Skip to content
2000
image of From Bugs to Benefits: Edible Insects as Exceptional Protein Sources

Abstract

Objective

Eating insects may be healthier and more sustainable than eating animals. Various insect protein hydrolysates are assessed for therapeutic potential in this review.

Methods

A wide range of literature pertaining to nutrition compositions and the biological activity of edible insects has been compiled and meticulously examined through the utilization of various scholarly databases, including PubMed and ScienceDirect.

Results

Different insect protein hydrolysates had anti-inflammatory, anti-cancer, and antioxidant characteristics in addition to controlling blood sugar and cholesterol. These findings suggest that insect-derived bioactive peptides have health benefits and therapeutic uses.

Conclusion

Edible insects may replace traditional foods due to their nutritional and environmental benefits. The biological activity of their protein hydrolysates suggests they could be beneficial food additives or medicines.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037379345250407143848
2025-05-06
2025-09-05
Loading full text...

Full text loading...

References

  1. Niassy S. Ekesi S. Contribution to the knowledge of entomophagy in Africa. J. Insects Food Feed 2016 2 3 137 138 10.3920/JIFF2016.x003
    [Google Scholar]
  2. van Huis A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013 58 1 563 583 10.1146/annurev‑ento‑120811‑153704 23020616
    [Google Scholar]
  3. Cajas-Lopez K. Ordoñez-Araque R. Analysis of chontacuro (Rhynchophorus palmarum L.) protein and fat content and incorporation into traditional Ecuadorian dishes. J. Insects Food Feed 2022 8 12 1521 1528 10.3920/JIFF2022.0033
    [Google Scholar]
  4. Siemianowska E. Kosewska A. Aljewicz M. Skibniewska K.A. Polak-Juszczak L. Jarocki A. Jedras M. Larvae of mealworm (Tenebrio molitor L.) as European novel food. J. Agric. Sci. 2013 4 6 10.4236/as.2013.46041
    [Google Scholar]
  5. Baiano A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2020 100 35 50 10.1016/j.tifs.2020.03.040
    [Google Scholar]
  6. Tang C. Yang D. Liao H. Sun H. Liu C. Wei L. Li F. Edible insects as a food source: A review. Food Production. Process. Nutr. 2019 1 1 1 3
    [Google Scholar]
  7. Mittal R.K. Mishra R. Sharma V. Purohit P. Bioactive exploration in functional foods: Unlocking nature’s treasures. Curr. Pharm. Biotechnol. 2024 25 11 1419 1435 10.2174/0113892010282580231120041659 38031768
    [Google Scholar]
  8. MittalR.K.KrishnaG.SharmaV.PurohitP.MishraR.Spirulina unveiled: A comprehensive review on biotechnological innovations, nutritional proficiency, and clinical implications.Curr. Pharm. Biotechnol.202425 10.2174/011389201030452424051402373538803172
    [Google Scholar]
  9. Mittal R.K. Mishra R. Uddin R. Bhargav R. Kumar N. Epigallocatechin Gallate (EGCG) formulations: Unlocking potential in nutraceutical and pharmaceutical sectors. Nat. Prod. J. 2025 15 2 e060524229716 10.2174/0122103155295035240330065048
    [Google Scholar]
  10. Feng Y. Zhao M. He Z. Chen Z. Sun L. Research and utilization of medicinal insects in China. Entomol. Res. 2009 39 5 313 316 10.1111/j.1748‑5967.2009.00236.x
    [Google Scholar]
  11. Tanga C.M. Ekesi S. Dietary and therapeutic benefits of edible insects: A global perspective. Annu. Rev. Entomol. 2024 69 1 303 331 10.1146/annurev‑ento‑020123‑013621 37758222
    [Google Scholar]
  12. van Huis A. Nutrition and health of edible insects. Curr. Opin. Clin. Nutr. Metab. Care 2020 23 3 228 231 10.1097/MCO.0000000000000641 32073413
    [Google Scholar]
  13. MittalR.K.KrishnaG.SharmaV.Exploring edible insects: A review on protein diversity, extraction techniques, and health benefits.Curr. Pharm. Biotechnol.202425 10.2174/011389201030417724051306372138803171
    [Google Scholar]
  14. MittalR.K.KrishnaG.SharmaV.Biotechnological advances in enzymatic hydrolysis and fermentation for edible insects: Functionality, acceptability, and safety.Curr. Pharm. Biotechnol.202425 10.2174/011389201030423624051706035438840395
    [Google Scholar]
  15. Giotis T. Drichoutis A.C. Consumer acceptance and willingness-to-pay for insect-based foods: The role of proximity of insects in the food chain. MPRA Paper, University Library of Munich, Germany. 2020
    [Google Scholar]
  16. Alemu M.H. Olsen S.B. Vedel S.E. Pambo K.O. Owino V.O. Consumer acceptance and willingness to pay for edible insects as food in Kenya: The case of white winged termites. Working Paper, University of Copenhagen 2015
    [Google Scholar]
  17. Siddiqui S.A. Zannou O. Karim I. Kasmiati Awad N.M.H. Gołaszewski J. Heinz V. Smetana S. Avoiding food neophobia and increasing consumer acceptance of new food trends - A decade of research. Sustainability (Basel) 2022 14 16 10391 10.3390/su141610391
    [Google Scholar]
  18. Mwangi M.N. Oonincx D.G.A.B. Stouten T. Veenenbos M. Melse-Boonstra A. Dicke M. van Loon J.J.A. Insects as sources of iron and zinc in human nutrition. Nutr. Res. Rev. 2018 31 2 248 255 10.1017/S0954422418000094 30033906
    [Google Scholar]
  19. Hlongwane Z.T. Slotow R. Munyai T.C. Indigenous knowledge about consumption of edible insects in South Africa. Insects 2020 12 1 22 10.3390/insects12010022 33396313
    [Google Scholar]
  20. Akullo J. Agea J.G. Obaa B.B. Okwee-Acai J. Nakimbugwe D. Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda. Int. Food Res. J. 2018 25 1
    [Google Scholar]
  21. Magara H.J.O. Niassy S. Ayieko M.A. Mukundamago M. Egonyu J.P. Tanga C.M. Kimathi E.K. Ongere J.O. Fiaboe K.K.M. Hugel S. Orinda M.A. Roos N. Ekesi S. Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits - A review. Front. Nutr. 2021 7 537915 10.3389/fnut.2020.537915 33511150
    [Google Scholar]
  22. Kuntadi K. Adalina Y. Maharani K.E. Nutritional compositions of six edible insects in Java. Indones. J. For. Res. 2018 5 1 57 68 10.59465/ijfr.2018.5.1.57‑68
    [Google Scholar]
  23. Rumpold B.A. Schlüter O.K. Nutritional composition and safety aspects of edible insects. Mol. Nutr. Food Res. 2013 57 5 802 823 10.1002/mnfr.201200735 23471778
    [Google Scholar]
  24. Punzo F. Nutrient composition of some insects and arachnids. Fla. Sci. 2003 66 2 84 98
    [Google Scholar]
  25. Oonincx D.G.A.B. Dierenfeld E.S. An investigation into the chemical composition of alternative invertebrate prey. Zoo Biol. 2012 31 1 40 54 10.1002/zoo.20382 21442652
    [Google Scholar]
  26. Kröncke N. Grebenteuch S. Keil C. Demtröder S. Kroh L. Thünemann A.F. Benning R. Haase H. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.). Insects 2019 10 4 84 10.3390/insects10040084 30934687
    [Google Scholar]
  27. Kouřimská L. Adámková A. Nutritional and sensory quality of edible insects. NFS J. 2016 4 22 26 10.1016/j.nfs.2016.07.001
    [Google Scholar]
  28. Nowakowski A.C. Miller A.C. Miller M.E. Xiao H. Wu X. Potential health benefits of edible insects. Crit. Rev. Food Sci. Nutr. 2022 62 13 3499 3508 10.1080/10408398.2020.1867053 33397123
    [Google Scholar]
  29. Voelker R. Can insects compete with beef, poultry as nutritional powerhouses? JAMA 2019 321 5 439 441 10.1001/jama.2018.20747 30649155
    [Google Scholar]
  30. Meyer-Rochow V.B. Gahukar R.T. Ghosh S. Jung C. Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods 2021 10 5 1036 10.3390/foods10051036 34068654
    [Google Scholar]
  31. Rumpold B.A. Schlüter O. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim. Front. 2015 5 2 20 24
    [Google Scholar]
  32. Caparros Megido R. Poelaert C. Ernens M. Liotta M. Blecker C. Danthine S. Tyteca E. Haubruge É. Alabi T. Bindelle J. Francis F. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res. Int. 2018 106 503 508 10.1016/j.foodres.2018.01.002 29579954
    [Google Scholar]
  33. Viesca Gonzales F.C. Barrera Garcia V.D. Juarez Ortega A.J. The collection, sale and consumption of insects in Toluca, Mexico and surrounding areas. Rosa Ventos 2012 4 2 208 221
    [Google Scholar]
  34. Liang Z. Zhu Y. Leonard W. Fang Z. Recent advances in edible insect processing technologies. Food Res. Int. 2024 182 114137 10.1016/j.foodres.2024.114137 38519159
    [Google Scholar]
  35. Shockley M. Lesnik J. Allen R.N. Muñoz A.F. Edible insects and their uses in North America; past, present and future. Edible Insects in Sustainable Food Systems Cham Springer Halloran A. Flore R. Vantomme P. Roos N. 2018 55 79 10.1007/978‑3‑319‑74011‑9_4
    [Google Scholar]
  36. Nonaka K. Feasting on insects. Entomol. Res. 2009 39 5 304 312 10.1111/j.1748‑5967.2009.00240.x
    [Google Scholar]
  37. Marshall D.L. Dickson J.S. Nguyen N.H. Chapter 8 - Ensuring food safety in insect based foods: mitigating microbiological and other foodborne hazards. Insects as Sustainable Food Ingredients Academic Press 2016 223 253 10.1016/B978‑0‑12‑802856‑8.00008‑9
    [Google Scholar]
  38. Tan H.S.G. Verbaan Y.T. Stieger M. How will better products improve the sensory-liking and willingness to buy insect-based foods? Food Res. Int. 2017 92 95 105 10.1016/j.foodres.2016.12.021 28290303
    [Google Scholar]
  39. Teixeira C.S.S. Villa C. Costa J. Ferreira I.M.P.L.V.O. Mafra I. Edible insects as a novel source of bioactive peptides: A systematic review. Foods 2023 12 10 2026 10.3390/foods12102026 37238844
    [Google Scholar]
  40. Ferrazzano G.F. D’Ambrosio F. Caruso S. Gatto R. Caruso S. Bioactive peptides derived from edible insects: effects on human health and possible applications in dentistry. Nutrients 2023 15 21 4611 10.3390/nu15214611 37960264
    [Google Scholar]
  41. Guo Z. Qin J. Zhou X. Zhang Y. Insect transcription factors: A landscape of their structures and biological functions in Drosophila and beyond. Int. J. Mol. Sci. 2018 19 11 3691 10.3390/ijms19113691 30469390
    [Google Scholar]
  42. D’Antonio V. Battista N. Sacchetti G. Di Mattia C. Serafini M. Functional properties of edible insects: A systematic review. Nutr. Res. Rev. 2023 36 1 98 119 10.1017/S0954422421000366 34819193
    [Google Scholar]
  43. Carpentier J. Abenaim L. Luttenschlager H. Dessauvages K. Liu Y. Samoah P. Francis F. Caparros Megido R. Microorganism contribution to mass-reared edible insects: Opportunities and challenges. Insects 2024 15 8 611 10.3390/insects15080611 39194816
    [Google Scholar]
  44. Yimam M.A. Andreini M. Carnevale S. Muscaritoli M. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition. Front. Nutr. 2024 11 1461621 10.3389/fnut.2024.1461621 39449824
    [Google Scholar]
  45. Lourenço F. Calado R. Medina I. Ameixa O.M.C.C. The potential impacts by the invasion of insects reared to feed livestock and pet animals in Europe and other regions: A critical review. Sustainability (Basel) 2022 14 10 6361 10.3390/su14106361
    [Google Scholar]
  46. Zielińska E. Baraniak B. Karaś M. Rybczyńska K. Jakubczyk A. Selected species of edible insects as a source of nutrient composition. Food Res. Int. 2015 77 460 466 10.1016/j.foodres.2015.09.008
    [Google Scholar]
  47. Zielińska E. Karaś M. Baraniak B. Jakubczyk A. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects. Eur. Food Res. Technol. 2020 246 7 1361 1369 10.1007/s00217‑020‑03495‑y
    [Google Scholar]
  48. Zielińska E. Baraniak B. Karaś M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 2018 53 11 2542 2551 10.1111/ijfs.13848
    [Google Scholar]
  49. Nongonierma A.B. Lamoureux C. FitzGerald R.J. Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket ( Gryllodes sigillatus ) proteins. Food Funct. 2018 9 1 407 416 10.1039/C7FO01568B 29218344
    [Google Scholar]
  50. Du C. Gong H. Zhao H. Wang P. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes. Food Chem. 2024 453 139587 10.1016/j.foodchem.2024.139587 38781909
    [Google Scholar]
  51. Hall F. Reddivari L. Liceaga A.M. Identification and characterization of edible cricket peptides on hypertensive and glycemic in vitro inhibition and their anti-inflammatory activity on RAW 264.7 macrophage cells. Nutrients 2020 12 11 3588 10.3390/nu12113588 33238450
    [Google Scholar]
  52. Soares Araújo R.R. dos Santos Benfica T.A.R. Ferraz V.P. Moreira Santos E. Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. J. Food Compos. Anal. 2019 76 22 26 10.1016/j.jfca.2018.11.005
    [Google Scholar]
  53. de Matos F.M. de Lacerda J.T.J.G. Zanetti G. de Castro R.J.S. Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases. Biocatal. Agric. Biotechnol. 2022 39 102276 10.1016/j.bcab.2022.102276
    [Google Scholar]
  54. Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 authorising the placing on the market of dried Tenebrio molitor larva as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. 2021 Available from: https://eur-lex.europa.eu/eli/reg_impl/2021/882/oj/eng
  55. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470. 2022 Available from: https://eur-lex.europa.eu/eli/reg_impl/2022/169/oj/eng
  56. Chen F. Jiang H. Lu Y. Chen W. Huang G. Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae. Eur. Food Res. Technol. 2019 245 12 2687 2695 10.1007/s00217‑019‑03381‑2
    [Google Scholar]
  57. Dai C. Ma H. Luo L. Yin X. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur. Food Res. Technol. 2013 236 4 681 689 10.1007/s00217‑013‑1923‑z
    [Google Scholar]
  58. Brai A. Immacolata Trivisani C. Vagaggini C. Stella R. Angeletti R. Iovenitti G. Francardi V. Dreassi E. Proteins from Tenebrio molitor: An interesting functional ingredient and a source of ACE inhibitory peptides. Food Chem. 2022 393 133409 10.1016/j.foodchem.2022.133409 35751205
    [Google Scholar]
  59. Cho H.R. Lee S.O. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor). Food Res. Int. 2020 133 109194 10.1016/j.foodres.2020.109194 32466897
    [Google Scholar]
  60. Rivero-Pino F. Guadix A. Guadix E.M. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor. Food Funct. 2021 12 2 873 880 10.1039/D0FO02696D 33410437
    [Google Scholar]
  61. Ong J.H. Liang C.E. Wong W.L. Wong F.C. Chai T.T. Multi-target anti-sars-cov-2 peptides from mealworm proteins: An in silico study. Malays. J. Biochem. Mol. Biol. 2021 24 83 91
    [Google Scholar]
  62. Cláudia da Costa Rocha A. José de Andrade C. de Oliveira D. Perspective on integrated biorefinery for valorization of biomass from the edible insect Tenebrio molitor. Trends Food Sci. Technol. 2021 116 480 491 10.1016/j.tifs.2021.07.012
    [Google Scholar]
  63. Errico S. Spagnoletta A. Verardi A. Moliterni S. Dimatteo S. Sangiorgio P. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects. Compr. Rev. Food Sci. Food Saf. 2022 21 1 148 197 10.1111/1541‑4337.12863 34773434
    [Google Scholar]
  64. Tan J. Yang J. Zhou X. Hamdy A.M. Zhang X. Suo H. Zhang Y. Li N. Song J. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular binding mechanism. Foods 2022 11 22 3626 10.3390/foods11223626 36429217
    [Google Scholar]
  65. Khajepour-Zaveh A. Asoodeh A. Naderi-Manesh H. Antioxidant enzyme regulating and intracellular ROS scavenging capacities of two novel bioactive peptides from white grub larvae (Polyphylla adstpersa) hydrolysate in A549 cells. Med. Chem. Res. 2020 29 11 2039 2049 10.1007/s00044‑020‑02623‑3
    [Google Scholar]
  66. Pattarayingsakul W. Nilavongse A. Reamtong O. Chittavanich P. Mungsantisuk I. Mathong Y. Prasitwuttisak W. Panbangred W. Angiotensin-converting enzyme inhibitory and antioxidant peptides from digestion of larvae and pupae of Asian weaver ant, Oecophylla smaragdina, Fabricius. J. Sci. Food Agric. 2017 97 10 3133 3140 10.1002/jsfa.8155 27882566
    [Google Scholar]
  67. Chakravorty J. Ghosh S. Megu K. Jung C. Meyer-Rochow V.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India. J. Asia Pac. Entomol. 2016 19 3 711 720 10.1016/j.aspen.2016.07.001
    [Google Scholar]
  68. Bae S.M. Fan M. Choi Y.J. Tang Y. Jeong G. Myung K. Kim B. Kim E.K. Exploring the role of a novel peptide from Allomyrina dichotoma larvae in ameliorating lipid metabolism in obesity. Int. J. Mol. Sci. 2020 21 22 8537 10.3390/ijms21228537 33198343
    [Google Scholar]
  69. Fan M. Choi Y.J. Tang Y. Kim J.H. Kim B. Lee B. Bae S.M. Kim E.K. AGL9: A novel hepatoprotective peptide from the larvae of edible insects alleviates obesity-induced hepatic inflammation by regulating AMPK/Nrf2 signaling. Foods 2021 10 9 1973 10.3390/foods10091973 34574082
    [Google Scholar]
  70. Pereira R.F.P. Silva M.M. de Zea Bermudez V. Bombyx mori silk fibers: An outstanding family of materials. Macromol. Mater. Eng. 2015 300 12 1171 1198 10.1002/mame.201400276
    [Google Scholar]
  71. Tassoni L. Cappellozza S. Dalle Zotte A. Belluco S. Antonelli P. Marzoli F. Saviane A. Nutritional composition of Bombyx mori pupae: A systematic review. Insects 2022 13 7 644 10.3390/insects13070644 35886820
    [Google Scholar]
  72. Khammuang S. Sarnthima R. Sanachai K. Purification and identification of novel antioxidant peptides from silkworm pupae (Bombyx mori) protein hydrolysate and molecular docking study. Biocatal. Agric. Biotechnol. 2022 42 102367 10.1016/j.bcab.2022.102367
    [Google Scholar]
  73. Cermeño M. Bascón C. Amigo-Benavent M. Felix M. FitzGerald R.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. J. Funct. Foods 2022 92 105052 10.1016/j.jff.2022.105052
    [Google Scholar]
  74. Zhang Y. Wang N. Wang W. Wang J. Zhu Z. Li X. Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase. Peptides 2016 76 45 50 10.1016/j.peptides.2015.12.004 26724364
    [Google Scholar]
  75. Luo F. Fu Y. Ma L. Dai H. Wang H. Chen H. Zhu H. Yu Y. Hou Y. Zhang Y. Exploration of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from silkworm pupae (Bombyx mori) proteins based on in silico and in vitro assessments. J. Agric. Food Chem. 2022 70 12 3862 3871 10.1021/acs.jafc.1c08225 35230117
    [Google Scholar]
  76. Tao M. Wang C. Liao D. Liu H. Zhao Z. Zhao Z. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate. Process Biochem. 2017 54 172 179 10.1016/j.procbio.2016.12.022
    [Google Scholar]
  77. Wu Q. Jia J. Yan H. Du J. Gui Z. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study. Peptides 2015 68 17 24 10.1016/j.peptides.2014.07.026 25111373
    [Google Scholar]
  78. Zhang Y. Wang J. Zhu Z. Li X. Sun S. Wang W. Sadiq F.A. Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates. Eur. Food Res. Technol. 2021 247 2 343 352 10.1007/s00217‑020‑03626‑5
    [Google Scholar]
  79. Li Z. Zhao S. Xin X. Zhang B. Thomas A. Charles A. Lee K.S. Jin B.R. Gui Z. Purification and characterization of a novel immunomodulatory hexapeptide from alcalase hydrolysate of ultramicro-pretreated silkworm (Bombyx mori) pupa protein. J. Asia Pac. Entomol. 2019 22 3 633 637 10.1016/j.aspen.2019.04.005
    [Google Scholar]
  80. Sayed W.A.A. Ibrahim N.S. Hatab M.H. Zhu F. Rumpold B.A. Comparative study of the use of insect meal from Spodoptera littoralis and Bactrocera zonata for feeding Japanese quail chicks. Animals (Basel) 2019 9 4 136 10.3390/ani9040136 30935161
    [Google Scholar]
  81. Vercruysse L. Van Camp J. Morel N. Rougé P. Herregods G. Smagghe G. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides 2010 31 3 482 488 10.1016/j.peptides.2009.05.029 19524628
    [Google Scholar]
  82. Mudd N. Martin-Gonzalez F.S. Ferruzzi M. Liceaga A.M. In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model. Food Hydrocoll. Health 2022 2 100083 10.1016/j.fhfh.2022.100083
    [Google Scholar]
  83. Mittal R.K. Mishra R. Uddin R. Sharma V. Hydrogel breakthroughs in biomedicine: Recent advances and implications. Curr. Pharm. Biotechnol. 2024 25 11 1436 1451 10.2174/0113892010281021231229100228 38288792
    [Google Scholar]
  84. Biswas T. Mittal R.K. Sharma V. Kanupriya Mishra I. Nitrogen-fused heterocycles: Empowering anticancer drug discovery. Med. Chem. 2024 20 4 369 384 10.2174/0115734064278334231211054053 38192143
    [Google Scholar]
  85. Mittal R.K. Mishra R. Sharma V. Mishra I. 1,3,4-thiadiazole: A versatile scaffold for drug discovery. Lett. Org. Chem. 2024 21 5 400 413 10.2174/0115701786274678231124101033
    [Google Scholar]
  86. MittalR.K.KrishnaG.MishraR.UddinR.SharmaV.From synthesis to solutions: Hydrogels’ impact on the biomedical landscape.Curr. Pharm. Biotechnol.202425 10.2174/011389201029472724050205195438778590
    [Google Scholar]
  87. Purohit P. Mittal R.K. Khatana K. Quinoline-3-carboxylic acids “DNA minor groove-binding agent”. Anticancer Agents Med. Chem. 2022 22 2 344 348 10.2174/1871520621666210513160714
    [Google Scholar]
  88. Biswas T. Mittal R.K. Sharma V. Kanupriya Mishra I. Schiff bases: Versatile mediators of medicinal and multifunctional advancements. Lett. Org. Chem. 2024 21 6 505 519 10.2174/0115701786278580231126034039
    [Google Scholar]
  89. Chudzinski-Tavassi A.M. De-Sá-Júnior P.L. Simons S.M. Maria D.A. de Souza Ventura J. de Fátima Correia Batista I. Faria F. Durães E. Reis E.M. Demasi M. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system. Toxicon 2010 56 7 1145 1154 10.1016/j.toxicon.2010.04.019 20570593
    [Google Scholar]
  90. Choi K. Hwang C. Gu S. Park M. Kim J. Park J. Ahn Y. Kim J. Song M. Song H. Han S.B. Hong J. Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells. Toxins (Basel) 2014 6 8 2210 2228 10.3390/toxins6082210 25068924
    [Google Scholar]
  91. Ahn M.Y. Kim B.J. Kim H.J. Jin J.M. Yoon H.J. Hwang J.S. Park K.K. Anti-cancer effect of dung beetle glycosaminoglycans on melanoma. BMC Cancer 2019 19 1 9 10.1186/s12885‑018‑5202‑z 30611221
    [Google Scholar]
  92. Socarras K. Theophilus P. Torres J. Gupta K. Sapi E. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi. Antibiotics (Basel) 2017 6 4 31 10.3390/antibiotics6040031 29186026
    [Google Scholar]
  93. Elhag O. Zhou D. Song Q. Soomro A.A. Cai M. Zheng L. Yu Z. Zhang J. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.). PLoS One 2017 12 1 e0169582 10.1371/journal.pone.0169582 28056070
    [Google Scholar]
  94. Saviane A. Romoli O. Bozzato A. Freddi G. Cappelletti C. Rosini E. Cappellozza S. Tettamanti G. Sandrelli F. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res. 2018 27 1 87 101 10.1007/s11248‑018‑0059‑0 29435708
    [Google Scholar]
  95. Nenadić M. Soković M. Glamočlija J. Ćirić A. Perić-Mataruga V. Ilijin L. Tešević V. Todosijević M. Vujisić L. Vesović N. Ćurčić S. The pygidial gland secretion of the forest caterpillar hunter, Calosoma (Calosoma) sycophanta: the antimicrobial properties against human pathogens. Appl. Microbiol. Biotechnol. 2017 101 3 977 985 10.1007/s00253‑016‑8082‑7 28070663
    [Google Scholar]
  96. Ahn M.Y. Han J.W. Hwang J.S. Yun E.Y. Lee B.M. Anti-inflammatory effect of glycosaminoglycan derived from Gryllus bimaculatus (a type of cricket, insect) on adjuvant-treated chronic arthritis rat model. J. Toxicol. Environ. Health A 2014 77 22-24 1332 1345 10.1080/15287394.2014.951591 25343284
    [Google Scholar]
  97. Chu F.J. Jin X.B. Zhu J.Y. Housefly maggots (Musca domestica) protein-enriched fraction/extracts (PE) inhibit lipopolysaccharide-induced atherosclerosis pro-inflammatory responses. J. Atheroscler. Thromb. 2011 18 4 282 290 10.5551/jat.5991 21157115
    [Google Scholar]
  98. Kotsyfakis M. Sá-Nunes A. Francischetti I.M.B. Mather T.N. Andersen J.F. Ribeiro J.M.C. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 2006 281 36 26298 26307 10.1074/jbc.M513010200 16772304
    [Google Scholar]
  99. Sun M. Xu X. Zhang Q. Rui X. Wu J. Dong M. Ultrasonic-assisted aqueous extraction and physicochemical characterization of oil from Clanis bilineata. J. Oleo Sci. 2018 67 2 151 165 10.5650/jos.ess17108 29367478
    [Google Scholar]
  100. Jena K. Pandey J.P. Kumari R. Sinha A.K. Gupta V.P. Singh G.P. Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication. Int. J. Biol. Macromol. 2018 120 Pt A 255 262 10.1016/j.ijbiomac.2018.08.090 30134189
    [Google Scholar]
  101. Yang R. Zhao X. Kuang Z. Ye M. Luo G. Xiao G. Liao S. Li L. Xiong Z. Optimization of antioxidant peptide production in the hydrolysis of silkworm (Bombyx mori L.) pupa protein using response surface methodology. J. Food Agric. Environ. 2013 11 1 952 956
    [Google Scholar]
  102. Ahn M.Y. Hwang J.S. Kim M.J. Park K.K. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet. Arch. Pharm. Res. 2016 39 7 926 936 10.1007/s12272‑016‑0749‑1 27138285
    [Google Scholar]
  103. Lee H.S. Lee H.J. Suh H.J. Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast. Nutr. Res. 2011 31 12 937 943 10.1016/j.nutres.2011.09.009 22153520
    [Google Scholar]
  104. Ryu S.P. Silkworm pupae powder ingestion increases fat metabolism in swim-trained rats. J. Exerc. Nutrition Biochem. 2014 18 2 141 149 10.5717/jenb.2014.18.2.141 25566449
    [Google Scholar]
  105. Tarique M. Badruddeen Ahsan F. Akhtar J. Khan M.I. Khalid M. Formulation development and pharmacological evaluation of fixed dose combination of Bombyx mori coccon shell extract, Flaxseed oil and coenzyme Q10 against doxorubicin induced cardiomyopathy in rats. Orient. Pharm. Exp. Med. 2019 19 4 469 483 10.1007/s13596‑019‑00360‑6
    [Google Scholar]
  106. Baik J.E. Rhee W.J. Anti-apoptotic effects of the alpha-helix domain of silkworm storage protein 1. Biotechnol. Bioprocess Eng. 2017 22 6 671 678 10.1007/s12257‑017‑0283‑0
    [Google Scholar]
  107. Kim E.J. Park H.J. Park T.H. Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph. Biochem. Biophys. Res. Commun. 2003 308 3 523 528 10.1016/S0006‑291X(03)01425‑6 12914782
    [Google Scholar]
  108. Kierończyk B. Rawski M. Mikołajczak Z. Homska N. Jankowski J. Ognik K. Józefiak A. Mazurkiewicz J. Józefiak D. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets. Anim. Nutr. 2022 11 60 79 10.1016/j.aninu.2022.06.015 36101841
    [Google Scholar]
  109. Purohit P. Mittal R.K. Sharma V. A Synergistic broad-spectrum viral entry blocker: In-silico approach. Biointerface Res. Appl. Chem. 2022 13 1
    [Google Scholar]
  110. Mittal R.K. Purohit P. Sankaranarayanan M. Muzaffar-Ur-Rehman M. Taramelli D. Signorini L. Dolci M. Basilico N. In vitro antiviral activity and in-silico targeted study of quinoline-3- carboxylate derivatives against SARS-Cov-2 isolate. Mol. Divers. 2023 28 4 2651 2665 37480422
    [Google Scholar]
  111. Elieh Ali Komi D. Sharma L. Dela Cruz C.S. Chitin and its effects on inflammatory and immune responses. Clin. Rev. Allergy Immunol. 2018 54 2 213 223 10.1007/s12016‑017‑8600‑0 28251581
    [Google Scholar]
  112. Kanupriya Mittal R.K. Sharma V. Biswas T. Mishra I. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents. Med. Chem. 2024 20 5 487 502 10.2174/0115734064280150231212113012 38279757
    [Google Scholar]
  113. Mittal R.K. Purohit P. Aggarwal M. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors. Biointerface Res. Appl. Chem. 2023 13 2 69
    [Google Scholar]
  114. Long X. Song J. Zhao X. Zhang Y. Wang H. Liu X. Suo H. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling. Food Sci. Nutr. 2020 8 1 237 245 10.1002/fsn3.1296 31993149
    [Google Scholar]
  115. Sarasa Bharati A.A. Ali M.M. Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis. J. Ayurveda Integr. Med. 2011 2 2 72 78 10.4103/0975‑9476.82527 21760692
    [Google Scholar]
  116. Yu W. Ying H. Tong F. Zhang C. Quan Y. Zhang Y. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL). PLoS One 2013 8 6 e68746 10.1371/journal.pone.0068746 23840859
    [Google Scholar]
  117. Chernysh S. Kim S.I. Bekker G. Pleskach V.A. Filatova N.A. Anikin V.B. Platonov V.G. Bulet P. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. USA 2002 99 20 12628 12632 10.1073/pnas.192301899 12235362
    [Google Scholar]
  118. Palm N.W. Rosenstein R.K. Yu S. Schenten D.D. Florsheim E. Medzhitov R. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity. Immunity 2013 39 5 976 985 10.1016/j.immuni.2013.10.006 24210353
    [Google Scholar]
  119. Ali M.F.Z. Yasin I.A. Ohta T. Hashizume A. Ido A. Takahashi T. Miura C. Miura T. The silkrose of Bombyx mori effectively prevents vibriosis in penaeid prawns via the activation of innate immunity. Sci. Rep. 2018 8 1 8836 10.1038/s41598‑018‑27241‑3 29892000
    [Google Scholar]
  120. Li Z. Zhao S. Xin X. Zhang B. Thomas A. Charles A. Lee K.S. Jin B.R. Gui Z. Purification, identification and functional analysis of a novel immunomodulatory peptide from silkworm pupa protein. Int. J. Pept. Res. Ther. 2020 26 1 243 249 10.1007/s10989‑019‑09832‑4
    [Google Scholar]
  121. Tszydel M. Zabłotni A. Wojciechowska D. Michalak M. Krucińska I. Szustakiewicz K. Maj M. Jaruszewska A. Strzelecki J. Research on possible medical use of silk produced by caddisfly larvae of Hydropsyche angustipennis (Trichoptera, Insecta). J. Mech. Behav. Biomed. Mater. 2015 45 142 153
    [Google Scholar]
  122. Wang W. Wang N. Zhang Y. Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein. Food Nutr. Sci. 2014 5 13 1202 1211 10.4236/fns.2014.513131
    [Google Scholar]
  123. Wang W. Shen S. Chen Q. Tang B. He G. Ruan H. Das U. Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides (ACEIP). Curr. Pharm. Biotechnol. 2008 9 4 307 314 10.2174/138920108785161578 18691090
    [Google Scholar]
  124. Deori M. Boruah D.C. Devi D. Devi R. Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis. Food Biosci. 2014 5 108 114 10.1016/j.fbio.2013.12.001
    [Google Scholar]
  125. Majtan J. Majtan V. Is manuka honey the best type of honey for wound care? J. Hosp. Infect. 2010 74 3 305 306 10.1016/j.jhin.2009.08.010 19906462
    [Google Scholar]
  126. Majtan J. Kumar P. Majtan T. Walls A.F. Klaudiny J. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes. Exp. Dermatol. 2010 19 8 e73 e79 10.1111/j.1600‑0625.2009.00994.x 19845754
    [Google Scholar]
  127. Stoops J. Crauwels S. Waud M. Claes J. Lievens B. Van Campenhout L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoriamigratorioides) sold for human consumption. Food Microbiol. 2016 53 Pt B 122 127 10.1016/j.fm.2015.09.010 26678139
    [Google Scholar]
  128. Klunder H.C. Wolkers-Rooijackers J. Korpela J.M. Nout M.J.R. Microbiological aspects of processing and storage of edible insects. Food Control 2012 26 2 628 631 10.1016/j.foodcont.2012.02.013
    [Google Scholar]
  129. Brühl C.A. Bakanov N. Köthe S. Eichler L. Sorg M. Hörren T. Mühlethaler R. Meinel G. Lehmann G.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany. Sci. Rep. 2021 11 1 24144 10.1038/s41598‑021‑03366‑w 34916546
    [Google Scholar]
  130. Calatayud-Vernich P. Calatayud F. Simó E. Picó Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 2018 241 106 114 10.1016/j.envpol.2018.05.062 29803024
    [Google Scholar]
  131. Zhang Z.S. Lu X.G. Wang Q.C. Zheng D.M. Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City. Bull. Environ. Contam. Toxicol. 2009 83 2 255 259 10.1007/s00128‑009‑9688‑6 19280090
    [Google Scholar]
  132. Banjo A.D. Lawal O.A. Fasunwon B.T. Alimi G.O. Alkali and heavy metal contaminants of some selected edible arthropods in South Western Nigeria. Am.-Eurasian J. Toxicol. Sci. 2010 2 25 29
    [Google Scholar]
  133. De Paepe E. Wauters J. Van Der Borght M. Claes J. Huysman S. Croubels S. Vanhaecke L. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects. Food Chem. 2019 293 187 196 10.1016/j.foodchem.2019.04.082 31151600
    [Google Scholar]
  134. Musundire R. Osuga I.M. Cheseto X. Irungu J. Torto B. Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers. PLoS One 2016 11 1 e0145914 10.1371/journal.pone.0145914 26731419
    [Google Scholar]
  135. Phiriyangkul P. Srinroch C. Srisomsap C. Chokchaichamnankit D. Punyarit P. Effect of food thermal processing on allergenicity proteins in Bombay locust (Patanga succincta). Int. J. Food Eng. 2015 1 1 23 28
    [Google Scholar]
  136. Alves A.V. Freitas de Lima F. Granzotti da Silva T. Oliveira V.S. Kassuya C.A.L. Sanjinez-Argandoña E.J. Safety evaluation of the oils extracted from edible insects (Tenebrio molitor and Pachymerus nucleorum) as novel food for humans. Regul. Toxicol. Pharmacol. 2019 102 90 94 10.1016/j.yrtph.2019.01.013 30611818
    [Google Scholar]
  137. Ochiai M. Inada M. Horiguchi S. Nutritional and safety evaluation of locust ( Caelifera ) powder as a novel food material. J. Food Sci. 2020 85 2 279 288 10.1111/1750‑3841.15024 31976553
    [Google Scholar]
  138. Choi E.Y. Lee J.H. Han S.H. Jung G.H. Han E.J. Jeon S.J. Jung S.H. Park J.U. Park J.H. Bae Y.J. Park E.S. Jung J.Y. Subacute oral toxicity evaluation of expanded-polystyrene-fed Tenebrio molitor larvae (Yellow mealworm) powder in Sprague- Dawley rats. Food Sci. Anim. Resour. 2022 42 4 609 624 10.5851/kosfa.2022.e25 35855272
    [Google Scholar]
  139. Hanboonsong Y. Jamjanya T. Durst P.B. Six-legged livestock: Edible insect farming, collection and marketing in Thailand. 2013 Available from: https://www.fao.org/4/i3246e/i3246e.pdf
  140. Bartkowicz J. Edible insects in nutritional, economic and environmental aspects. Internal Trade. 2018 2 373 77 89
    [Google Scholar]
  141. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. 2015 Available from: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng
  142. Lähteenmäki-Uutela A. Hénault-Ethier L. Marimuthu S.B. Talibov S. Allen R.N. Nemane V. Vandenberg G.W. Józefiak D. The impact of the insect regulatory system on the insect marketing system. J. Insects Food Feed 2018 4 3 187 198 10.3920/JIFF2017.0073
    [Google Scholar]
  143. Grabowski N.T. Tchibozo S. Abdulmawjood A. Acheuk F. M’Saad Guerfali M. Sayed W.A.A. Plötz M. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation. Foods 2020 9 4 502 10.3390/foods9040502 32316132
    [Google Scholar]
  144. Baker G. Strategic implications of consumer food safety preferences. Int. Food Agribus. Manag. Rev. 1998 1 4 451 463 10.1016/S1096‑7508(99)00003‑8
    [Google Scholar]
  145. Redmond E.C. Griffith C.J. Consumer perceptions of food safety risk, control and responsibility. Appetite 2004 43 3 309 313 10.1016/j.appet.2004.05.003 15527934
    [Google Scholar]
  146. Patil S.R. Cates S. Morales R. Consumer food safety knowledge, practices, and demographic differences: Findings from a meta-analysis. J. Food Prot. 2005 68 9 1884 1894 10.4315/0362‑028X‑68.9.1884 16161688
    [Google Scholar]
  147. Kwiatek K. Bakuła T. Sieradzki Z. Osiński Z. Kowalczyk E. Guidelines for good hygiene practice in the production of insects for feed and food purposes. Strategy for the use of insects as alternative sources of protein in animal nutrition and opportunities for the development of its production in the territory of the Republic of Poland. 2021
    [Google Scholar]
  148. Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals. 2021 Available from: https://eur-lex.europa.eu/eli/reg/2021/1372/oj/eng
  149. Melgar-Lalanne G. Hernández-Álvarez A.J. Salinas-Castro A. Edible insects processing: Traditional and innovative technologies. Compr. Rev. Food Sci. Food Saf. 2019 18 4 1166 1191 10.1111/1541‑4337.12463 33336989
    [Google Scholar]
  150. Aguilar-Miranda E.D. López M.G. Escamilla-Santana C. Barba de la Rosa A.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae. J. Agric. Food Chem. 2002 50 1 192 195 10.1021/jf010691y 11754566
    [Google Scholar]
  151. Kim S.K. Weaver C.M. Choi M.K. Proximate composition and mineral content of five edible insects consumed in Korea. CYTA J. Food 2017 15 1 143 146
    [Google Scholar]
  152. Ayieko M.A. Ogola H.J. Ayieko I.A. Introducing rearing crickets (gryllids) at household levels: Adoption, processing and nutritional values. J. Insects Food Feed 2016 2 3 203 212 10.3920/JIFF2015.0080
    [Google Scholar]
  153. da Rosa Machado C. Thys R.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads. Innov. Food Sci. Emerg. Technol. 2019 56 102180 10.1016/j.ifset.2019.102180
    [Google Scholar]
  154. Biró B. Fodor R. Szedljak I. Pásztor-Huszár K. Gere A. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation. Lebensm. Wiss. Technol. 2019 116 108542 10.1016/j.lwt.2019.108542
    [Google Scholar]
  155. Lamsal B. Wang H. Pinsirodom P. Dossey A.T. Applications of insect-derived protein ingredients in food and feed industry. J. Am. Oil Chem. Soc. 2019 96 2 105 123 10.1002/aocs.12180
    [Google Scholar]
  156. Sun-Waterhouse D. Waterhouse G.I.N. You L. Zhang J. Liu Y. Ma L. Gao J. Dong Y. Transforming insect biomass into consumer wellness foods: A review. Food Res. Int. 2016 89 Pt 1 129 151 10.1016/j.foodres.2016.10.001 28460898
    [Google Scholar]
  157. Mlček J. Rop O. Borkovcova M. Bednářová M. A comprehensive look at the possibilities of edible insects as food in Europe - A review. Pol. J. Food Nutr. Sci. 2014 64 3 147 157 10.2478/v10222‑012‑0099‑8
    [Google Scholar]
  158. Erens J. van Es S. Haverkort F. A bug’s life: Large-scale insect rearing in relation to animal welfare. 2012 Available from: https://venik.nl/onewebmedia/Rapport-Large-scale-insect-rearing-in-relation-to-animal-welfare.pdf
/content/journals/cpps/10.2174/0113892037379345250407143848
Loading
/content/journals/cpps/10.2174/0113892037379345250407143848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test