google Scholar]
  96. Borowski T. Bassan A. Siegbahn P.E.M. Mechanism of dioxygen activation in 2-oxoglutarate-dependent enzymes: A hybrid DFT study. Chemistry 2004 10 4 1031 1041 10.1002/chem.200305306 14978830
    [Google Scholar]
  97. Tamanaha E. Zhang B. Guo Y. Chang W.C. Barr E.W. Xing G. St Clair J. Ye S. Neese F. Bollinger J.M. Krebs C. Spectroscopic evidence for the two c–h-cleaving intermediates of aspergillus nidulans isopenicillin N synthase. J. Am. Chem. Soc. 2016 138 28 8862 8874 10.1021/jacs.6b04065 27193226
    [Google Scholar]
  98. Valegård K. van Scheltinga A.C.T. Lloyd M.D. Hara T. Ramaswamy S. Perrakis A. Thompson A. Lee H.J. Baldwin J.E. Schofield C.J. Hajdu J. Andersson I. Structure of a cephalosporin synthase. Nature 1998 394 6695 805 809 10.1038/29575 9723623
    [Google Scholar]
  99. Tarhonskaya H. Szöllössi A. Leung I.K.H. Bush J.T. Henry L. Chowdhury R. Iqbal A. Claridge T.D.W. Schofield C.J. Flashman E. Studies on deacetoxycephalosporin C synthase support a consensus mechanism for 2-oxoglutarate dependent oxygenases. Biochemistry 2014 53 15 2483 2493 10.1021/bi500086p 24684493
    [Google Scholar]
  100. Solomon E.I. DeWeese D.E. Babicz J.T. Mechanisms of O2 activation by mononuclear non-heme iron enzymes. Biochemistry 2021 60 46 3497 3506 10.1021/acs.biochem.1c00370 34266238
    [Google Scholar]
  101. Phelan R.M. Townsend C.A. Mechanistic insights into the bifunctional non-heme iron oxygenase carbapenem synthase by active site saturation mutagenesis. J. Am. Chem. Soc. 2013 135 20 7496 7502 10.1021/ja311078s 23611403
    [Google Scholar]
  102. Gerratana B. Stapon A. Townsend C.A. Inhibition and alternate substrate studies on the mechanism of carbapenam synthetase from Erwinia carotovora. Biochemistry 2003 42 25 7836 7847 10.1021/bi034361d 12820893
    [Google Scholar]
  103. Miller M.T. Gerratana B. Stapon A. Townsend C.A. Rosenzweig A.C. Crystal structure of carbapenam synthetase (CarA). J. Biol. Chem. 2003 278 42 40996 41002 10.1074/jbc.M307901200 12890666
    [Google Scholar]
  104. Sleeman M.C. Sorensen J.L. Batchelar E.T. McDonough M.A. Schofield C.J. Structural and mechanistic studies on carboxymethylproline synthase (CarB), a unique member of the crotonase superfamily catalyzing the first step in carbapenem biosynthesis. J. Biol. Chem. 2005 280 41 34956 34965 10.1074/jbc.M507196200 16096274
    [Google Scholar]
  105. Stapon A. Li R. Townsend C.A. Carbapenem biosynthesis: confirmation of stereochemical assignments and the role of CarC in the ring stereoinversion process from L-proline. J. Am. Chem. Soc. 2003 125 28 8486 8493 10.1021/ja034248a 12848554
    [Google Scholar]
  106. Kershaw N.J. Caines M.E.C. Sleeman M.C. Schofield C.J. The enzymology of clavam and carbapenem biosynthesis. Chem. Commun. 2005 34 4251 4263 10.1039/b505964j 16113715
    [Google Scholar]
  107. Topf M. Sandala G.M. Smith D.M. Schofield C.J. Easton C.J. Radom L. The unusual bifunctional catalysis of epimerization and desaturation by carbapenem synthase. J. Am. Chem. Soc. 2004 126 32 9932 9933 10.1021/ja047899v 15303862
    [Google Scholar]
  108. Borowski T. Broclawik E. Schofield C.J. Siegbahn P.E.M. Epimerization and desaturation by carbapenem synthase (CarC). A hybrid DFT study. J. Comput. Chem. 2006 27 6 740 748 10.1002/jcc.20384 16521121
    [Google Scholar]
  109. Ma G. Zhu W. Su H. Cheng N. Liu Y. Uncoupled epimerization and desaturation by carbapenem synthase: Mechanistic insights from QM/MM studies. ACS Catal. 2015 5 9 5556 5566 10.1021/acscatal.5b01275
    [Google Scholar]
  110. Pitzer J. Steiner K. Amides in nature and biocatalysis. J. Biotechnol. 2016 235 32 46 10.1016/j.jbiotec.2016.03.023 26995609
    [Google Scholar]
  111. Barends T.R.M. Polderman-Tijmes J.J. Jekel P.A. Williams C. Wybenga G. Janssen D.B. Dijkstra B.W. Acetobacter turbidans α-amino acid ester hydrolase: How a single mutation improves an antibiotic-producing enzyme. J. Biol. Chem. 2006 281 9 5804 5810 10.1074/jbc.M511187200 16377627
    [Google Scholar]
  112. Paye M.F. Rose H.B. Robbins J.M. Yunda D.A. Cho S. Bommarius A.S. A high-throughput pH-based colorimetric assay: application focus on alpha/beta hydrolases. Anal. Biochem. 2018 549 80 90 10.1016/j.ab.2018.03.009 29551670
    [Google Scholar]
  113. Kaul P. Asano Y. Strategies for discovery and improvement of enzyme function: State of the art and opportunities. Microb. Biotechnol. 2012 5 1 18 33 10.1111/j.1751‑7915.2011.00280.x 21883976
    [Google Scholar]
  114. Cole M. Factors affecting the synthesis of ampicillin and hydroxypenicillins by the cell-bound penicillin acylase of Escherichia coli. Biochem. J. 1969 115 4 757 764 10.1042/bj1150757 4901825
    [Google Scholar]
  115. Kasche V. Ampicillin- and cephalexin-synthesis catalyzed by e.coli penicillin amidase. yield increase due to substrate recycling. Biotechnol. Lett. 1985 7 12 877 882 10.1007/BF01088009
    [Google Scholar]
  116. Boccù E. Ebert C. Gardossi L. Gianferrara T. Zacchigna M. Linda P. Enzymatic synthesis of ampicillin: A chemometric optimization. Farmaco 1991 46 4 565 577 1930553
    [Google Scholar]
  117. Marešová H. Plačková M. Grulich M. Kyslík P. Current state and perspectives of penicillin G acylase-based biocatalyses. Appl. Microbiol. Biotechnol. 2014 98 7 2867 2879 10.1007/s00253‑013‑5492‑7 24445920
    [Google Scholar]
  118. Modarres H.P. Mofrad M.R. Sanati-Nezhad A. Protein thermostability engineering. RSC Advances 2016 6 116 115252 115270 10.1039/C6RA16992A
    [Google Scholar]
  119. Nick Pace C. Scholtz J.M. Grimsley G.R. Forces stabilizing proteins. FEBS Lett. 2014 588 14 2177 2184 10.1016/j.febslet.2014.05.006 24846139
    [Google Scholar]
  120. Dani V.S. Ramakrishnan C. Varadarajan R. MODIP revisited: Re-evaluation and refinement of an automated procedure for modeling of disulfide bonds in proteins. Protein Eng. Des. Sel. 2003 16 3 187 193 10.1093/proeng/gzg024 12702798
    [Google Scholar]
  121. Davids T. Schmidt M. Böttcher D. Bornscheuer U.T. Strategies for the discovery and engineering of enzymes for biocatalysis. Curr. Opin. Chem. Biol. 2013 17 2 215 220 10.1016/j.cbpa.2013.02.022 23523243
    [Google Scholar]
  122. Jager S.A.W. Jekel P.A. Janssen D.B. Hybrid penicillin acylases with improved properties for synthesis of β-lactam antibiotics. Enzyme Microb. Technol. 2007 40 5 1335 1344 10.1016/j.enzmictec.2006.10.014
    [Google Scholar]
  123. Erarslan A. Terzi I. Güray A. Bermek E. Purification and kinetics of penicillin G acylase from a mutant strain of Escherichia coli ATCC 11105. Enzyme Microb. Technol. 1991 51 1 27 40
    [Google Scholar]
  124. Singh R.K. Lee J.K. Selvaraj C. Singh R. Li J. Kim S.Y. Kalia V.C. Protein engineering approaches in the post-genomic era. Curr. Protein Pept. Sci. 2018 19 1 5 15 27855603
    [Google Scholar]
  125. Cecchini D.A. Pavesi R. Sanna S. Daly S. Xaiz R. Pregnolato M. Terreni M. Efficient biocatalyst for large-scale synthesis of cephalosporins, obtained by combining immobilization and site-directed mutagenesis of penicillin acylase. Appl. Microbiol. Biotechnol. 2012 95 6 1491 1500 10.1007/s00253‑011‑3817‑y 22228258
    [Google Scholar]
  126. Pan X. Li A. Peng Z. Ji X. Chu J. He B. Efficient synthesis of β-lactam antibiotics with in situ product removal by a newly isolated penicillin G acylase. Bioorg. Chem. 2020 99 103765 103773 10.1016/j.bioorg.2020.103765 32213361
    [Google Scholar]
  127. Bím D. Navrátil M. Gutten O. Konvalinka J. Kutil Z. Culka M. Navrátil V. Alexandrova A.N. Bařinka C. Rulíšek L. Predicting effects of site-directed mutagenesis on enzyme kinetics by QM/MM and QM calculations: A case of glutamate carboxypeptidase II. J. Phys. Chem. B 2022 126 1 132 143 10.1021/acs.jpcb.1c09240 34978450
    [Google Scholar]
  128. Georgieva P. Himo F. Quantum chemical modeling of enzymatic reactions: The case of histone lysine methyltransferase. J. Comput. Chem. 2010 31 8 1707 1714 10.1002/jcc.21458 20082388
    [Google Scholar]
  129. Lin H.Y. Chen X. Dong J. Yang J.F. Xiao H. Ye Y. Li L.H. Zhan C.G. Yang W.C. Yang G.F. Rational redesign of enzyme via the combination of quantum mechanics/molecular mechanics, molecular dynamics, and structural biology study. J. Am. Chem. Soc. 2021 143 38 15674 15687 10.1021/jacs.1c06227 34542283
    [Google Scholar]
  130. Kmiecik S. Gront D. Kolinski M. Wieteska L. Dawid A.E. Kolinski A. Coarse-grained protein models and their applications. Chem. Rev. 2016 116 14 7898 7936 10.1021/acs.chemrev.6b00163 27333362
    [Google Scholar]
  131. Singh N. Li W. Recent advances in coarse-grained models for biomolecules and their applications. Int. J. Mol. Sci. 2019 20 15 3774 3794 10.3390/ijms20153774 31375023
    [Google Scholar]
  132. Souza P.C.T. Thallmair S. Conflitti P. Ramírez-Palacios C. Alessandri R. Raniolo S. Limongelli V. Marrink S.J. Protein–ligand binding with the coarse-grained Martini model. Nat. Commun. 2020 11 1 3714 3724 10.1038/s41467‑020‑17437‑5 32709852
    [Google Scholar]
  133. Martinez-Fleites C. Proctor M. Roberts S. Bolam D.N. Gilbert H.J. Davies G.J. Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. Chem. Biol. 2006 13 11 1143 1152 10.1016/j.chembiol.2006.09.005 17113996
    [Google Scholar]
  134. Floss H.G. Yu T.W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev. 2005 105 2 621 632 10.1021/cr030112j 15700959
    [Google Scholar]
  135. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. Bye-A-Jee H. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Batista Neto T.M. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. de Castro E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Le Mercier P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Zhang J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res. 2023 51 D1 D523 D531 10.1093/nar/gkac1052 36408920
    [Google Scholar]
  136. Zhao G.Q. An W. Liu J.L. Study on the enzymatic activity stability of penicillin G acylase during the process of enzymatic synthesis of cephalexin. Chung Kuo Yao Hsueh Tsa Chih 2017 42 10 910 914
    [Google Scholar]
  137. Illanes A. Wilson L. Corrotea O. Tavernini L. Zamorano F. Aguirre C. Synthesis of cephalexin with immobilized penicillin acylase at very high substrate concentrations in fully aqueous medium. J. Mol. Catal., B Enzym. 2007 47 1-2 72 78 10.1016/j.molcatb.2007.04.003
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037376289250825072957
Loading
/content/journals/cpps/10.2174/0113892037376289250825072957
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test