Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Objective

Eating insects may be healthier and more sustainable than eating animals. Various insect protein hydrolysates are assessed for therapeutic potential in this review.

Methods

A wide range of literature pertaining to nutrition compositions and the biological activity of edible insects has been compiled and meticulously examined through the utilization of various scholarly databases, including PubMed and ScienceDirect.

Results

Different insect protein hydrolysates had anti-inflammatory, anti-cancer, and antioxidant characteristics in addition to controlling blood sugar and cholesterol. These findings suggest that insect-derived bioactive peptides have health benefits and therapeutic uses.

Conclusion

Edible insects may replace traditional foods due to their nutritional and environmental benefits. The biological activity of their protein hydrolysates suggests they could be beneficial food additives or medicines.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037379345250407143848
2025-05-06
2025-11-29
Loading full text...

Full text loading...

References

  1. NiassyS. EkesiS. Contribution to the knowledge of entomophagy in Africa.J. Insects Food Feed20162313713810.3920/JIFF2016.x003
    [Google Scholar]
  2. van HuisA. Potential of insects as food and feed in assuring food security.Annu. Rev. Entomol.201358156358310.1146/annurev‑ento‑120811‑15370423020616
    [Google Scholar]
  3. Cajas-LopezK. Ordoñez-AraqueR. Analysis of chontacuro (Rhynchophorus palmarum L.) protein and fat content and incorporation into traditional Ecuadorian dishes.J. Insects Food Feed20228121521152810.3920/JIFF2022.0033
    [Google Scholar]
  4. SiemianowskaE. KosewskaA. AljewiczM. SkibniewskaK.A. Polak-JuszczakL. JarockiA. JedrasM. Larvae of mealworm (Tenebrio molitor L.) as European novel food.J. Agric. Sci.20134610.4236/as.2013.46041
    [Google Scholar]
  5. BaianoA. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications.Trends Food Sci. Technol.2020100355010.1016/j.tifs.2020.03.040
    [Google Scholar]
  6. TangC. YangD. LiaoH. SunH. LiuC. WeiL. LiF. Edible insects as a food source: A review. Food Production.Process. Nutr.20191113
    [Google Scholar]
  7. MittalR.K. MishraR. SharmaV. PurohitP. Bioactive exploration in functional foods: Unlocking nature’s treasures.Curr. Pharm. Biotechnol.202425111419143510.2174/011389201028258023112004165938031768
    [Google Scholar]
  8. MittalR.K. KrishnaG. SharmaV. PurohitP. MishraR. Spirulina unveiled: A comprehensive review on biotechnological innovations, nutritional proficiency, and clinical implications.Curr. Pharm. Biotechnol.20242510.2174/011389201030452424051402373538803172
    [Google Scholar]
  9. MittalR.K. MishraR. UddinR. BhargavR. KumarN. Epigallocatechin Gallate (EGCG) formulations: Unlocking potential in nutraceutical and pharmaceutical sectors.Nat. Prod. J.2025152e06052422971610.2174/0122103155295035240330065048
    [Google Scholar]
  10. FengY. ZhaoM. HeZ. ChenZ. SunL. Research and utilization of medicinal insects in China.Entomol. Res.200939531331610.1111/j.1748‑5967.2009.00236.x
    [Google Scholar]
  11. TangaC.M. EkesiS. Dietary and therapeutic benefits of edible insects: A global perspective.Annu. Rev. Entomol.202469130333110.1146/annurev‑ento‑020123‑01362137758222
    [Google Scholar]
  12. van HuisA. Nutrition and health of edible insects.Curr. Opin. Clin. Nutr. Metab. Care202023322823110.1097/MCO.000000000000064132073413
    [Google Scholar]
  13. MittalR.K. KrishnaG. SharmaV. Exploring edible insects: A review on protein diversity, extraction techniques, and health benefits.Curr. Pharm. Biotechnol.20242510.2174/011389201030417724051306372138803171
    [Google Scholar]
  14. MittalR.K. KrishnaG. SharmaV. Biotechnological advances in enzymatic hydrolysis and fermentation for edible insects: Functionality, acceptability, and safety.Curr. Pharm. Biotechnol.20242510.2174/011389201030423624051706035438840395
    [Google Scholar]
  15. GiotisT. DrichoutisA.C. Consumer acceptance and willingness-to-pay for insect-based foods: The role of proximity of insects in the food chain.MPRA Paper, University Library of Munich, Germany.2020
    [Google Scholar]
  16. AlemuM.H. OlsenS.B. VedelS.E. PamboK.O. OwinoV.O. Consumer acceptance and willingness to pay for edible insects as food in Kenya: The case of white winged termites.Working Paper, University of Copenhagen2015
    [Google Scholar]
  17. SiddiquiS.A. ZannouO. KarimI. Kasmiati AwadN.M.H. GołaszewskiJ. HeinzV. SmetanaS. Avoiding food neophobia and increasing consumer acceptance of new food trends - A decade of research.Sustainability (Basel)202214161039110.3390/su141610391
    [Google Scholar]
  18. MwangiM.N. OonincxD.G.A.B. StoutenT. VeenenbosM. Melse-BoonstraA. DickeM. van LoonJ.J.A. Insects as sources of iron and zinc in human nutrition.Nutr. Res. Rev.201831224825510.1017/S095442241800009430033906
    [Google Scholar]
  19. HlongwaneZ.T. SlotowR. MunyaiT.C. Indigenous knowledge about consumption of edible insects in South Africa.Insects20201212210.3390/insects1201002233396313
    [Google Scholar]
  20. AkulloJ. AgeaJ.G. ObaaB.B. Okwee-AcaiJ. NakimbugweD. Nutrient composition of commonly consumed edible insects in the Lango sub-region of northern Uganda.Int. Food Res. J.2018251
    [Google Scholar]
  21. MagaraH.J.O. NiassyS. AyiekoM.A. MukundamagoM. EgonyuJ.P. TangaC.M. KimathiE.K. OngereJ.O. FiaboeK.K.M. HugelS. OrindaM.A. RoosN. EkesiS. Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits - A review.Front. Nutr.2021753791510.3389/fnut.2020.53791533511150
    [Google Scholar]
  22. KuntadiK. AdalinaY. MaharaniK.E. Nutritional compositions of six edible insects in Java.Indones. J. For. Res.201851576810.59465/ijfr.2018.5.1.57‑68
    [Google Scholar]
  23. RumpoldB.A. SchlüterO.K. Nutritional composition and safety aspects of edible insects.Mol. Nutr. Food Res.201357580282310.1002/mnfr.20120073523471778
    [Google Scholar]
  24. PunzoF. Nutrient composition of some insects and arachnids.Fla. Sci.20036628498
    [Google Scholar]
  25. OonincxD.G.A.B. DierenfeldE.S. An investigation into the chemical composition of alternative invertebrate prey.Zoo Biol.2012311405410.1002/zoo.2038221442652
    [Google Scholar]
  26. KrönckeN. GrebenteuchS. KeilC. DemtröderS. KrohL. ThünemannA.F. BenningR. HaaseH. Effect of different drying methods on nutrient quality of the yellow mealworm (Tenebrio molitor L.).Insects20191048410.3390/insects1004008430934687
    [Google Scholar]
  27. KouřimskáL. AdámkováA. Nutritional and sensory quality of edible insects.NFS J.20164222610.1016/j.nfs.2016.07.001
    [Google Scholar]
  28. NowakowskiA.C. MillerA.C. MillerM.E. XiaoH. WuX. Potential health benefits of edible insects.Crit. Rev. Food Sci. Nutr.202262133499350810.1080/10408398.2020.186705333397123
    [Google Scholar]
  29. VoelkerR. Can insects compete with beef, poultry as nutritional powerhouses?JAMA2019321543944110.1001/jama.2018.2074730649155
    [Google Scholar]
  30. Meyer-RochowV.B. GahukarR.T. GhoshS. JungC. Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method.Foods2021105103610.3390/foods1005103634068654
    [Google Scholar]
  31. RumpoldB.A. SchlüterO. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing.Anim. Front.2015522024
    [Google Scholar]
  32. Caparros MegidoR. PoelaertC. ErnensM. LiottaM. BleckerC. DanthineS. TytecaE. HaubrugeÉ. AlabiT. BindelleJ. FrancisF. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758).Food Res. Int.201810650350810.1016/j.foodres.2018.01.00229579954
    [Google Scholar]
  33. Viesca GonzalesF.C. Barrera GarciaV.D. Juarez OrtegaA.J. The collection, sale and consumption of insects in Toluca, Mexico and surrounding areas.Rosa Ventos201242208221
    [Google Scholar]
  34. LiangZ. ZhuY. LeonardW. FangZ. Recent advances in edible insect processing technologies.Food Res. Int.202418211413710.1016/j.foodres.2024.11413738519159
    [Google Scholar]
  35. ShockleyM. LesnikJ. AllenR.N. MuñozA.F. Edible insects and their uses in North America; past, present and future.Edible Insects in Sustainable Food SystemsChamSpringer HalloranA. FloreR. VantommeP. RoosN. 2018557910.1007/978‑3‑319‑74011‑9_4
    [Google Scholar]
  36. NonakaK. Feasting on insects.Entomol. Res.200939530431210.1111/j.1748‑5967.2009.00240.x
    [Google Scholar]
  37. Marshall, D.L.; Dickson, J.S.; Nguyen, N.H. Ensuring food safety in insect-based foods: Mitigating microbiological and other foodborne hazards. In insects as sustainable food ingredients; Dossey, A.T.; Morales-Ramos, J.A.; Rojas, M.G., Eds.; Academic Press: San Diego, 2016; pp. 223–253.
  38. TanH.S.G. VerbaanY.T. StiegerM. How will better products improve the sensory-liking and willingness to buy insect-based foods?Food Res. Int.2017929510510.1016/j.foodres.2016.12.02128290303
    [Google Scholar]
  39. TeixeiraC.S.S. VillaC. CostaJ. FerreiraI.M.P.L.V.O. MafraI. Edible insects as a novel source of bioactive peptides: A systematic review.Foods20231210202610.3390/foods1210202637238844
    [Google Scholar]
  40. FerrazzanoG.F. D’AmbrosioF. CarusoS. GattoR. CarusoS. Bioactive peptides derived from edible insects: effects on human health and possible applications in dentistry.Nutrients20231521461110.3390/nu1521461137960264
    [Google Scholar]
  41. GuoZ. QinJ. ZhouX. ZhangY. Insect transcription factors: A landscape of their structures and biological functions in Drosophila and beyond.Int. J. Mol. Sci.20181911369110.3390/ijms1911369130469390
    [Google Scholar]
  42. D’AntonioV. BattistaN. SacchettiG. Di MattiaC. SerafiniM. Functional properties of edible insects: A systematic review.Nutr. Res. Rev.20233619811910.1017/S095442242100036634819193
    [Google Scholar]
  43. CarpentierJ. AbenaimL. LuttenschlagerH. DessauvagesK. LiuY. SamoahP. FrancisF. CaparrosM.R. Microorganism contribution to mass-reared edible insects: Opportunities and challenges.Insects202415861110.3390/insects1508061139194816
    [Google Scholar]
  44. YimamM.A. AndreiniM. CarnevaleS. MuscaritoliM. The role of algae, fungi, and insect-derived proteins and bioactive peptides in preventive and clinical nutrition.Front. Nutr.202411146162110.3389/fnut.2024.146162139449824
    [Google Scholar]
  45. LourençoF. CaladoR. MedinaI. AmeixaO.M.C.C. The potential impacts by the invasion of insects reared to feed livestock and pet animals in Europe and other regions: A critical review.Sustainability (Basel)20221410636110.3390/su14106361
    [Google Scholar]
  46. ZielińskaE. BaraniakB. KaraśM. RybczyńskaK. JakubczykA. Selected species of edible insects as a source of nutrient composition.Food Res. Int.20157746046610.1016/j.foodres.2015.09.008
    [Google Scholar]
  47. ZielińskaE. KaraśM. BaraniakB. JakubczykA. Evaluation of ACE, α-glucosidase, and lipase inhibitory activities of peptides obtained by in vitro digestion of selected species of edible insects.Eur. Food Res. Technol.202024671361136910.1007/s00217‑020‑03495‑y
    [Google Scholar]
  48. ZielińskaE. BaraniakB. KaraśM. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria).Int. J. Food Sci. Technol.201853112542255110.1111/ijfs.13848
    [Google Scholar]
  49. NongoniermaA.B. LamoureuxC. FitzGeraldR.J. Generation of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides during the enzymatic hydrolysis of tropical banded cricket ( Gryllodes sigillatus ) proteins.Food Funct.20189140741610.1039/C7FO01568B29218344
    [Google Scholar]
  50. DuC. GongH. ZhaoH. WangP. Recent progress in the preparation of bioactive peptides using simulated gastrointestinal digestion processes.Food Chem.202445313958710.1016/j.foodchem.2024.13958738781909
    [Google Scholar]
  51. HallF. ReddivariL. LiceagaA.M. Identification and characterization of edible cricket peptides on hypertensive and glycemic in vitro inhibition and their anti-inflammatory activity on RAW 264.7 macrophage cells.Nutrients20201211358810.3390/nu1211358833238450
    [Google Scholar]
  52. Soares AraújoR.R. dos Santos BenficaT.A.R. FerrazV.P. MoreiraS.E. Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil.J. Food Compos. Anal.201976222610.1016/j.jfca.2018.11.005
    [Google Scholar]
  53. de MatosF.M. de LacerdaJ.T.J.G. ZanettiG. de CastroR.J.S. Production of black cricket protein hydrolysates with α-amylase, α-glucosidase and angiotensin I-converting enzyme inhibitory activities using a mixture of proteases.Biocatal. Agric. Biotechnol.20223910227610.1016/j.bcab.2022.102276
    [Google Scholar]
  54. Commission Implementing Regulation (EU) 2021/882 of 1 June 2021 authorising the placing on the market of dried Tenebrio molitor larva as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470.2021Available from: https://eur-lex.europa.eu/eli/reg_impl/2021/882/oj/eng
  55. Commission Implementing Regulation (EU) 2022/169 of 8 February 2022 authorising the placing on the market of frozen, dried and powder forms of yellow mealworm (Tenebrio molitor larva) as a novel food under Regulation (EU) 2015/2283 of the European Parliament and of the Council, and amending Commission Implementing Regulation (EU) 2017/2470.2022Available from: https://eur-lex.europa.eu/eli/reg_impl/2022/169/oj/eng
  56. ChenF. JiangH. LuY. ChenW. HuangG. Identification and in silico analysis of antithrombotic peptides from the enzymatic hydrolysates of Tenebrio molitor larvae.Eur. Food Res. Technol.2019245122687269510.1007/s00217‑019‑03381‑2
    [Google Scholar]
  57. DaiC. MaH. LuoL. YinX. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate.Eur. Food Res. Technol.2013236468168910.1007/s00217‑013‑1923‑z
    [Google Scholar]
  58. BraiA. Immacolata TrivisaniC. VagagginiC. StellaR. AngelettiR. IovenittiG. FrancardiV. DreassiE. Proteins from Tenebrio molitor: An interesting functional ingredient and a source of ACE inhibitory peptides.Food Chem.202239313340910.1016/j.foodchem.2022.13340935751205
    [Google Scholar]
  59. ChoH.R. LeeS.O. Novel hepatoprotective peptides derived from protein hydrolysates of mealworm (Tenebrio molitor).Food Res. Int.202013310919410.1016/j.foodres.2020.10919432466897
    [Google Scholar]
  60. Rivero-PinoF. GuadixA. GuadixE.M. Identification of novel dipeptidyl peptidase IV and α-glucosidase inhibitory peptides from Tenebrio molitor.Food Funct.202112287388010.1039/D0FO02696D33410437
    [Google Scholar]
  61. OngJ.H. LiangC.E. WongW.L. WongF.C. ChaiT.T. Multi-target anti-SARS-COV-2 peptides from mealworm proteins: An in silico study.Malays. J. Biochem. Mol. Biol.2021248391
    [Google Scholar]
  62. Cláudia da Costa RochaA. José de AndradeC. de OliveiraD. Perspective on integrated biorefinery for valorization of biomass from the edible insect Tenebrio molitor.Trends Food Sci. Technol.202111648049110.1016/j.tifs.2021.07.012
    [Google Scholar]
  63. ErricoS. SpagnolettaA. VerardiA. MoliterniS. DimatteoS. SangiorgioP. Tenebrio molitor as a source of interesting natural compounds, their recovery processes, biological effects, and safety aspects.Compr. Rev. Food Sci. Food Saf.202221114819710.1111/1541‑4337.1286334773434
    [Google Scholar]
  64. TanJ. YangJ. ZhouX. HamdyA.M. ZhangX. SuoH. ZhangY. LiN. SongJ. Tenebrio molitor proteins-derived DPP-4 inhibitory peptides: Preparation, identification, and molecular binding mechanism.Foods20221122362610.3390/foods1122362636429217
    [Google Scholar]
  65. Khajepour-ZavehA. AsoodehA. Naderi-ManeshH. Antioxidant enzyme regulating and intracellular ROS scavenging capacities of two novel bioactive peptides from white grub larvae (Polyphylla adstpersa) hydrolysate in A549 cells.Med. Chem. Res.202029112039204910.1007/s00044‑020‑02623‑3
    [Google Scholar]
  66. PattarayingsakulW. NilavongseA. ReamtongO. ChittavanichP. MungsantisukI. MathongY. PrasitwuttisakW. PanbangredW. Angiotensin-converting enzyme inhibitory and antioxidant peptides from digestion of larvae and pupae of Asian weaver ant, Oecophylla smaragdina, Fabricius.J. Sci. Food Agric.201797103133314010.1002/jsfa.815527882566
    [Google Scholar]
  67. ChakravortyJ. GhoshS. MeguK. JungC. Meyer-RochowV.B. Nutritional and anti-nutritional composition of Oecophylla smaragdina (Hymenoptera: Formicidae) and Odontotermes sp. (Isoptera: Termitidae): Two preferred edible insects of Arunachal Pradesh, India.J. Asia Pac. Entomol.201619371172010.1016/j.aspen.2016.07.001
    [Google Scholar]
  68. BaeS.M. FanM. ChoiY.J. TangY. JeongG. MyungK. KimB. KimE.K. Exploring the role of a novel peptide from Allomyrina dichotoma larvae in ameliorating lipid metabolism in obesity.Int. J. Mol. Sci.20202122853710.3390/ijms2122853733198343
    [Google Scholar]
  69. FanM. ChoiY.J. TangY. KimJ.H. KimB. LeeB. BaeS.M. KimE.K. AGL9: A novel hepatoprotective peptide from the larvae of edible insects alleviates obesity-induced hepatic inflammation by regulating AMPK/Nrf2 signaling.Foods2021109197310.3390/foods1009197334574082
    [Google Scholar]
  70. PereiraR.F.P. SilvaM.M. de Zea BermudezV. Bombyx mori silk fibers: An outstanding family of materials.Macromol. Mater. Eng.2015300121171119810.1002/mame.201400276
    [Google Scholar]
  71. TassoniL. CappellozzaS. Dalle ZotteA. BellucoS. AntonelliP. MarzoliF. SavianeA. Nutritional composition of Bombyx mori pupae: A systematic review.Insects202213764410.3390/insects1307064435886820
    [Google Scholar]
  72. KhammuangS. SarnthimaR. SanachaiK. Purification and identification of novel antioxidant peptides from silkworm pupae (Bombyx mori) protein hydrolysate and molecular docking study.Biocatal. Agric. Biotechnol.20224210236710.1016/j.bcab.2022.102367
    [Google Scholar]
  73. CermeñoM. BascónC. Amigo-BenaventM. FelixM. FitzGeraldR.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity.J. Funct. Foods20229210505210.1016/j.jff.2022.105052
    [Google Scholar]
  74. ZhangY. WangN. WangW. WangJ. ZhuZ. LiX. Molecular mechanisms of novel peptides from silkworm pupae that inhibit α-glucosidase.Peptides201676455010.1016/j.peptides.2015.12.00426724364
    [Google Scholar]
  75. LuoF. FuY. MaL. DaiH. WangH. ChenH. ZhuH. YuY. HouY. ZhangY. Exploration of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from silkworm pupae (Bombyx mori) proteins based on in silico and in vitro assessments.J. Agric. Food Chem.202270123862387110.1021/acs.jafc.1c0822535230117
    [Google Scholar]
  76. TaoM. WangC. LiaoD. LiuH. ZhaoZ. ZhaoZ. Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate.Process Biochem.20175417217910.1016/j.procbio.2016.12.022
    [Google Scholar]
  77. WuQ. JiaJ. YanH. DuJ. GuiZ. A novel angiotensin-І converting enzyme (ACE) inhibitory peptide from gastrointestinal protease hydrolysate of silkworm pupa (Bombyx mori) protein: Biochemical characterization and molecular docking study.Peptides201568172410.1016/j.peptides.2014.07.02625111373
    [Google Scholar]
  78. ZhangY. WangJ. ZhuZ. LiX. SunS. WangW. SadiqF.A. Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates.Eur. Food Res. Technol.2021247234335210.1007/s00217‑020‑03626‑5
    [Google Scholar]
  79. LiZ. ZhaoS. XinX. ZhangB. ThomasA. CharlesA. LeeK.S. JinB.R. GuiZ. Purification and characterization of a novel immunomodulatory hexapeptide from alcalase hydrolysate of ultramicro-pretreated silkworm (Bombyx mori) pupa protein.J. Asia Pac. Entomol.201922363363710.1016/j.aspen.2019.04.005
    [Google Scholar]
  80. SayedW.A.A. IbrahimN.S. HatabM.H. ZhuF. RumpoldB.A. Comparative study of the use of insect meal from Spodoptera littoralis and Bactrocera zonata for feeding Japanese quail chicks.Animals (Basel)20199413610.3390/ani904013630935161
    [Google Scholar]
  81. VercruysseL. Van CampJ. MorelN. RougéP. HerregodsG. SmaggheG. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats.Peptides201031348248810.1016/j.peptides.2009.05.02919524628
    [Google Scholar]
  82. MuddN. Martin-GonzalezF.S. FerruzziM. LiceagaA.M. In vivo antioxidant effect of edible cricket (Gryllodes sigillatus) peptides using a Caenorhabditis elegans model.Food Hydrocoll. Health2022210008310.1016/j.fhfh.2022.100083
    [Google Scholar]
  83. MittalR.K. MishraR. UddinR. SharmaV. Hydrogel breakthroughs in biomedicine: Recent advances and implications.Curr. Pharm. Biotechnol.202425111436145110.2174/011389201028102123122910022838288792
    [Google Scholar]
  84. BiswasT. MittalR.K. SharmaV. Kanupriya MishraI. Nitrogen-fused heterocycles: Empowering anticancer drug discovery.Med. Chem.202420436938410.2174/011573406427833423121105405338192143
    [Google Scholar]
  85. MittalR.K. MishraR. SharmaV. MishraI. 1,3,4-thiadiazole: A versatile scaffold for drug discovery.Lett. Org. Chem.202421540041310.2174/0115701786274678231124101033
    [Google Scholar]
  86. MittalR.K. KrishnaG. MishraR. UddinR. SharmaV. From synthesis to solutions: Hydrogels’ impact on the biomedical landscape.Curr. Pharm. Biotechnol.20242510.2174/011389201029472724050205195438778590
    [Google Scholar]
  87. PurohitP. MittalR.K. KhatanaK. Quinoline-3-carboxylic acids “DNA minor groove-binding agent”.Anticancer Agents Med. Chem.202222234434810.2174/1871520621666210513160714
    [Google Scholar]
  88. BiswasT. MittalR.K. SharmaV. Kanupriya MishraI. Schiff bases: Versatile mediators of medicinal and multifunctional advancements.Lett. Org. Chem.202421650551910.2174/0115701786278580231126034039
    [Google Scholar]
  89. Chudzinski-TavassiA.M. De-Sá-JúniorP.L. SimonsS.M. MariaD.A. de Souza VenturaJ. de FátimaC.B.I. FariaF. DurãesE. ReisE.M. DemasiM. A new tick Kunitz type inhibitor, Amblyomin-X, induces tumor cell death by modulating genes related to the cell cycle and targeting the ubiquitin-proteasome system.Toxicon20105671145115410.1016/j.toxicon.2010.04.01920570593
    [Google Scholar]
  90. ChoiK. HwangC. GuS. ParkM. KimJ. ParkJ. AhnY. KimJ. SongM. SongH. HanS.B. HongJ. Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells.Toxins (Basel)2014682210222810.3390/toxins608221025068924
    [Google Scholar]
  91. AhnM.Y. KimB.J. KimH.J. JinJ.M. YoonH.J. HwangJ.S. ParkK.K. Anti-cancer effect of dung beetle glycosaminoglycans on melanoma.BMC Cancer2019191910.1186/s12885‑018‑5202‑z30611221
    [Google Scholar]
  92. SocarrasK. TheophilusP. TorresJ. GuptaK. SapiE. Antimicrobial activity of bee venom and melittin against Borrelia burgdorferi.Antibiotics (Basel)2017643110.3390/antibiotics604003129186026
    [Google Scholar]
  93. ElhagO. ZhouD. SongQ. SoomroA.A. CaiM. ZhengL. YuZ. ZhangJ. Screening, expression, purification and functional characterization of novel antimicrobial peptide genes from Hermetia illucens (L.).PLoS One2017121e016958210.1371/journal.pone.016958228056070
    [Google Scholar]
  94. SavianeA. RomoliO. BozzatoA. FreddiG. CappellettiC. RosiniE. CappellozzaS. TettamantiG. SandrelliF. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains.Transgenic Res.20182718710110.1007/s11248‑018‑0059‑029435708
    [Google Scholar]
  95. NenadićM. SokovićM. GlamočlijaJ. ĆirićA. Perić-MatarugaV. IlijinL. TeševićV. TodosijevićM. VujisićL. VesovićN. ĆurčićS. The pygidial gland secretion of the forest caterpillar hunter, Calosoma (Calosoma) sycophanta: the antimicrobial properties against human pathogens.Appl. Microbiol. Biotechnol.2017101397798510.1007/s00253‑016‑8082‑728070663
    [Google Scholar]
  96. AhnM.Y. HanJ.W. HwangJ.S. YunE.Y. LeeB.M. Anti-inflammatory effect of glycosaminoglycan derived from Gryllus bimaculatus (a type of cricket, insect) on adjuvant-treated chronic arthritis rat model.J. Toxicol. Environ. Health A20147722-241332134510.1080/15287394.2014.95159125343284
    [Google Scholar]
  97. ChuF.J. JinX.B. ZhuJ.Y. Housefly maggots (Musca domestica) protein-enriched fraction/extracts (PE) inhibit lipopolysaccharide-induced atherosclerosis pro-inflammatory responses.J. Atheroscler. Thromb.201118428229010.5551/jat.599121157115
    [Google Scholar]
  98. KotsyfakisM. Sá-NunesA. FrancischettiI.M.B. MatherT.N. AndersenJ.F. RibeiroJ.M.C. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis.J. Biol. Chem.200628136262982630710.1074/jbc.M51301020016772304
    [Google Scholar]
  99. SunM. XuX. ZhangQ. RuiX. WuJ. DongM. Ultrasonic-assisted aqueous extraction and physicochemical characterization of oil from Clanis bilineata.J. Oleo Sci.201867215116510.5650/jos.ess1710829367478
    [Google Scholar]
  100. JenaK. PandeyJ.P. KumariR. SinhaA.K. GuptaV.P. SinghG.P. Free radical scavenging potential of sericin obtained from various ecoraces of tasar cocoons and its cosmeceuticals implication.Int. J. Biol. Macromol.2018120Pt A25526210.1016/j.ijbiomac.2018.08.09030134189
    [Google Scholar]
  101. YangR. ZhaoX. KuangZ. YeM. LuoG. XiaoG. LiaoS. LiL. XiongZ. Optimization of antioxidant peptide production in the hydrolysis of silkworm (Bombyx mori L.) pupa protein using response surface methodology.J. Food Agric. Environ.2013111952956
    [Google Scholar]
  102. AhnM.Y. HwangJ.S. KimM.J. ParkK.K. Antilipidemic effects and gene expression profiling of the glycosaminoglycans from cricket in rats on a high fat diet.Arch. Pharm. Res.201639792693610.1007/s12272‑016‑0749‑127138285
    [Google Scholar]
  103. LeeH.S. LeeH.J. SuhH.J. Silk protein hydrolysate increases glucose uptake through up-regulation of GLUT 4 and reduces the expression of leptin in 3T3-L1 fibroblast.Nutr. Res.2011311293794310.1016/j.nutres.2011.09.00922153520
    [Google Scholar]
  104. RyuS.P. Silkworm pupae powder ingestion increases fat metabolism in swim-trained rats.J. Exerc. Nutrition Biochem.201418214114910.5717/jenb.2014.18.2.14125566449
    [Google Scholar]
  105. TariqueM. Badruddeen AhsanF. AkhtarJ. KhanM.I. KhalidM. Formulation development and pharmacological evaluation of fixed dose combination of Bombyx mori coccon shell extract, Flaxseed oil and coenzyme Q10 against doxorubicin induced cardiomyopathy in rats.Orient. Pharm. Exp. Med.201919446948310.1007/s13596‑019‑00360‑6
    [Google Scholar]
  106. BaikJ.E. RheeW.J. Anti-apoptotic effects of the alpha-helix domain of silkworm storage protein 1.Biotechnol. Bioprocess Eng.201722667167810.1007/s12257‑017‑0283‑0
    [Google Scholar]
  107. KimE.J. ParkH.J. ParkT.H. Inhibition of apoptosis by recombinant 30K protein originating from silkworm hemolymph.Biochem. Biophys. Res. Commun.2003308352352810.1016/S0006‑291X(03)01425‑612914782
    [Google Scholar]
  108. KierończykB. RawskiM. MikołajczakZ. HomskaN. JankowskiJ. OgnikK. JózefiakA. MazurkiewiczJ. JózefiakD. Available for millions of years but discovered through the last decade: Insects as a source of nutrients and energy in animal diets.Anim. Nutr.202211607910.1016/j.aninu.2022.06.01536101841
    [Google Scholar]
  109. PurohitP. MittalR.K. SharmaV. A Synergistic broad-spectrum viral entry blocker: In-silico approach.Biointerface Res. Appl. Chem.2022131.
    [Google Scholar]
  110. MittalR.K. PurohitP. SankaranarayananM. Muzaffar-Ur-RehmanM. TaramelliD. SignoriniL. DolciM. BasilicoN. In vitro antiviral activity and in-silico targeted study of quinoline-3- carboxylate derivatives against SARS-COV-2 isolate.Mol. Divers.20232842651266537480422
    [Google Scholar]
  111. Elieh Ali KomiD. SharmaL. Dela CruzC.S. Chitin and its effects on inflammatory and immune responses.Clin. Rev. Allergy Immunol.201854221322310.1007/s12016‑017‑8600‑028251581
    [Google Scholar]
  112. Kanupriya MittalR.K. SharmaV. BiswasT. MishraI. Recent advances in nitrogen-containing heterocyclic scaffolds as antiviral agents.Med. Chem.202420548750210.2174/011573406428015023121211301238279757
    [Google Scholar]
  113. MittalR.K. PurohitP. AggarwalM. An eco-friendly synthetic approach through C (sp3)-H functionalization of the viral fusion “Spike Protein” inhibitors.Biointerface Res. Appl. Chem.202313269
    [Google Scholar]
  114. LongX. SongJ. ZhaoX. ZhangY. WangH. LiuX. SuoH. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling.Food Sci. Nutr.20208123724510.1002/fsn3.129631993149
    [Google Scholar]
  115. Sarasa BharatiA.A. AliM.M. Effect of crude extract of Bombyx mori coccoons in hyperlipidemia and atherosclerosis.J. Ayurveda Integr. Med.201122727810.4103/0975‑9476.8252721760692
    [Google Scholar]
  116. YuW. YingH. TongF. ZhangC. QuanY. ZhangY. Protective effect of the silkworm protein 30Kc6 on human vascular endothelial cells damaged by oxidized low density lipoprotein (Ox-LDL).PLoS One201386e6874610.1371/journal.pone.006874623840859
    [Google Scholar]
  117. ChernyshS. KimS.I. BekkerG. PleskachV.A. FilatovaN.A. AnikinV.B. PlatonovV.G. BuletP. Antiviral and antitumor peptides from insects.Proc. Natl. Acad. Sci. USA20029920126281263210.1073/pnas.19230189912235362
    [Google Scholar]
  118. PalmN.W. RosensteinR.K. YuS. SchentenD.D. FlorsheimE. MedzhitovR. Bee venom phospholipase A2 induces a primary type 2 response that is dependent on the receptor ST2 and confers protective immunity.Immunity201339597698510.1016/j.immuni.2013.10.00624210353
    [Google Scholar]
  119. AliM.F.Z. YasinI.A. OhtaT. HashizumeA. IdoA. TakahashiT. MiuraC. MiuraT. The silkrose of Bombyx mori effectively prevents vibriosis in penaeid prawns via the activation of innate immunity.Sci. Rep.201881883610.1038/s41598‑018‑27241‑329892000
    [Google Scholar]
  120. LiZ. ZhaoS. XinX. ZhangB. ThomasA. CharlesA. LeeK.S. JinB.R. GuiZ. Purification, identification and functional analysis of a novel immunomodulatory peptide from silkworm pupa protein.Int. J. Pept. Res. Ther.202026124324910.1007/s10989‑019‑09832‑4
    [Google Scholar]
  121. TszydelM. ZabłotniA. WojciechowskaD. MichalakM. KrucińskaI. SzustakiewiczK. MajM. JaruszewskaA. StrzeleckiJ. Research on possible medical use of silk produced by caddisfly larvae of Hydropsyche angustipennis (Trichoptera, Insecta).J. Mech. Behav. Biomed. Mater.201545142153
    [Google Scholar]
  122. WangW. WangN. ZhangY. Antihypertensive properties on spontaneously hypertensive rats of peptide hydrolysates from silkworm pupae protein.Food Nutr. Sci.20145131202121110.4236/fns.2014.513131
    [Google Scholar]
  123. WangW. ShenS. ChenQ. TangB. HeG. RuanH. DasU. Hydrolyzates of silkworm pupae (Bombyx mori) protein is a new source of angiotensin I-converting enzyme inhibitory peptides (ACEIP).Curr. Pharm. Biotechnol.20089430731410.2174/13892010878516157818691090
    [Google Scholar]
  124. DeoriM. BoruahD.C. DeviD. DeviR. Antioxidant and antigenotoxic effects of pupae of the muga silkworm Antheraea assamensis.Food Biosci.2014510811410.1016/j.fbio.2013.12.001
    [Google Scholar]
  125. MajtanJ. MajtanV. Is manuka honey the best type of honey for wound care?J. Hosp. Infect.201074330530610.1016/j.jhin.2009.08.01019906462
    [Google Scholar]
  126. MajtanJ. KumarP. MajtanT. WallsA.F. KlaudinyJ. Effect of honey and its major royal jelly protein 1 on cytokine and MMP-9 mRNA transcripts in human keratinocytes.Exp. Dermatol.2010198e73e7910.1111/j.1600‑0625.2009.00994.x19845754
    [Google Scholar]
  127. StoopsJ. CrauwelsS. WaudM. ClaesJ. LievensB. Van CampenhoutL. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoriamigratorioides) sold for human consumption.Food Microbiol.201653Pt B12212710.1016/j.fm.2015.09.01026678139
    [Google Scholar]
  128. KlunderH.C. Wolkers-RooijackersJ. KorpelaJ.M. NoutM.J.R. Microbiological aspects of processing and storage of edible insects.Food Control201226262863110.1016/j.foodcont.2012.02.013
    [Google Scholar]
  129. BrühlC.A. BakanovN. KötheS. EichlerL. SorgM. HörrenT. MühlethalerR. MeinelG. LehmannG.U.C. Direct pesticide exposure of insects in nature conservation areas in Germany.Sci. Rep.20211112414410.1038/s41598‑021‑03366‑w34916546
    [Google Scholar]
  130. Calatayud-VernichP. CalatayudF. SimóE. PicóY. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure.Environ. Pollut.201824110611410.1016/j.envpol.2018.05.06229803024
    [Google Scholar]
  131. ZhangZ.S. LuX.G. WangQ.C. ZhengD.M. Mercury, cadmium and lead biogeochemistry in the soil-plant-insect system in Huludao City.Bull. Environ. Contam. Toxicol.200983225525910.1007/s00128‑009‑9688‑619280090
    [Google Scholar]
  132. BanjoA.D. LawalO.A. FasunwonB.T. AlimiG.O. Alkali and heavy metal contaminants of some selected edible arthropods in South Western Nigeria.Am.-Eurasian J. Toxicol. Sci.201022529
    [Google Scholar]
  133. De PaepeE. WautersJ. Van Der BorghtM. ClaesJ. HuysmanS. CroubelsS. VanhaeckeL. Ultra-high-performance liquid chromatography coupled to quadrupole orbitrap high-resolution mass spectrometry for multi-residue screening of pesticides, (veterinary) drugs and mycotoxins in edible insects.Food Chem.201929318719610.1016/j.foodchem.2019.04.08231151600
    [Google Scholar]
  134. MusundireR. OsugaI.M. ChesetoX. IrunguJ. TortoB. Aflatoxin contamination detected in nutrient and anti-oxidant rich edible stink bug stored in recycled grain containers.PLoS One2016111e014591410.1371/journal.pone.014591426731419
    [Google Scholar]
  135. PhiriyangkulP. SrinrochC. SrisomsapC. ChokchaichamnankitD. PunyaritP. Effect of food thermal processing on allergenicity proteins in Bombay locust (Patanga succincta).Int. J. Food Eng.2015112328
    [Google Scholar]
  136. AlvesA.V. Freitas de LimaF. Granzotti da SilvaT. OliveiraV.S. KassuyaC.A.L. Sanjinez-ArgandoñaE.J. Safety evaluation of the oils extracted from edible insects (Tenebrio molitor and Pachymerus nucleorum) as novel food for humans.Regul. Toxicol. Pharmacol.2019102909410.1016/j.yrtph.2019.01.01330611818
    [Google Scholar]
  137. OchiaiM. InadaM. HoriguchiS. Nutritional and safety evaluation of locust ( Caelifera ) powder as a novel food material.J. Food Sci.202085227928810.1111/1750‑3841.1502431976553
    [Google Scholar]
  138. ChoiE.Y. LeeJ.H. HanS.H. JungG.H. HanE.J. JeonS.J. JungS.H. ParkJ.U. ParkJ.H. BaeY.J. ParkE.S. JungJ.Y. Subacute oral toxicity evaluation of expanded-polystyrene-fed Tenebrio molitor larvae (Yellow mealworm) powder in Sprague- Dawley rats.Food Sci. Anim. Resour.202242460962410.5851/kosfa.2022.e2535855272
    [Google Scholar]
  139. HanboonsongY. JamjanyaT. DurstP.B. Six-legged livestock: Edible insect farming, collection and marketing in Thailand.2013Available from: https://www.fao.org/4/i3246e/i3246e.pdf
  140. BartkowiczJ. Edible insects in nutritional, economic and environmental aspects.Internal Trade.201823737789
    [Google Scholar]
  141. Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001.2015Available from: https://eur-lex.europa.eu/eli/reg/2015/2283/oj/eng
  142. Lähteenmäki-UutelaA. Hénault-EthierL. MarimuthuS.B. TalibovS. AllenR.N. NemaneV. VandenbergG.W. JózefiakD. The impact of the insect regulatory system on the insect marketing system.J. Insects Food Feed20184318719810.3920/JIFF2017.0073
    [Google Scholar]
  143. GrabowskiN.T. TchibozoS. AbdulmawjoodA. AcheukF. M’Saad GuerfaliM. SayedW.A.A. PlötzM. Edible insects in Africa in terms of food, wildlife resource, and pest management legislation.Foods20209450210.3390/foods904050232316132
    [Google Scholar]
  144. BakerG. Strategic implications of consumer food safety preferences.Int. Food Agribus. Manag. Rev.19981445146310.1016/S1096‑7508(99)00003‑8
    [Google Scholar]
  145. RedmondE.C. GriffithC.J. Consumer perceptions of food safety risk, control and responsibility.Appetite200443330931310.1016/j.appet.2004.05.00315527934
    [Google Scholar]
  146. PatilS.R. CatesS. MoralesR. Consumer food safety knowledge, practices, and demographic differences: Findings from a meta-analysis.J. Food Prot.20056891884189410.4315/0362‑028X‑68.9.188416161688
    [Google Scholar]
  147. KwiatekK. BakułaT. SieradzkiZ. OsińskiZ. KowalczykE. Guidelines for good hygiene practice in the production of insects for feed and food purposes. Strategy for the use of insects as alternative sources of protein in animal nutrition and opportunities for the development of its production in the territory of the Republic of Poland.2021
    [Google Scholar]
  148. Commission Regulation (EU) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as regards the prohibition to feed non-ruminant farmed animals, other than fur animals, with protein derived from animals.2021Available from: https://eur-lex.europa.eu/eli/reg/2021/1372/oj/eng
  149. Melgar-LalanneG. Hernández-ÁlvarezA.J. Salinas-CastroA. Edible insects processing: Traditional and innovative technologies.Compr. Rev. Food Sci. Food Saf.20191841166119110.1111/1541‑4337.1246333336989
    [Google Scholar]
  150. Aguilar-MirandaE.D. LópezM.G. Escamilla-SantanaC. Barba de la RosaA.P. Characteristics of maize flour tortilla supplemented with ground Tenebrio molitor larvae.J. Agric. Food Chem.200250119219510.1021/jf010691y11754566
    [Google Scholar]
  151. KimS.K. WeaverC.M. ChoiM.K. Proximate composition and mineral content of five edible insects consumed in Korea.CYTA J. Food2017151143146
    [Google Scholar]
  152. AyiekoM.A. OgolaH.J. AyiekoI.A. Introducing rearing crickets (gryllids) at household levels: Adoption, processing and nutritional values.J. Insects Food Feed20162320321210.3920/JIFF2015.0080
    [Google Scholar]
  153. da Rosa MachadoC. ThysR.C.S. Cricket powder (Gryllus assimilis) as a new alternative protein source for gluten-free breads.Innov. Food Sci. Emerg. Technol.20195610218010.1016/j.ifset.2019.102180
    [Google Scholar]
  154. BiróB. FodorR. SzedljakI. Pásztor-HuszárK. GereA. Buckwheat-pasta enriched with silkworm powder: Technological analysis and sensory evaluation.Lebensm. Wiss. Technol.201911610854210.1016/j.lwt.2019.108542
    [Google Scholar]
  155. LamsalB. WangH. PinsirodomP. DosseyA.T. Applications of insect-derived protein ingredients in food and feed industry.J. Am. Oil Chem. Soc.201996210512310.1002/aocs.12180
    [Google Scholar]
  156. Sun-WaterhouseD. WaterhouseG.I.N. YouL. ZhangJ. LiuY. MaL. GaoJ. DongY. Transforming insect biomass into consumer wellness foods: A review.Food Res. Int.201689Pt 112915110.1016/j.foodres.2016.10.00128460898
    [Google Scholar]
  157. MlčekJ. RopO. BorkovcovaM. BednářováM. A comprehensive look at the possibilities of edible insects as food in Europe - A review.Pol. J. Food Nutr. Sci.201464314715710.2478/v10222‑012‑0099‑8
    [Google Scholar]
  158. ErensJ. van EsS. HaverkortF. A bug’s life: Large-scale insect rearing in relation to animal welfare.2012Available from: https://venik.nl/onewebmedia/Rapport-Large-scale-insect-rearing-in-relation-to-animal-welfare.pdf
/content/journals/cpps/10.2174/0113892037379345250407143848
Loading
/content/journals/cpps/10.2174/0113892037379345250407143848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test