Skip to content
2000
image of Phylogenetic Analysis of SOD Gene Isolated from Indian Variety of Mud Crabs: Scylla serrata and Scylla olivacea

Abstract

Aim

Our research aimed to isolate and sequence the SOD gene from the genomic DNA of and and to study its phylogeny.

Background

In crustaceans, superoxide dismutase (SOD) serves as the first line of defense against stress. Extracellular Cu/Zn-SOD has been demonstrated in several investigations involving crustaceans. Crustaceans do not have a distinct immune system. They entirely depend on the innate immune system triggered when they come in contact with any pathogen.

Methods

Partial SOD gene was isolated from the genomic DNA of and through polymerase chain reaction.

Results

We successfully isolated partial SOD genes of 942bp and 957bp from and , respectively. The sequences were submitted to the NCBI GenBank database.

Discussion

The phylogenetic study suggests their clustering with the genus species. Investigating the SOD gene sequences across diverse crustacean lineages can reveal profound insights into their evolutionary history and the intricate relationships among species concerning their SOD development.

Conclusion

This research holds the potential to enhance our understanding of the evolutionary adaptations that have shaped these organisms.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037375925250519112911
2025-06-05
2025-09-23
Loading full text...

Full text loading...

References

  1. Holmblad T. Söderhäll K. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity. Aquaculture 1999 172 1-2 111 123 10.1016/S0044‑8486(98)00446‑3
    [Google Scholar]
  2. Cheng W. Tung Y.H. Liu C.H. Chen J.C. Molecular cloning and characterisation of cytosolic manganese superoxide dismutase (cytMn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol. 2006 20 4 438 449 10.1016/j.fsi.2005.05.016 16154362
    [Google Scholar]
  3. Campa-Córdova A.I. Hernández-Saavedra N.Y. Philippis D.R. Ascencio F. Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp ( ) as a response to β-glucan and sulphated polysaccharide. Fish Shellfish Immunol. 2002 12 4 353 366 10.1006/fsim.2001.0377 12049170
    [Google Scholar]
  4. Brouwer M. Brouwer H.T. Grater W. Brown-Peterson N. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport. Biochem. J. 2003 374 1 219 228 10.1042/bj20030272 12769817
    [Google Scholar]
  5. Cheng W. Tung Y.H. Liu C.H. Chen J.C. Molecular cloning and characterisation of copper/zinc superoxide dismutase (Cu,Zn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol. 2006 21 1 102 112 10.1016/j.fsi.2005.10.009 16356736
    [Google Scholar]
  6. Lin Y.C. Vaseeharan B. Chen J.C. Identification of the extracellular copper–zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections. Mol. Immunol. 2008 45 5 1346 1355 10.1016/j.molimm.2007.09.005 17949815
    [Google Scholar]
  7. Li J. Chen P. Liu P. Gao B. Wang Q. Li J. Molecular characterization and expression analysis of extracellular copper–zinc superoxide dismutase gene from swimming crab Portunus trituberculatus. Mol. Biol. Rep. 2011 38 3 2107 2115 10.1007/s11033‑010‑0337‑2 20848212
    [Google Scholar]
  8. Cheng W. Tung Y.H. Chiou T.T. Chen J.C. Cloning and characterisation of mitochondrial manganese superoxide dismutase (mtMnSOD) from the giant freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol. 2006 21 4 453 466 10.1016/j.fsi.2006.02.005 16621606
    [Google Scholar]
  9. Kim E.J. Kim H.P. Hah Y.C. Roe J.H. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Eur. J. Biochem. 1996 241 1 178 185 10.1111/j.1432‑1033.1996.0178t.x 8898904
    [Google Scholar]
  10. Youn H.D. Kim E.J. Roe J.H. Hah Y.C. Kang S.O. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 1996 318 3 889 896 10.1042/bj3180889 8836134
    [Google Scholar]
  11. Yu B.P. Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 1994 74 1 139 162 10.1152/physrev.1994.74.1.139 8295932
    [Google Scholar]
  12. Schwarz K.B. Oxidative stress during viral infection: A review. Free Radic. Biol. Med. 1996 21 5 641 649 10.1016/0891‑5849(96)00131‑1 8891667
    [Google Scholar]
  13. Pipe R.K. Porte C. Livingstone D.R. Antioxidant enzymes associated with the blood cells and haemolymph of the mussel Mytilus edulis. Fish Shellfish Immunol. 1993 3 3 221 233 10.1006/fsim.1993.1022
    [Google Scholar]
  14. Azab H.A. Banci L. Borsari M. Luchinat C. Sola M. Viezzoli M.S. Redox chemistry of superoxide dismutase. Cyclic voltammetry of wild-type enzymes and mutants on functionally relevant residues. Inorg. Chem. 1992 31 22 4649 4655 10.1021/ic00048a037
    [Google Scholar]
  15. Margaret M. Antioxidant: Cu/Zn superoxide dismutase (SOD1). 2022 Available from: https://chem.libretexts.org/@go/page/67336 [(accessed Jan 16, 2025)].
  16. Balasubramanian C.P. Cubelio S.S. Mohanlal D.L. Ponniah A.G. Kumar R. Bineesh K.K. Ravichandran P. Gopalakrishnan A. Mandal A. Jena J.K. DNA sequence information resolves taxonomic ambiguity of the common mud crab species (Genus Scylla ) in Indian waters. Mitochond. DNA A. DNA Mapp. Seq. Anal. 2016 27 1 270 275 10.3109/19401736.2014.892076 24660913
    [Google Scholar]
  17. Mandal A. Varkey M. Sobhanan S.P. Mani A.K. Gopalakrishnan A. Kumaran G. Sethuramalingam A. Srinivasan P. Samraj Y.C.T. Molecular markers reveal only two mud crab species of genus Scylla (Brachyura: Portunidae) in Indian coastal waters. Biochem. Genet. 2014 52 7-8 338 354 10.1007/s10528‑014‑9651‑z 24699826
    [Google Scholar]
  18. Fattman C.L. Schaefer L.M. Oury T.D. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 2003 35 3 236 256 10.1016/S0891‑5849(03)00275‑2 12885586
    [Google Scholar]
  19. Paital B. Chainy G.B.N. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2010 151 1 142 151 10.1016/j.cbpc.2009.09.007 19796708
    [Google Scholar]
  20. Paital B. Chainy G.B.N. Modulation of expression of SOD isoenzymes in mud crab ( Scylla serrata ): Effects of inhibitors, salinity and season. J. Enzyme Inhib. Med. Chem. 2013 28 1 195 204 10.3109/14756366.2011.645239 22299581
    [Google Scholar]
  21. Alzohairy A.M. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011 2 1 60 61
    [Google Scholar]
  22. Tamura K. Stecher G. Kumar S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021 38 7 3022 3027 10.1093/molbev/msab120 33892491
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980 16 2 111 120 10.1007/BF01731581 7463489
    [Google Scholar]
  24. Fink R.C. Scandalios J.G. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch. Biochem. Biophys. 2002 399 1 19 36 10.1006/abbi.2001.2739 11883900
    [Google Scholar]
  25. Hong Z. Loverde P.T. Thakur A. Hammarskjöld M.L. Rekosh D. Schistosoma mansoni: A Cu/Zn superoxide dismutase is glycosylated when expressed in mammalian cells and localizes to a subtegumental region in adult schistosomes. Exp. Parasitol. 1993 76 2 101 114 10.1006/expr.1993.1012 7681013
    [Google Scholar]
  26. Chang L.Y. Slot J.W. Geuze H.J. Crapo J.D. Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J. Cell Biol. 1988 107 6 2169 2179 10.1083/jcb.107.6.2169 3058718
    [Google Scholar]
  27. Pesce A. Capasso C. Battistoni A. Folcarelli S. Rotilio G. Desideri A. Bolognesi M. Unique structural features of the monomeric Cu,Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography. J. Mol. Biol. 1997 274 3 408 420 10.1006/jmbi.1997.1400 9405149
    [Google Scholar]
  28. Banci L. Bertini I. Cabelli D.E. Hallewell R.A. Tung J.W. Viezzoli M.S. A characterization of copper/zinc superoxide dismutase mutants at position 124 Zinc-deficient proteins. Eur. J. Biochem. 1991 196 1 123 128 10.1111/j.1432‑1033.1991.tb15794.x 1848181
    [Google Scholar]
  29. Wilkinson S.R. Prathalingam S.R. Taylor M.C. Ahmed A. Horn D. Kelly J.M. Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei. Free Radic. Biol. Med. 2006 40 2 198 209 10.1016/j.freeradbiomed.2005.06.022 16413403
    [Google Scholar]
  30. Case A. On the origin of superoxide dismutase: An evolutionary perspective of superoxide-mediated redox signaling. Antioxidants 2017 6 4 82 10.3390/antiox6040082 29084153
    [Google Scholar]
  31. Miller A.F. Superoxide dismutases: Ancient enzymes and new insights. FEBS Lett. 2012 586 5 585 595 10.1016/j.febslet.2011.10.048 22079668
    [Google Scholar]
  32. Cadenas E. Davies K.J.A. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 2000 29 3-4 222 230 10.1016/S0891‑5849(00)00317‑8 11035250
    [Google Scholar]
  33. Juarez J.C. Manuia M. Burnett M.E. Betancourt O. Boivin B. Shaw D.E. Tonks N.K. Mazar A.P. Doñate F. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA 2008 105 20 7147 7152 10.1073/pnas.0709451105 18480265
    [Google Scholar]
  34. Reddi A.R. Culotta V.C. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell 2013 152 1-2 224 235 10.1016/j.cell.2012.11.046 23332757
    [Google Scholar]
  35. Broxton C.N. Culotta V.C. SOD enzymes and microbial pathogens: Surviving the oxidative storm of infection. PLoS Pathog. 2016 12 1 e1005295 10.1371/journal.ppat.1005295 26742105
    [Google Scholar]
  36. Fenlon L.A. Slauch J.M. Phagocyte roulette in Salmonella killing. Cell Host Microbe 2014 15 1 7 8 10.1016/j.chom.2014.01.001 24439894
    [Google Scholar]
  37. Ellerby L.M. Cabelli D.E. Graden J.A. Valentine J.S. Copper−zinc superoxide dismutase: Why not ph-dependent? J. Am. Chem. Soc. 1996 118 28 6556 6561 10.1021/ja953845x
    [Google Scholar]
  38. Potter S.Z. Zhu H. Shaw B.F. Rodriguez J.A. Doucette P.A. Sohn S.H. Durazo A. Faull K.F. Gralla E.B. Nersissian A.M. Valentine J.S. Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire homodimeric protein. J. Am. Chem. Soc. 2007 129 15 4575 4583 10.1021/ja066690+ 17381088
    [Google Scholar]
  39. Roberts B.R. Tainer J.A. Getzoff E.D. Malencik D.A. Anderson S.R. Bomben V.C. Meyers K.R. Karplus P.A. Beckman J.S. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS. J. Mol. Biol. 2007 373 4 877 890 10.1016/j.jmb.2007.07.043 17888947
    [Google Scholar]
  40. Borges-Alvarez M. Benavente F. Barbosa J. Sanz-Nebot V. Capillary electrophoresis/mass spectrometry for the separation and characterization of bovine Cu,Zn-superoxide dismutase. Rapid Commun. Mass Spectrom. 2010 24 10 1411 1418 10.1002/rcm.4530 20411580
    [Google Scholar]
  41. Orbea A. Fahimi D.H. Cajaraville M.P. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver. Histochem. Cell Biol. 2000 114 5 393 404 10.1007/s004180000207 11151409
    [Google Scholar]
  42. Liao Y. Liu K. Ren T. Zhang Z. Ma Z. Dan S.F. Lan Z. Lu M. Fang H. Zhang Y. Liu J. Zhu P. The characterization, expression and activity analysis of three superoxide dismutases in Eriocheir hepuensis under azadirachtin stress. Fish Shellfish Immunol. 2021 117 228 239 10.1016/j.fsi.2021.08.010 34418554
    [Google Scholar]
  43. Niyogi S. Biswas S. Sarker S. Datta A.G. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons. Mar. Environ. Res. 2001 52 1 13 26 10.1016/S0141‑1136(00)00257‑9 11488354
    [Google Scholar]
  44. Li W. Yin D. Zhou Y. Hu S. Wang L. 3,4-Dichloroaniline-induced oxidative stress in liver of crucian carp (Carassius auratus). Ecotoxicol. Environ. Saf. 2003 56 2 251 255 10.1016/S0147‑6513(02)00117‑3 12927556
    [Google Scholar]
  45. Richier S. Merle P.L. Furla P. Pigozzi D. Sola F. Allemand D. Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians. Biochim. Biophys. Acta, Gen. Subj. 2003 1621 1 84 91 10.1016/S0304‑4165(03)00049‑7 12667614
    [Google Scholar]
  46. Zhang J. Shen H. Wang X. Wu J. Xue Y. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus. Chemosphere 2004 55 2 167 174 10.1016/j.chemosphere.2003.10.048 14761689
    [Google Scholar]
  47. Liu H.P. Chen F.Y. Gopalakrishnan S. Qiao K. Bo J. Wang K.J. Antioxidant enzymes from the crab Scylla paramamosain: Gene cloning and gene/protein expression profiles against LPS challenge. Fish Shellfish Immunol. 2010 28 5-6 862 871 10.1016/j.fsi.2010.02.008 20153435
    [Google Scholar]
  48. Wuertz S. Bierbach D. Bögner M. Welfare of decapod crustaceans with special emphasis on stress physiology. Aquacult. Res. 2023 2023 1 17 10.1155/2023/1307684
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037375925250519112911
Loading
/content/journals/cpps/10.2174/0113892037375925250519112911
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test