Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Circular RNAs (circRNAs) have emerged as promising candidates for neoantigen vaccine development due to their unique structural stability, enhanced translational efficiency, and immunostimulatory properties. Unlike linear RNAs, circRNAs exhibit exonuclease resistance, prolonged antigen expression, and increased activation of innate immune receptors such as RIG-I and MDA5, thereby enhancing anti-tumor immune responses. Preclinical studies have demonstrated that circRNA-based vaccines encoding tumor-specific neoantigens effectively stimulate Antigen-Presenting Cells (APCs), particularly Dendritic Cells (DCs), leading to robust CD8+ Cytotoxic T Lymphocyte (CTL) activation. This results in increased cytokine production, T-cell proliferation, and durable anti-tumor immunity. Compared to conventional neoantigen vaccine platforms, circRNA vaccines offer distinct advantages, including higher immunogenicity, improved cytosolic delivery, and minimal risk of genomic integration. CircRNA vaccines have demonstrated efficacy in preclinical tumor models, with studies highlighting their ability to induce long-term memory T-cell responses and enhance the efficacy of immune checkpoint blockade therapies. However, challenges remain in optimizing circRNA delivery, mitigating unintended immune activation, and scaling up manufacturing processes. The translational potential of circRNA vaccines in tumor immunotherapy is significant, offering a novel and scalable approach to personalized cancer treatment. Further research and clinical validation are needed to optimize their design, improve manufacturing efficiency, and assess their efficacy in human trials. CircRNA vaccines represent a next-generation platform with the potential to revolutionize cancer immunotherapy by harnessing durable and targeted anti-tumor immune responses.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037389566250515094946
2025-05-26
2025-11-29
Loading full text...

Full text loading...

References

  1. HussainM.S. MogladE. BansalP. KaurH. DeorariM. almalkiW.H. KazmiI. AlzareaS.I. SinghM. KukretiN. Exploring the oncogenic and tumor-suppressive roles of Circ-ADAM9 in cancer.Pathol. Res. Pract.202425615525710.1016/j.prp.2024.15525738537524
    [Google Scholar]
  2. MaZ. ShuaiY. GaoX. WenX. JiJ. Circular RNAs in the tumour microenvironment.Mol. Cancer2020191810.1186/s12943‑019‑1113‑031937318
    [Google Scholar]
  3. ChenY.G. KimM.V. ChenX. BatistaP.J. AoyamaS. WiluszJ.E. IwasakiA. ChangH.Y. Sensing self and foreign circular RNAs by intron identity.Mol. Cell2017672228238.e510.1016/j.molcel.2017.05.02228625551
    [Google Scholar]
  4. WuJ. ChenZ.J. Innate immune sensing and signaling of cytosolic nucleic acids.Annu. Rev. Immunol.201432146148810.1146/annurev‑immunol‑032713‑12015624655297
    [Google Scholar]
  5. HussainM.S. MogladE. AfzalM. BansalP. KaurH. DeorariM. AliH. ShahwanM. Hassan almalkiW. KazmiI. AlzareaS.I. SinghS.K. DuaK. GuptaG. Circular RNAs in the KRAS pathway: Emerging players in cancer progression.Pathol. Res. Pract.202425615525910.1016/j.prp.2024.15525938503004
    [Google Scholar]
  6. QuL. YiZ. ShenY. LinL. ChenF. XuY. WuZ. TangH. ZhangX. TianF. WangC. XiaoX. DongX. GuoL. LuS. YangC. TangC. YangY. YuW. WangJ. ZhouY. HuangQ. YisimayiA. LiuS. HuangW. CaoY. WangY. ZhouZ. PengX. WangJ. XieX.S. WeiW. Circular RNA vaccines against SARS-CoV-2 and emerging variants.Cell20221851017281744.e1610.1016/j.cell.2022.03.04435460644
    [Google Scholar]
  7. TangX. QiC. ZhouH. LiuY. Critical roles of PTPN family members regulated by non-coding RNAs in tumorigenesis and immunotherapy.Front. Oncol.20221297290610.3389/fonc.2022.97290635957898
    [Google Scholar]
  8. ChenJ. ZhaoX. YuanY. JingJ.J. The expression patterns and the diagnostic/prognostic roles of PTPN family members in digestive tract cancers.Cancer Cell Int.202020123810.1186/s12935‑020‑01315‑732536826
    [Google Scholar]
  9. WangF. CaiG. WangY. ZhuangQ. CaiZ. LiY. GaoS. LiF. ZhangC. ZhaoB. LiuX. Circular RNA-based neoantigen vaccine for hepatocellular carcinoma immunotherapy.MedComm202458e66710.1002/mco2.66739081513
    [Google Scholar]
  10. AmayaL. GrigoryanL. LiZ. LeeA. WenderP.A. PulendranB. ChangH.Y. Circular RNA vaccine induces potent T cell responses.Proc. Natl. Acad. Sci. USA202312020e230219112010.1073/pnas.230219112037155869
    [Google Scholar]
  11. Acevedo-WhitehouseK. BrunoR. Potential health risks of mRNA-based vaccine therapy: A hypothesis.Med. Hypotheses202317111101510.1016/j.mehy.2023.11101536718314
    [Google Scholar]
  12. HussainM.S. MogladE. AfzalM. SharmaS. GuptaG. SivaprasadG.V. DeorariM. AlmalkiW.H. KazmiI. AlzareaS.I. ShahwanM. PantK. AliH. SinghS.K. DuaK. SubramaniyanV. Autophagy-associated non-coding RNAs: Unraveling their impact on Parkinson’s disease pathogenesis.CNS Neurosci. Ther.2024305e1476310.1111/cns.1476338790149
    [Google Scholar]
  13. HuangD. ZhuX. YeS. ZhangJ. LiaoJ. ZhangN. ZengX. WangJ. YangB. ZhangY. LaoL. ChenJ. XinM. NieY. SawP.E. SuS. SongE. Tumour circular RNAs elicit anti-tumour immunity by encoding cryptic peptides.Nature2024625799559360210.1038/s41586‑023‑06834‑738093017
    [Google Scholar]
  14. GuptaA. RudraA. ReedK. LangerR. AndersonD.G. Advanced technologies for the development of infectious disease vaccines.Nat. Rev. Drug Discov.2024231291493810.1038/s41573‑024‑01041‑z39433939
    [Google Scholar]
  15. HobernikD. BrosM. DNA vaccines: How far from clinical use?Int. J. Mol. Sci.20181911360510.3390/ijms1911360530445702
    [Google Scholar]
  16. ZhaoX. ZhongY. WangX. ShenJ. AnW. Advances in circular RNA and its applications.Int. J. Med. Sci.202219697598510.7150/ijms.7184035813288
    [Google Scholar]
  17. HussainM.S. MogladE. AfzalM. GuptaG. Hassan AlmalkiW. KazmiI. AlzareaS.I. KukretiN. GuptaS. KumarD. ChellappanD.K. SinghS.K. DuaK. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives.Pathol. Res. Pract.202425815530310.1016/j.prp.2024.15530338728793
    [Google Scholar]
  18. LiuX ZhangY ZhouS DainL MeiL ZhuG. Circular RNA: An emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines.J. Control Release.2022348849410.1016/j.jconrel.2022.05.043
    [Google Scholar]
  19. ShiY. ZhenX. ZhangY. LiY. KooS. SaidingQ. KongN. LiuG. ChenW. TaoW. Chemically modified platforms for better RNA therapeutics.Chem. Rev.20241243929103310.1021/acs.chemrev.3c0061138284616
    [Google Scholar]
  20. RahmanM. Dendritic cell-based cancer vaccine production.Metabolomics for Personalized Vaccinology.Elsevier202434137510.1016/B978‑0‑443‑15526‑0.00006‑8
    [Google Scholar]
  21. GuptaR. AroraK. Mehrotra AroraN. KunduP. Significance of VLPs in Vlp-circRNA vaccines: A vaccine candidate or delivery vehicle?RNA Biol.202421191792810.1080/15476286.2024.239930739240021
    [Google Scholar]
  22. MaqboolM. HussainM.S. ShaikhN.K. SultanaA. BishtA.S. AgrawalM. Noncoding RNAs in the COVID-19 Saga: An untold story.Viral Immunol.202437626928610.1089/vim.2024.002638968365
    [Google Scholar]
  23. Loan YoungT. Chang WangK. James VarleyA. LiB. Clinical delivery of circular RNA: Lessons learned from RNA drug development.Adv. Drug Deliv. Rev.202319711482610.1016/j.addr.2023.11482637088404
    [Google Scholar]
  24. WesselhoeftR.A. KowalskiP.S. AndersonD.G. Engineering circular RNA for potent and stable translation in eukaryotic cells.Nat. Commun.201891262910.1038/s41467‑018‑05096‑629980667
    [Google Scholar]
  25. ChenX. LuY. Circular RNA: Biosynthesis in vitro.Front. Bioeng. Biotechnol.2021978788110.3389/fbioe.2021.78788134917603
    [Google Scholar]
  26. ZhangY. LiuX. ShenT. WangQ. ZhouS. YangS. LiaoS. SuT. MeiL. ZhangB. HuynhK. XieL. GuoY. GuoC. TycK.M. QuX. WangX.Y. LiuJ. ZhuG. Small circular RNAs as vaccines for cancer immunotherapy.Nat. Biomed. Eng.20259224926710.1038/s41551‑025‑01344‑539920212
    [Google Scholar]
  27. MassaroC. SguegliaG. FrattolilloV. BaglioS.R. AltucciL. Dell’AversanaC. Extracellular vesicle-based nucleic acid delivery: Current advances and future perspectives in cancer therapeutic strategies.Pharmaceutics2020121098010.3390/pharmaceutics1210098033081417
    [Google Scholar]
  28. LiH. PengK. YangK. MaW. QiS. YuX. HeJ. LinX. YuG. Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies.Theranostics202212146422643610.7150/thno.7735036168634
    [Google Scholar]
  29. LeeK.H. KimS. LeeS.W. Pros and cons of in vitro methods for circular RNA preparation.Int. J. Mol. Sci.202223211324710.3390/ijms23211324736362032
    [Google Scholar]
  30. PetkovicS. MüllerS. RNA circularization strategies in vivo and in vitro.Nucleic Acids Res.20154342454246510.1093/nar/gkv04525662225
    [Google Scholar]
  31. MinhA. KamenA.A. Critical assessment of purification and analytical technologies for enveloped viral vector and vaccine processing and their current limitations in resolving co-expressed extracellular vesicles.Vaccines20219882310.3390/vaccines908082334451948
    [Google Scholar]
  32. KangD.D. LiH. DongY. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics.Adv. Drug Deliv. Rev.202319911496110.1016/j.addr.2023.11496137321375
    [Google Scholar]
  33. QuY. LiuR. SunD. DaiZ. Critical considerations of mRNA–LNP technology for CAR-T therapy: Components, payloads and emerging horizons.Mater. Chem. Front.20248193106313510.1039/D4QM00479E
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037389566250515094946
Loading
/content/journals/cpps/10.2174/0113892037389566250515094946
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test