Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Aim

Our research aimed to isolate and sequence the SOD gene from the genomic DNA of and and to study its phylogeny.

Background

In crustaceans, superoxide dismutase (SOD) serves as the first line of defense against stress. Extracellular Cu/Zn-SOD has been demonstrated in several investigations involving crustaceans. Crustaceans do not have a distinct immune system. They entirely depend on the innate immune system triggered when they come in contact with any pathogen.

Methods

Partial SOD gene was isolated from the genomic DNA of and through polymerase chain reaction.

Results

We successfully isolated partial SOD genes of 942bp and 957bp from and , respectively. The sequences were submitted to the NCBI GenBank database.

Discussion

The phylogenetic study suggests their clustering with the genus species. Investigating the SOD gene sequences across diverse crustacean lineages can reveal profound insights into their evolutionary history and the intricate relationships among species concerning their SOD development.

Conclusion

This research holds the potential to enhance our understanding of the evolutionary adaptations that have shaped these organisms.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037375925250519112911
2025-11-01
2025-11-29
Loading full text...

Full text loading...

References

  1. HolmbladT. SöderhällK. Cell adhesion molecules and antioxidative enzymes in a crustacean, possible role in immunity.Aquaculture19991721-211112310.1016/S0044‑8486(98)00446‑3
    [Google Scholar]
  2. ChengW. TungY.H. LiuC.H. ChenJ.C. Molecular cloning and characterisation of cytosolic manganese superoxide dismutase (cytMn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii.Fish Shellfish Immunol.200620443844910.1016/j.fsi.2005.05.01616154362
    [Google Scholar]
  3. Campa-CórdovaA.I. Hernández-SaavedraN.Y. PhilippisD.R. AscencioF. Generation of superoxide anion and SOD activity in haemocytes and muscle of American white shrimp ( ) as a response to β-glucan and sulphated polysaccharide.Fish Shellfish Immunol.200212435336610.1006/fsim.2001.037712049170
    [Google Scholar]
  4. BrouwerM. BrouwerH.T. GraterW. Brown-PetersonN. Replacement of a cytosolic copper/zinc superoxide dismutase by a novel cytosolic manganese superoxide dismutase in crustaceans that use copper (haemocyanin) for oxygen transport.Biochem. J.2003374121922810.1042/bj2003027212769817
    [Google Scholar]
  5. ChengW. TungY.H. LiuC.H. ChenJ.C. Molecular cloning and characterisation of copper/zinc superoxide dismutase (Cu, Zn-SOD) from the giant freshwater prawn Macrobrachium rosenbergii.Fish Shellfish Immunol.200621110211210.1016/j.fsi.2005.10.00916356736
    [Google Scholar]
  6. LinY.C. VaseeharanB. ChenJ.C. Identification of the extracellular copper–zinc superoxide dismutase (ecCuZnSOD) gene of the mud crab Scylla serrata and its expression following β-glucan and peptidoglycan injections.Mol. Immunol.20084551346135510.1016/j.molimm.2007.09.00517949815
    [Google Scholar]
  7. LiJ. ChenP. LiuP. GaoB. WangQ. LiJ. Molecular characterization and expression analysis of extracellular copper–zinc superoxide dismutase gene from swimming crab Portunus trituberculatus.Mol. Biol. Rep.20113832107211510.1007/s11033‑010‑0337‑220848212
    [Google Scholar]
  8. ChengW. TungY.H. ChiouT.T. ChenJ.C. Cloning and characterisation of mitochondrial manganese superoxide dismutase (mtMnSOD) from the giant freshwater prawn Macrobrachium rosenbergii.Fish Shellfish Immunol.200621445346610.1016/j.fsi.2006.02.00516621606
    [Google Scholar]
  9. KimE.J. KimH.P. HahY.C. RoeJ.H. Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. Eur. J. Biochem.1996241117818510.1111/j.1432‑1033.1996.0178t.x8898904
    [Google Scholar]
  10. YounH.D. KimE.J. RoeJ.H. HahY.C. KangS.O. A novel nickel-containing superoxide dismutase from Streptomyces spp.Biochem. J.1996318388989610.1042/bj31808898836134
    [Google Scholar]
  11. YuB.P. Cellular defenses against damage from reactive oxygen species.Physiol. Rev.199474113916210.1152/physrev.1994.74.1.1398295932
    [Google Scholar]
  12. SchwarzK.B. Oxidative stress during viral infection: A review.Free Radic. Biol. Med.199621564164910.1016/0891‑5849(96)00131‑18891667
    [Google Scholar]
  13. PipeR.K. PorteC. LivingstoneD.R. Antioxidant enzymes associated with the blood cells and haemolymph of the mussel Mytilus edulis.Fish Shellfish Immunol.19933322123310.1006/fsim.1993.1022
    [Google Scholar]
  14. AzabH.A. BanciL. BorsariM. LuchinatC. SolaM. ViezzoliM.S. Redox chemistry of superoxide dismutase. Cyclic voltammetry of wild-type enzymes and mutants on functionally relevant residues.Inorg. Chem.199231224649465510.1021/ic00048a037
    [Google Scholar]
  15. MargaretM. Antioxidant: Cu/Zn superoxide dismutase (SOD1).2022Available from: https://chem.libretexts.org/@go/page/67336 [(accessed Jan 16, 2025)].
  16. BalasubramanianC.P. CubelioS.S. MohanlalD.L. PonniahA.G. KumarR. BineeshK.K. RavichandranP. GopalakrishnanA. MandalA. JenaJ.K. DNA sequence information resolves taxonomic ambiguity of the common mud crab species (Genus Scylla ) in Indian waters.Mitochond. DNA A. DNA Mapp. Seq. Anal.201627127027510.3109/19401736.2014.89207624660913
    [Google Scholar]
  17. MandalA. VarkeyM. SobhananS.P. ManiA.K. GopalakrishnanA. KumaranG. SethuramalingamA. SrinivasanP. SamrajY.C.T. Molecular markers reveal only two mud crab species of genus Scylla (Brachyura: Portunidae) in Indian coastal waters.Biochem. Genet.2014527-833835410.1007/s10528‑014‑9651‑z24699826
    [Google Scholar]
  18. FattmanC.L. SchaeferL.M. OuryT.D. Extracellular superoxide dismutase in biology and medicine.Free Radic. Biol. Med.200335323625610.1016/S0891‑5849(03)00275‑212885586
    [Google Scholar]
  19. PaitalB. ChainyG.B.N. Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity.Comp. Biochem. Physiol. C Toxicol. Pharmacol.2010151114215110.1016/j.cbpc.2009.09.00719796708
    [Google Scholar]
  20. PaitalB. ChainyG.B.N. Modulation of expression of SOD isoenzymes in mud crab ( Scylla serrata ): Effects of inhibitors, salinity and season.J. Enzyme Inhib. Med. Chem.201328119520410.3109/14756366.2011.64523922299581
    [Google Scholar]
  21. AlzohairyA.M. BioEdit: An important software for molecular biology.GERF Bull. Biosci.2011216061
    [Google Scholar]
  22. TamuraK. StecherG. KumarS. MEGA11: Molecular evolutionary genetics analysis version 11.Mol. Biol. Evol.20213873022302710.1093/molbev/msab12033892491
    [Google Scholar]
  23. KimuraM. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.J. Mol. Evol.198016211112010.1007/BF017315817463489
    [Google Scholar]
  24. FinkR.C. ScandaliosJ.G. Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases.Arch. Biochem. Biophys.20023991193610.1006/abbi.2001.273911883900
    [Google Scholar]
  25. HongZ. LoverdeP.T. ThakurA. HammarskjöldM.L. RekoshD. Schistosoma mansoni: A Cu/Zn superoxide dismutase is glycosylated when expressed in mammalian cells and localizes to a subtegumental region in adult schistosomes.Exp. Parasitol.199376210111410.1006/expr.1993.10127681013
    [Google Scholar]
  26. ChangL.Y. SlotJ.W. GeuzeH.J. CrapoJ.D. Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes.J. Cell Biol.198810762169217910.1083/jcb.107.6.21693058718
    [Google Scholar]
  27. PesceA. CapassoC. BattistoniA. FolcarelliS. RotilioG. DesideriA. BolognesiM. Unique structural features of the monomeric Cu, Zn superoxide dismutase from Escherichia coli, revealed by X-ray crystallography.J. Mol. Biol.1997274340842010.1006/jmbi.1997.14009405149
    [Google Scholar]
  28. BanciL. BertiniI. CabelliD.E. HallewellR.A. TungJ.W. ViezzoliM.S. A characterization of copper/zinc superoxide dismutase mutants at position 124 Zinc-deficient proteins.Eur. J. Biochem.1991196112312810.1111/j.1432‑1033.1991.tb15794.x1848181
    [Google Scholar]
  29. WilkinsonS.R. PrathalingamS.R. TaylorM.C. AhmedA. HornD. KellyJ.M. Functional characterisation of the iron superoxide dismutase gene repertoire in Trypanosoma brucei.Free Radic. Biol. Med.200640219820910.1016/j.freeradbiomed.2005.06.02216413403
    [Google Scholar]
  30. CaseA. On the origin of superoxide dismutase: An evolutionary perspective of superoxide-mediated redox signaling.Antioxidants2017648210.3390/antiox604008229084153
    [Google Scholar]
  31. MillerA.F. Superoxide dismutases: Ancient enzymes and new insights.FEBS Lett.2012586558559510.1016/j.febslet.2011.10.04822079668
    [Google Scholar]
  32. CadenasE. DaviesK.J.A. Mitochondrial free radical generation, oxidative stress, and aging.Free Radic. Biol. Med.2000293-422223010.1016/S0891‑5849(00)00317‑811035250
    [Google Scholar]
  33. JuarezJ.C. ManuiaM. BurnettM.E. BetancourtO. BoivinB. ShawD.E. TonksN.K. MazarA.P. DoñateF. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling.Proc. Natl. Acad. Sci. USA2008105207147715210.1073/pnas.070945110518480265
    [Google Scholar]
  34. ReddiA.R. CulottaV.C. SOD1 integrates signals from oxygen and glucose to repress respiration.Cell20131521-222423510.1016/j.cell.2012.11.04623332757
    [Google Scholar]
  35. BroxtonC.N. CulottaV.C. SOD enzymes and microbial pathogens: Surviving the oxidative storm of infection.PLoS Pathog.2016121e100529510.1371/journal.ppat.100529526742105
    [Google Scholar]
  36. FenlonL.A. SlauchJ.M. Phagocyte roulette in Salmonella killing.Cell Host Microbe20141517810.1016/j.chom.2014.01.00124439894
    [Google Scholar]
  37. EllerbyL.M. CabelliD.E. GradenJ.A. ValentineJ.S. Copper−zinc superoxide dismutase: Why not ph-dependent?J. Am. Chem. Soc.1996118286556656110.1021/ja953845x
    [Google Scholar]
  38. PotterS.Z. ZhuH. ShawB.F. RodriguezJ.A. DoucetteP.A. SohnS.H. DurazoA. FaullK.F. GrallaE.B. NersissianA.M. ValentineJ.S. Binding of a single zinc ion to one subunit of copper-zinc superoxide dismutase apoprotein substantially influences the structure and stability of the entire homodimeric protein.J. Am. Chem. Soc.2007129154575458310.1021/ja066690+17381088
    [Google Scholar]
  39. RobertsB.R. TainerJ.A. GetzoffE.D. MalencikD.A. AndersonS.R. BombenV.C. MeyersK.R. KarplusP.A. BeckmanJ.S. Structural characterization of zinc-deficient human superoxide dismutase and implications for ALS.J. Mol. Biol.2007373487789010.1016/j.jmb.2007.07.04317888947
    [Google Scholar]
  40. Borges-AlvarezM. BenaventeF. BarbosaJ. Sanz-NebotV. Capillary electrophoresis/mass spectrometry for the separation and characterization of bovine Cu, Zn-superoxide dismutase.Rapid Commun. Mass Spectrom.201024101411141810.1002/rcm.453020411580
    [Google Scholar]
  41. OrbeaA. FahimiD.H. CajaravilleM.P. Immunolocalization of four antioxidant enzymes in digestive glands of mollusks and crustaceans and fish liver.Histochem. Cell Biol.2000114539340410.1007/s00418000020711151409
    [Google Scholar]
  42. LiaoY. LiuK. RenT. ZhangZ. MaZ. DanS.F. LanZ. LuM. FangH. ZhangY. LiuJ. ZhuP. The characterization, expression and activity analysis of three superoxide dismutases in Eriocheir hepuensis under azadirachtin stress.Fish Shellfish Immunol.202111722823910.1016/j.fsi.2021.08.01034418554
    [Google Scholar]
  43. NiyogiS. BiswasS. SarkerS. DattaA.G. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoides, and their relation with polyaromatic hydrocarbons.Mar. Environ. Res.2001521132610.1016/S0141‑1136(00)00257‑911488354
    [Google Scholar]
  44. LiW. YinD. ZhouY. HuS. WangL. 3,4-Dichloroaniline-induced oxidative stress in liver of crucian carp (Carassius auratus).Ecotoxicol. Environ. Saf.200356225125510.1016/S0147‑6513(02)00117‑312927556
    [Google Scholar]
  45. RichierS. MerleP.L. FurlaP. PigozziD. SolaF. AllemandD. Characterization of superoxide dismutases in anoxia- and hyperoxia-tolerant symbiotic cnidarians.Biochim. Biophys. Acta, Gen. Subj.200316211849110.1016/S0304‑4165(03)00049‑712667614
    [Google Scholar]
  46. ZhangJ. ShenH. WangX. WuJ. XueY. Effects of chronic exposure of 2,4-dichlorophenol on the antioxidant system in liver of freshwater fish Carassius auratus.Chemosphere200455216717410.1016/j.chemosphere.2003.10.04814761689
    [Google Scholar]
  47. LiuH.P. ChenF.Y. GopalakrishnanS. QiaoK. BoJ. WangK.J. Antioxidant enzymes from the crab Scylla paramamosain: Gene cloning and gene/protein expression profiles against LPS challenge.Fish Shellfish Immunol.2010285-686287110.1016/j.fsi.2010.02.00820153435
    [Google Scholar]
  48. WuertzS. BierbachD. BögnerM. Welfare of decapod crustaceans with special emphasis on stress physiology.Aquacult. Res.2023202311710.1155/2023/1307684
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037375925250519112911
Loading
/content/journals/cpps/10.2174/0113892037375925250519112911
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test