Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Gastric cancer remains one of the leading cancer-related deaths worldwide. Despite the research advances, many challenges persist because the diseases are usually diagnosed at an advanced stage and have a complex treatment protocol. Conventional treatments such as chemotherapy, radiation, and surgery pose several side effects and low efficiency. The growing worldwide interest in herbal products, particularly, their bioactive ingredients, presents a promising prospect for auxiliary or alternative therapies for gastric cancer. experiments show that the given compounds increase the effectiveness and decrease the cumulative harmful impact of conventional anticancer treatments, which may have additive effects. Furthermore, clinical trials have revealed that phytoconstituents have possible anti-gastric cancer properties in humans. Nonetheless, these encouraging preclinical observations have not progressed into clinical practice all that much due to the absence of adequately powered Phase III trials for GC. Therefore, this review stresses the need for well-controlled human interventions to confirm the effectiveness and safety of herb-based therapies. In the long run, the incorporation of these herbal products could present a new approach to constructing the gastric cancer prevention and treatment outlook while minimizing the side effects of conventional treatments and opening up arenas of functional foods and pharmaceuticals.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037353177250409095158
2025-05-06
2025-11-29
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. Gastric Cancer Treatment (PDQ®).PDQ Cancer Information SummariesBethesda (MD)National Cancer Institute (US)20231626389328
    [Google Scholar]
  3. SextonR.E. HallakM.N.A. UddinM.H. DiabM. AzmiA.S. Gastric cancer heterogeneity and clinical outcomes.Technol. Cancer Res. Treat.202019153303382093547710.1177/153303382093547732799763
    [Google Scholar]
  4. SohnB.H. HwangJ.E. JangH.J. LeeH.S. OhS.C. ShimJ.J. LeeK.W. KimE.H. YimS.Y. LeeS.H. CheongJ.H. JeongW. ChoJ.Y. KimJ. ChaeJ. LeeJ. KangW.K. KimS. NohS.H. AjaniJ.A. LeeJ.S. Clinical significance of four molecular subtypes of gastric cancer identified by The Cancer Genome Atlas project.Clin. Cancer Res.201723154441444910.1158/1078‑0432.CCR‑16‑221128747339
    [Google Scholar]
  5. LiL. WangX. Identification of gastric cancer subtypes based on pathway clustering.NPJ Precis. Oncol.2021514610.1038/s41698‑021‑00186‑z34079012
    [Google Scholar]
  6. KimJ.H. LeeJ. ChoiI.J. KimY.I. KimJ. Dietary patterns and gastric cancer risk in a Korean population: A case–control study.Eur. J. Nutr.202160138939710.1007/s00394‑020‑02253‑w32350654
    [Google Scholar]
  7. SalvatoriS. MarafiniI. LaudisiF. MonteleoneG. StolfiC. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms.Int. J. Mol. Sci.2023243289510.3390/ijms2403289536769214
    [Google Scholar]
  8. MohammadzadehR. MenbariS. PishdadianA. FarsianiH. Helicobacter pylori virulence factors: Subversion of host immune system and development of various clinical outcomes.Expert Rev. Mol. Med.202325e2310.1017/erm.2023.1737309681
    [Google Scholar]
  9. BirkettN. Al-ZoughoolM. BirdM. BaanR.A. ZielinskiJ. KrewskiD. Overview of biological mechanisms of human carcinogens.J. Toxicol. Environ. Health B Crit. Rev.2019227-828835910.1080/10937404.2019.164353931631808
    [Google Scholar]
  10. KimJ.W. KimJ.H. LeeY.J. The role of adipokines in tumor progression and its association with obesity.Biomedicines20241219710.3390/biomedicines1201009738255203
    [Google Scholar]
  11. KoK.P. Risk factors of gastric cancer and lifestyle modification for prevention.J. Gastric Cancer20242419910710.5230/jgc.2024.24.e1038225769
    [Google Scholar]
  12. HansfordS. KaurahP. Li-ChangH. WooM. SenzJ. PinheiroH. SchraderK.A. SchaefferD.F. ShumanskyK. ZogopoulosG. SantosT.A. ClaroI. CarvalhoJ. NielsenC. PadillaS. LumA. TalhoukA. Baker-LangeK. RichardsonS. LewisI. LindorN.M. PennellE. MacMillanA. FernandezB. KellerG. LynchH. ShahS.P. GuilfordP. GallingerS. CorsoG. RovielloF. CaldasC. OliveiraC. PharoahP.D.P. HuntsmanD.G. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond.JAMA Oncol.201511233210.1001/jamaoncol.2014.16826182300
    [Google Scholar]
  13. LecuitT. YapA.S. E-cadherin junctions as active mechanical integrators in tissue dynamics.Nat. Cell Biol.201517553353910.1038/ncb313625925582
    [Google Scholar]
  14. KangM.Y. JungJ. KooJ.W. KimI. KimH.R. MyongJ.P. Increased risk of gastric cancer in workers with occupational dust exposure.Korean J. Intern. Med. (Korean. Assoc. Intern. Med.)202136Suppl. 1S18S2610.3904/kjim.2019.42132375207
    [Google Scholar]
  15. BajJ. FormaA. SitarzM. PortincasaP. GarrutiG. KrasowskaD. MaciejewskiR. Helicobacter pylori virulence factors—mechanisms of bacterial pathogenicity in the gastric microenvironment.Cells20201012710.3390/cells1001002733375694
    [Google Scholar]
  16. GrazianoF. FischerN.W. BagaloniI. Di BartolomeoM. LonardiS. VincenziB. PerroneG. FornaroL. OngaroE. AprileG. BisonniR. PrisciandaroM. MalkinD. GariépyJ. FassanM. LoupakisF. SartiD. Del PreteM. CatalanoV. AlessandroniP. MagnaniM. RuzzoA. Tp53 mutation analysis in gastric cancer and clinical outcomes of patients with metastatic disease treated with ramucirumab/paclitaxel or standard chemotherapy.Cancers (Basel)2020128204910.3390/cancers1208204932722340
    [Google Scholar]
  17. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: Signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑534248142
    [Google Scholar]
  18. HeitC. DongH. ChenY. ShahY.M. ThompsonD.C. VasiliouV. Transgenic mouse models for alcohol metabolism, toxicity, and cancer.Adv. Exp. Med. Biol.201581537538710.1007/978‑3‑319‑09614‑8_2225427919
    [Google Scholar]
  19. HallinanJ.T.P.D. VenkateshS.K. Gastric carcinoma: Imaging diagnosis, staging and assessment of treatment response.Cancer Imaging201313221222710.1102/1470‑7330.2013.002323722535
    [Google Scholar]
  20. ZengZ. YangB. LiaoZ. Biomarkers in immunotherapy-based precision treatments of digestive system tumors.Front. Oncol.20211165048110.3389/fonc.2021.65048133777812
    [Google Scholar]
  21. JoshiS.S. BadgwellB.D. Current treatment and recent progress in gastric cancer.CA Cancer J. Clin.202171326427910.3322/caac.2165733592120
    [Google Scholar]
  22. WakaharaT. UenoN. MaedaT. KanemitsuK. YoshikawaT. TsuchidaS. ToyokawaA. Impact of gastric cancer surgery in elderly patients.Oncology2018942798410.1159/00048140429045948
    [Google Scholar]
  23. DuarteM.A. VicenteR. FernandesM. SilvaM. Hyperthermic intraperitoneal chemotherapy in gastric cancer: A clinical case involving long-term survival.Cureus2023159e4530210.7759/cureus.4530237846258
    [Google Scholar]
  24. CashinP.H. GrafW. Sequential postoperative intraperitoneal chemotherapy for colorectal cancer with peritoneal metastases: A narrative review.J. Gastrointest. Oncol.202112S1Suppl. 1S131S13510.21037/jgo‑20‑13733968433
    [Google Scholar]
  25. GoodmanM.D. McPartlandS. DetelichD. SaifM.W. Chemotherapy for intraperitoneal use: A review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy.J. Gastrointest. Oncol.201671455710.3978/j.issn.2078‑6891.2015.11126941983
    [Google Scholar]
  26. SextonR.E. Al HallakM.N. DiabM. AzmiA.S. Gastric cancer: A comprehensive review of current and future treatment strategies.Cancer Metastasis Rev.20203941179120310.1007/s10555‑020‑09925‑332894370
    [Google Scholar]
  27. WaddinghamW. NieuwenburgS.A.V. CarlsonS. Rodriguez-JustoM. SpaanderM. KuipersE.J. JansenM. GrahamD.G. BanksM. Recent advances in the detection and management of early gastric cancer and its precursors.Frontline Gastroenterol.202112432233110.1136/flgastro‑2018‑10108934249318
    [Google Scholar]
  28. ZhangT. ChenW. JiangX. LiuL. WeiK. DuH. WangH. LiJ. Anticancer effects and underlying mechanism of Colchicine on human gastric cancer cell lines in vitro and in vivo.Biosci. Rep.2019391BSR2018180210.1042/BSR2018180230429232
    [Google Scholar]
  29. SongZ. WuY. YangJ. YangD. FangX. Progress in the treatment of advanced gastric cancer.Tumour Biol.201739710.1177/101042831771462628671042
    [Google Scholar]
  30. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules20191014710.3390/biom1001004731892257
    [Google Scholar]
  31. RajabiS. MarescaM. YumashevA.V. ChoopaniR. HajimehdipoorH. The most competent plant-derived natural products for targeting apoptosis in cancer therapy.Biomolecules202111453410.3390/biom1104053433916780
    [Google Scholar]
  32. ChoudhariA.S. MandaveP.C. DeshpandeM. RanjekarP. PrakashO. Phytochemicals in cancer treatment: From preclinical studies to clinical practice.Front. Pharmacol.202010161410.3389/fphar.2019.0161432116665
    [Google Scholar]
  33. NingF.L. LyuJ. PeiJ.P. GuW.J. ZhangN.N. CaoS.Y. ZengY.J. AbeM. NishiyamaK. ZhangC.D. The burden and trend of gastric cancer and possible risk factors in five Asian countries from 1990 to 2019.Sci. Rep.2022121598010.1038/s41598‑022‑10014‑435395871
    [Google Scholar]
  34. AkbariA. AshtariS. TabaieanS.P. Mehrdad-MajdH. FarsiF. ShojaeeS. AgahS. Overview of epidemiological characteristics, clinical features, and risk factors of gastric cancer in Asia-Pacific region.Asia Pac. J. Clin. Oncol.202218649350510.1111/ajco.1365435073453
    [Google Scholar]
  35. ThriftA.P. El-SeragH.B. Burden of gastric cancer.Clin. Gastroenterol. Hepatol.202018353454210.1016/j.cgh.2019.07.04531362118
    [Google Scholar]
  36. KarimiP. IslamiF. AnandasabapathyS. FreedmanN.D. KamangarF. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention.Cancer Epidemiol. Biomarkers Prev.201423570071310.1158/1055‑9965.EPI‑13‑105724618998
    [Google Scholar]
  37. AsombangA.W. RahmanR. IbdahJ.A. Gastric cancer in Africa: Current management and outcomes.World J. Gastroenterol.201420143875387910.3748/wjg.v20.i14.387524833842
    [Google Scholar]
  38. CorreaP. Gastric cancer.Gastroenterol. Clin. North Am.201342221121710.1016/j.gtc.2013.01.00223639637
    [Google Scholar]
  39. OhS.Y. LeeJ.H. LeeH.J. KimT.H. HuhY.J. AhnH.S. SuhY.S. KongS.H. KimG.H. AhnS.J. KimS.H. ChoiY. YangH.K. Natural history of gastric cancer: Observational study of gastric cancer patients not treated during follow-up.Ann. Surg. Oncol.20192692905291110.1245/s10434‑019‑07455‑z31190210
    [Google Scholar]
  40. ShrikhandeS.V. SirohiB. BarretoS.G. ChackoR.T. ParikhP.M. PautuJ. AryaS. PatilP. ChilukuriS.C. GaneshB. KaurT. ShuklaD. RathG.S. Indian Council of Medical Research consensus document for the management of gastric cancer.Indian J. Med. Paediatr. Oncol.201435423924310.4103/0971‑5851.14497025538398
    [Google Scholar]
  41. DanwangC. BignaJ.J. Epidemiology of gastric cancer in Africa: A systematic review and meta-analysis protocol.Syst. Rev.20198127610.1186/s13643‑019‑1214‑231722746
    [Google Scholar]
  42. ElseweidyM.M. Brief review on the causes, diagnosis and therapeutic treatment of gastritis disease.Altern. Integr. Med.20176110.4172/2327‑5162.1000231
    [Google Scholar]
  43. KumarS. PatelG.K. GhoshalU.C. Helicobacter pylori-induced inflammation: Possible factors modulating the risk of gastric cancer.Pathogens2021109109910.3390/pathogens1009109934578132
    [Google Scholar]
  44. LahnerE. EspositoG. GalliG. AnnibaleB. Atrophic gastritis and pre-malignant gastric lesions.Transl. Gastrointest. Canc.20154427228110.3978/j.issn.2224‑4778.2015.05.05
    [Google Scholar]
  45. SunL. JinX. HuangL. ZhaoJ. JinH. ChenM. ZhangC. LuB. Risk of progression in patients with chronic atrophic gastritis: A retrospective study.Front. Oncol.20221294209110.3389/fonc.2022.94209135978825
    [Google Scholar]
  46. PiscioneM. MazzoneM. Di MarcantonioM.C. MuraroR. MincioneG. Eradication of Helicobacter pylori and gastric cancer: A controversial relationship.Front. Microbiol.20211263085210.3389/fmicb.2021.63085233613500
    [Google Scholar]
  47. RakiciH. UyanikE. RakiciI.M. PolatH.B. AkdoganR.A. AydinG. AyvazM.A. BedirR. Gastric intestinal metaplasia.Niger. J. Clin. Pract.202225331532410.4103/njcp.njcp_1548_2135295055
    [Google Scholar]
  48. JencksD.S. AdamJ.D. BorumM.L. KohJ.M. StephenS. DomanD.B. Overview of current concepts in gastric intestinal metaplasia and gastric cancer.Gastroenterol. Hepatol. (N. Y.)20181429210129606921
    [Google Scholar]
  49. RieraK.M. JangB. MinJ. RolandJ.T. YangQ. FesmireW.T. Camilleri-BroetS. FerriL. KimW.H. ChoiE. GoldenringJ.R. Trop2 is upregulated in the transition to dysplasia in the metaplastic gastric mucosa.J. Pathol.2020251333634710.1002/path.546932432338
    [Google Scholar]
  50. GoralV. Etiopathogenesis of gastric cancer.Asian Pac. J. Cancer Prev.20161762745275027356684
    [Google Scholar]
  51. LeitingJ.L. GrotzT.E. Advancements and challenges in treating advanced gastric cancer in the West.World J. Gastrointest. Oncol.201911965266410.4251/wjgo.v11.i9.65231558971
    [Google Scholar]
  52. MiaoZ.F. ChenH. WangZ.N. JiJ.F. LiangH. XuH.M. WangJ. Progress and remaining challenges in comprehensive gastric cancer treatment.Holis. Integra. Oncol.202211410.1007/s44178‑022‑00002‑z
    [Google Scholar]
  53. FarrellC. BrearleyS.G. PillingM. MolassiotisA. The impact of chemotherapy-related nausea on patients’ nutritional status, psychological distress and quality of life.Support. Care Cancer2013211596610.1007/s00520‑012‑1493‑922610269
    [Google Scholar]
  54. MajeedH. GuptaV. Adverse effects of radiation therapy.StatPearls.Treasure Island (FL)StatPearls Publishing20201633085406
    [Google Scholar]
  55. FicoV. AltieriG. Di GreziaM. BianchiV. ChiarelloM.M. PepeG. TropeanoG. BrisindaG. Surgical complications of oncological treatments: A narrative review.World J. Gastrointest. Surg.20231561056106710.4240/wjgs.v15.i6.105637405101
    [Google Scholar]
  56. AliM. WaniS.U.D. SalahuddinM. S NM. KM. DeyT. ZargarM.I. SinghJ. Recent advance of herbal medicines in cancer- a molecular approach.Heliyon202392e1368410.1016/j.heliyon.2023.e1368436865478
    [Google Scholar]
  57. KimS.D. KimJ.H. KimD.H. ParkJ.H. GongY. SunC. YooH.S. ParkS.J. Comprehensive evaluation of traditional herbal medicine combined with adjuvant chemotherapy on post-surgical gastric cancer: A systematic review and meta-analysis.Integr. Cancer Ther.2024231534735423122625610.1177/1534735423122625638281123
    [Google Scholar]
  58. TanY. WangH. XuB. ZhangX. ZhuG. GeY. LuT. GaoR. LiJ. Chinese herbal medicine combined with oxaliplatin-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis of contributions of specific medicinal materials to tumor response.Front. Pharmacol.20221397770810.3389/fphar.2022.97770836091754
    [Google Scholar]
  59. ZhangQ.Y. WangF.X. JiaK.K. KongL.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects.Front. Pharmacol.20189125310.3389/fphar.2018.0125330459615
    [Google Scholar]
  60. HoffmanR.D. LiC.Y. HeK. WuX. HeB.C. HeT.C. GaoJ.L. Chinese herbal medicine and its regulatory effects on tumor related T cells.Front. Pharmacol.20201149210.3389/fphar.2020.0049232372963
    [Google Scholar]
  61. HassenG. BeleteG. CarreraK.G. IriowenR.O. ArayaH. AlemuT. SolomonN. BamD.S. NicolaS.M. ArayaM.E. DebeleT. ZouetrM. JainN. Clinical implications of herbal supplements in conventional medical practice: A us perspective.Cureus2022147e2689310.7759/cureus.2689335978741
    [Google Scholar]
  62. ChoiJ. LeeJ. KimK. ChoiH.K. LeeS.A. LeeH.J. Effects of ginger intake on chemotherapy-induced nausea and vomiting: A systematic review of randomized clinical trials.Nutrients20221423498210.3390/nu1423498236501010
    [Google Scholar]
  63. Gupta ShankarE. GuptaS. Chamomile: A herbal medicine of the past with a bright future (Review).Mol. Med. Rep.20103689590110.3892/mmr.2010.37721132119
    [Google Scholar]
  64. MaoQ.Q. XuX.Y. ShangA. GanR.Y. WuD.T. AtanasovA.G. LiH.B. Phytochemicals for the prevention and treatment of gastric cancer: Effects and mechanisms.Int. J. Mol. Sci.202021257010.3390/ijms2102057031963129
    [Google Scholar]
  65. LuoR. FangD. HangH. TangZ. The mechanism in gastric cancer chemoprevention by Allicin.Anticancer. Agents Med. Chem.201616780280910.2174/187152061666615111111544326555611
    [Google Scholar]
  66. SarvizadehM. HasanpourO. Naderi Ghale-NoieZ. MollazadehS. RezaeiM. PourghadamyariH. Masoud KhooyM. AschnerM. KhanH. RezaeiN. ShojaieL. MirzaeiH. Allicin and digestive system cancers: From chemical structure to its therapeutic opportunities.Front. Oncol.20211165025610.3389/fonc.2021.65025633987085
    [Google Scholar]
  67. ZhouY. LiX. LuoW. ZhuJ. ZhaoJ. WangM. SangL. ChangB. WangB. Allicin in digestive system cancer: From biological effects to clinical treatment.Front. Pharmacol.20221390325910.3389/fphar.2022.90325935770084
    [Google Scholar]
  68. PandeyP. KhanF. AlshammariN. SaeedA. AqilF. SaeedM. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management.Front. Pharmacol.202314115403410.3389/fphar.2023.115403437021043
    [Google Scholar]
  69. TomkoA.M. WhynotE.G. EllisL.D. DupréD.J. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in cannabis.Cancers (Basel)2020127198510.3390/cancers1207198532708138
    [Google Scholar]
  70. ZhangX. QinY. PanZ. LiM. LiuX. ChenX. QuG. ZhouL. XuM. ZhengQ. LiD. Cannabidiol induces cell cycle arrest and cell apoptosis in human gastric cancer SGC-7901 cells.Biomolecules20199830210.3390/biom908030231349651
    [Google Scholar]
  71. JeongS. JoM.J. YunH.K. KimD.Y. KimB.R. KimJ.L. ParkS.H. NaY.J. JeongY.A. KimB.G. AshktorabH. SmootD.T. HeoJ.Y. HanJ. Il LeeS. Do KimH. KimD.H. OhS.C. LeeD.H. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer.Cell Death Dis.2019101184610.1038/s41419‑019‑2001‑731699976
    [Google Scholar]
  72. Olivas-AguirreM. Torres-LópezL. Villatoro-GómezK. Perez-TapiaS.M. PottosinI. DobrovinskayaO. Cannabidiol on the path from the lab to the cancer patient: Opportunities and challenges.Pharmaceuticals (Basel)202215336610.3390/ph1503036635337163
    [Google Scholar]
  73. ImranM. SaeedF. AlsagabyS.A. ImranA. AhmadI. El GhorabA.H. AbdelgawadM.A. QaisraniT.B. MehmoodT. UmarM. MumtazM.A. SajidA. ManzoorQ. HussainM. Al AbdulmonemW. Al JbawiE. Curcumin: Recent updates on gastrointestinal cancers.CYTA J. Food202321150251310.1080/19476337.2023.2245009
    [Google Scholar]
  74. HassanalilouT. GhavamzadehS. KhaliliL. Curcumin and gastric cancer: A review on mechanisms of action.J. Gastrointest. Canc.201950218519210.1007/s12029‑018‑00186‑630725357
    [Google Scholar]
  75. ZhangW. CuiN. YeJ. YangB. SunY. KuangH. Curcumin’s prevention of inflammation-driven early gastric cancer and its molecular mechanism.Chin. Herb. Med.202214224425310.1016/j.chmed.2021.11.00336117672
    [Google Scholar]
  76. ZhouS. YaoD. GuoL. TengL. Curcumin suppresses gastric cancer by inhibiting gastrin-mediated acid secretion.FEBS Open Bio2017781078108410.1002/2211‑5463.1223728781948
    [Google Scholar]
  77. JakubekM. KejíkZ. KaplánekR. HromádkaR. ŠandrikováV. SýkoraD. AntonyováV. UrbanM. DytrychP. MikulaI. MartásekP. KrálV. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer.Biomed. Pharmacother.201911810927810.1016/j.biopha.2019.10927831387004
    [Google Scholar]
  78. PrasadS. TyagiA.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer.Gastroenterol. Res. Pract.2015201511110.1155/2015/14297925838819
    [Google Scholar]
  79. SalariZ. KhosraviA. PourkhandaniE. MolaakbariE. SalarkiaE. KeyhaniA. SharifiI. TavakkoliH. SohbatiS. DabiriS. RenG. Shafie’eiM. The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo.Front. Oncol.202313109842910.3389/fonc.2023.109842936937441
    [Google Scholar]
  80. LuoY. ZhaL. LuoL. ChenX. ZhangQ. GaoC. ZhuangX. YuanS. QiaoT. [6]-Gingerol enhances the cisplatin sensitivity of gastric cancer cells through inhibition of proliferation and invasion via PI 3 K / AKT signaling pathway.Phytother. Res.20193351353136210.1002/ptr.632530811726
    [Google Scholar]
  81. ShanmugamK.R. ShanmugamB. VenkatasubbaiahG. RaviS. ReddyK.S. Recent updates on the bioactive compounds of ginger (Zingiber officinale) on cancer: A study with special emphasis of gingerol and its anticancer potential.Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. ChakrabortiS. SingaporeSpringer202211810.1007/978‑981‑16‑1247‑3_188‑1
    [Google Scholar]
  82. LuoY. ChenX. LuoL. ZhangQ. GaoC. ZhuangX. YuanS. QiaoT. [6]-Gingerol enhances the radiosensitivity of gastric cancer via G2/M phase arrest and apoptosis induction.Oncol. Rep.20183952252226010.3892/or.2018.629229512739
    [Google Scholar]
  83. ChenG.Q. NanY. HuangS.C. NingN. DuY.H. LuD.D. YangY.T. MengF.D. YuanL. Research progress of ginger in the treatment of gastrointestinal tumors.World J. Gastrointest. Oncol.202315111835185110.4251/wjgo.v15.i11.183538077642
    [Google Scholar]
  84. ChenL. HeC. ZhouM. LongJ. LiL. Research progress on the mechanisms of polysaccharides against gastric cancer.Molecules20222718582810.3390/molecules2718582836144560
    [Google Scholar]
  85. HuangX. ChenX. XianY. JiangF. The material sources, pharmacological activities of bamboo polysaccharides and influencing factors: A review.Ind. Crops Prod.202421011803710.1016/j.indcrop.2024.118037
    [Google Scholar]
  86. XiaoZ. LiJ. WangH. ZhangQ. GeQ. MaoJ. ShaR. Hemicellulosic polysaccharides from bamboo leaves promoted by phosphotungstic acids and its attenuation of oxidative stress in HEPG2 cells.Front. Nutr.2022991743210.3389/fnut.2022.91743235769382
    [Google Scholar]
  87. TürkdoğanK.M. KocyigitA. GulerE.M. OzerF.O. Thymoquinone against gastric cancer: A new hope of therapy.Am. J. Gastroenterol.2017112S672S67310.14309/00000434‑201710001‑01234
    [Google Scholar]
  88. FengL.M. WangX.F. HuangQ.X. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway.J. Biosci.201742454755410.1007/s12038‑017‑9708‑329229873
    [Google Scholar]
  89. SheikhniaF. RashidiV. MaghsoudiH. MajidiniaM. Potential anticancer properties and mechanisms of thymoquinone in colorectal cancer.Cancer Cell Int.202323132010.1186/s12935‑023‑03174‑438087345
    [Google Scholar]
  90. Asaduzzaman KhanM. TaniaM. FuS. FuJ. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation.Oncotarget2017831519075191910.18632/oncotarget.1720628881699
    [Google Scholar]
  91. LiZ. ZouJ. CaoD. MaX. Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases.Biomed. Pharmacother.202013011059910.1016/j.biopha.2020.11059933236719
    [Google Scholar]
  92. XuZ. ChenL. XiaoZ. ZhuY. JiangH. JinY. GuC. WuY. WangL. ZhangW. ZuoJ. ZhouD. LuanJ. ShenJ. Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA.Phytomedicine201851586710.1016/j.phymed.2018.05.01230466628
    [Google Scholar]
  93. FangZ. ZhangM. LiuJ. ZhaoX. ZhangY. FangL. Tanshinone IIA: A review of its anticancer effects.Front. Pharmacol.20211161108710.3389/fphar.2020.61108733597880
    [Google Scholar]
  94. SuC.C. Tanshinone IIA inhibits gastric carcinoma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1 expression.Anticancer Res.201434127097711025503137
    [Google Scholar]
  95. ZouK. LiZ. ZhangY. ZhangH. LiB. ZhuW. ShiJ. JiaQ. LiY. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system.Acta Pharmacol. Sin.201738215716710.1038/aps.2016.12527917872
    [Google Scholar]
  96. KouY. TongB. WuW. LiaoX. ZhaoM. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/MTOR signaling pathway in gastric cancer.Front. Pharmacol.20201161625110.3389/fphar.2020.61625133362566
    [Google Scholar]
  97. XiongR.G. HuangS.Y. WuS.X. ZhouD.D. YangZ.J. SaimaitiA. ZhaoC.N. ShangA. ZhangY.J. GanR.Y. LiH.B. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review.Molecules20222714452310.3390/molecules2714452335889396
    [Google Scholar]
  98. LiL.L. PengZ. HuQ. XuL.J. ZouX. HuangD.M. YiP. Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4α.World J. Gastrointest. Oncol.202214484285710.4251/wjgo.v14.i4.84235582103
    [Google Scholar]
  99. ChenH. ShengH. ZhaoY. ZhuG. Piperine inhibits cell proliferation and induces apoptosis of human gastric cancer cells by downregulating phosphatidylinositol 3-kinase (PI3K)/Akt pathway.Med. Sci. Monit.202127e928403e110.12659/MSM.92840333382670
    [Google Scholar]
  100. TharmalingamN. KimS.H. ParkM. WooH.J. KimH.W. YangJ.Y. RheeK.J. KimJ.B. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells.Infect. Agent. Cancer2014914310.1186/1750‑9378‑9‑4325584066
    [Google Scholar]
  101. GuoL. YangY. ShengY. WangJ. RuanS. HanC. Mechanism of piperine in affecting apoptosis and proliferation of gastric cancer cells via ROS-mitochondria-associated signalling pathway.J. Cell. Mol. Med.202125209513952210.1111/jcmm.1689134464498
    [Google Scholar]
  102. BenayadS. WahnouH. El KebbajR. LiagreB. SolV. OudghiriM. SaadE.M. DuvalR.E. LimamiY. The promise of piperine in cancer chemoprevention.Cancers (Basel)20231522548810.3390/cancers1522548838001748
    [Google Scholar]
  103. RamosI.N.F. da SilvaM.F. LopesJ.M.S. CruzJ.N. AlvesF.S. do RegoJ.A.R. CostaM.L. AssumpçãoP.P. Barros BrasilD.S. KhayatA.S. Extraction, characterization, and evaluation of the cytotoxic activity of piperine in its isolated form and in combination with chemotherapeutics against gastric cancer.Molecules20232814558710.3390/molecules2814558737513459
    [Google Scholar]
  104. WangZ. TangX. WuX. YangM. WangW. WangL. TangD. WangD. Cardamonin exerts anti-gastric cancer activity via inhibiting LncRNA-PVT1-STAT3 axis.Biosci. Rep.2019395BSR2019035710.1042/BSR2019035731028131
    [Google Scholar]
  105. RamchandaniS. NazI. DhudhaN. GargM. An overview of the potential anticancer properties of cardamonin.Explor. Target. Antitumor Ther.20201641342610.37349/etat.2020.0002636046386
    [Google Scholar]
  106. LuT. ZhengC. FanZ. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression.Pharm. Biol.20226011011102110.1080/13880209.2022.206982335645356
    [Google Scholar]
  107. LiY. QinY. YangC. ZhangH. LiY. WuB. HuangJ. ZhouX. HuangB. YangK. WuG. Cardamonin induces ROS-mediated G2/M phase arrest and apoptosis through inhibition of NF-κB pathway in nasopharyngeal carcinoma.Cell Death Dis.201788e302410.1038/cddis.2017.40729048425
    [Google Scholar]
  108. ShenX. SiY. WangZ. WangJ. GuoY. ZhangX. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling.Int. J. Mol. Med.201638261962610.3892/ijmm.2016.262527278820
    [Google Scholar]
  109. MirazimiS.M.A. DashtiF. TobeihaM. ShahiniA. JafariR. KhoddamiM. SheidaA.H. EsnaAshariP. AflatoonianA.H. ElikaiiF. ZakeriM.S. HamblinM.R. AghajaniM. BavarsadkarimiM. MirzaeiH. Application of quercetin in the treatment of gastrointestinal cancers.Front. Pharmacol.20221386020910.3389/fphar.2022.86020935462903
    [Google Scholar]
  110. ShahbazM. NaeemH. MomalU. ImranM. AlsagabyS.A. Al AbdulmonemW. WaqarA.B. El-GhorabA.H. GhoneimM.M. AbdelgawadM.A. ShakerM.E. UmarM. HussainM. KumarR. Al JbawiE. Anticancer and apoptosis inducing potential of quercetin against a wide range of human malignancies.Int. J. Food Prop.20232612590262610.1080/10942912.2023.2252619
    [Google Scholar]
  111. LeiC.S. HouY.C. PaiM.H. LinM.T. YehS.L. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies.J. Nutr. Biochem.20185110511310.1016/j.jnutbio.2017.09.01129125991
    [Google Scholar]
  112. VeisiA. AkbariG. MardS.A. BadfarG. ZarezadeV. MirshekarM.A. Role of crocin in several cancer cell lines: An updated review.Iran. J. Basic Med. Sci.202023131210.22038/IJBMS.2019.37821.899532405344
    [Google Scholar]
  113. WuZ. HuiJ. Crocin reverses 1-methyl-3-nitroso-1-nitroguanidine (MNNG)-induced malignant transformation in GES-1 cells through the Nrf2/Hippo signaling pathway.J. Gastrointest. Oncol.20201161242125210.21037/jgo‑20‑40633456997
    [Google Scholar]
  114. LuoY. YuP. ZhaoJ. GuoQ. FanB. DiaoY. JinY. ZhangC. Pathogenesis and anti-proliferation mechanisms of Crocin in human gastric carcinoma cells.Int. J. Clin. Exp. Pathol.202013591292232509062
    [Google Scholar]
  115. NaeimiM. ShafieeM. KermanshahiF. KhorasanchiZ. KhazaeiM. RyzhikovM. AvanA. GorjiN. HassanianS.M. Saffron ( Crocus sativus ) in the treatment of gastrointestinal cancers: Current findings and potential mechanisms of action.J. Cell. Biochem.201912010163301633910.1002/jcb.2912631245875
    [Google Scholar]
  116. Shariat RazaviS.M. Mahmoudzadeh VaziriR. KarimiG. ArabzadehS. KeyvaniV. BehravanJ. KalaliniaF. Crocin increases gastric cancer cells’ sensitivity to doxorubicin.Asian Pac. J. Cancer Prev.20202171959196710.31557/APJCP.2020.21.7.195932711421
    [Google Scholar]
  117. LiA. CaoW. Downregulation of SODD mediates carnosol-induced reduction in cell proliferation in esophageal adenocarcinoma cells.Sci. Rep.20231311058010.1038/s41598‑023‑37796‑537386230
    [Google Scholar]
  118. WangL. ZhangY. LiuK. ChenH. YangR. MaX. KimH.G. BodeA.M. KimD.J. DongZ. Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2.Oncotarget2018976342003421210.18632/oncotarget.2440930344937
    [Google Scholar]
  119. O’NeillE.J. Den HartoghD.J. AziziK. TsianiE. Anticancer properties of carnosol: A summary of in vitro and in vivo evidence.Antioxidants202091096110.3390/antiox910096133049974
    [Google Scholar]
  120. TaoA. FengX. SongZ. XuR. ZhaoY. A study on the mechanism of action of galangal in the treatment of gastric cancer using network pharmacology technology.Processes (Basel)20221010198810.3390/pr10101988
    [Google Scholar]
  121. LiangX. WangP. YangC. HuangF. WuH. ShiH. WuX. Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production.Front. Pharmacol.20211264662810.3389/fphar.2021.64662833981228
    [Google Scholar]
  122. TuliH.S. SakK. AdhikaryS. KaurG. AggarwalD. KaurJ. KumarM. ParasharN.C. ParasharG. SharmaU. JainA. Galangin: A metabolite that suppresses anti-neoplastic activities through modulation of oncogenic targets.Exp. Biol. Med. (Maywood)2022247434535910.1177/1535370221106251034904901
    [Google Scholar]
  123. ZhongY. LiM.Y. HanL. TaiY. CaoS. LiJ. ZhaoH. WangR. LvB. ShanZ. ZuoH.X. PiaoL. JinH.L. XingY. JinX. MaJ. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity.Phytomedicine202311615487710.1016/j.phymed.2023.15487737267692
    [Google Scholar]
  124. UtoT. HouD.X. MorinagaO. ShoyamaY. Molecular mechanisms underlying anti-inflammatory actions of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (wasabia japonica).Adv. Pharmacol. Sci.201220121810.1155/2012/61404622927840
    [Google Scholar]
  125. ParkJ.E. LeeT.H. HamS.L. SubediL. HongS.M. KimS.Y. ChoiS.U. KimC.S. LeeK.R. Anticancer and anti-neuroinflammatory constituents isolated from the roots of Wasabia japonica.Antioxidants202211348210.3390/antiox1103048235326132
    [Google Scholar]
  126. HsuanS.W. ChyauC.C. HungH.Y. ChenJ.H. ChouF.P. The induction of apoptosis and autophagy by Wasabia japonica extract in colon cancer.Eur. J. Nutr.201655249150310.1007/s00394‑015‑0866‑525720497
    [Google Scholar]
  127. SadeghiS. DavoodvandiA. PourhanifehM.H. SharifiN. ArefNezhadR. SahebnasaghR. MoghadamS.A. SahebkarA. MirzaeiH. Anti-cancer effects of cinnamon: Insights into its apoptosis effects.Eur. J. Med. Chem.201917813114010.1016/j.ejmech.2019.05.06731195168
    [Google Scholar]
  128. BegumS.N. RayA.S. RahamanC.H. A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action.Phytomedicine202210715445610.1016/j.phymed.2022.15445636152592
    [Google Scholar]
  129. PadhyI. PaulP. SharmaT. BanerjeeS. MondalA. Molecular mechanisms of action of eugenol in cancer: Recent trends and advancement.Life (Basel)20221211179510.3390/life1211179536362950
    [Google Scholar]
  130. LarasatiY.A. MeiyantoE. Revealing the potency of cinnamon as an anti-cancer and chemopreventive agent.Indon. J. Canc. Chemoprev.2018914710.14499/indonesianjcanchemoprev9iss1pp47‑62
    [Google Scholar]
  131. ParamaD. RanaV. GirisaS. VermaE. DaimaryU.D. ThakurK.K. KumarA. KunnumakkaraA.B. The promising potential of piperlongumine as an emerging therapeutics for cancer.Explor. Target. Antitumor Ther.20212432335410.37349/etat.2021.0004936046754
    [Google Scholar]
  132. ChenD. WeiX. YangK. LiuX. SongY. BaiF. JiangY. GuoY. JhaR.K. Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway.J. Int. Med. Res.20225040300060522109330810.1177/0300060522109330835481419
    [Google Scholar]
  133. ZhangP. ShiL. ZhangT. HongL. HeW. CaoP. ShenX. ZhengP. XiaY. ZouP. Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells.Cell Oncol. (Dordr.)201942684786010.1007/s13402‑019‑00471‑x31493144
    [Google Scholar]
  134. Van CutsemE. BoniC. TaberneroJ. MassutiB. MiddletonG. DaneF. ReichardtP. PimentelF.L. CohnA. FollanaP. ClemensM. ZaniboniA. MoiseyenkoV. HarrisonM. RichardsD.A. PrenenH. PernotS. Ecstein-FraisseE. HitierS. RougierP. Docetaxel plus oxaliplatin with or without fluorouracil or capecitabine in metastatic or locally recurrent gastric cancer: A randomized phase II study.Ann. Oncol.201526114915610.1093/annonc/mdu49625416687
    [Google Scholar]
  135. InnoA. BassoM. CassanoA. BaroneC. A review of docetaxel: Its use in the treatment of gastric cancer.Clin. Med. Insights Ther.20102CMT.S519110.4137/CMT.S5191
    [Google Scholar]
  136. AjaniJ.A. Docetaxel for gastric and esophageal carcinomas.Oncology (Williston Park)2002166Suppl. 6899612108902
    [Google Scholar]
  137. MaedaS. SugiuraT. SaikawaY. KubotaT. OtaniY. KumaiK. KitajimaM. Docetaxel enhances the cytotoxicity of cisplatin to gastric cancer cells by modification of intracellular platinum metabolism.Cancer Sci.200495867968410.1111/j.1349‑7006.2004.tb03329.x15298732
    [Google Scholar]
  138. YangC. DuW. YangD. Inhibition of green tea polyphenol EGCG((−)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/β-catenin signalling pathway.Int. J. Food Sci. Nutr.201667781882710.1080/09637486.2016.119889227338284
    [Google Scholar]
  139. Sharifi-RadM. PezzaniR. RedaelliM. ZorzanM. ImranM. Ahmed KhalilA. SalehiB. SharopovF. ChoW.C. Sharifi-RadJ. Preclinical activities of epigallocatechin gallate in signaling pathways in cancer.Molecules202025346710.3390/molecules2503046731979082
    [Google Scholar]
  140. ZhuF. XuY. PanJ. LiM. ChenF. XieG. Epigallocatechin gallate protects against mnng-induced precancerous lesions of gastric carcinoma in rats via PI3K/Akt/mTOR pathway.Evid. Based Complement. Alternat. Med.2021202111010.1155/2021/884681333628319
    [Google Scholar]
  141. MokraD. JoskovaM. MokryJ. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis.Int. J. Mol. Sci.202224134010.3390/ijms2401034036613784
    [Google Scholar]
  142. ZariA.T. ZariT.A. HakeemK.R. Anticancer properties of eugenol: A review.Molecules20212623740710.3390/molecules2623740734885992
    [Google Scholar]
  143. AbdulrahmanM.D. HamaH.A. Anticancer of genus Syzygium: A systematic review.Explor. Target. Antitumor Ther.20234227329310.37349/etat.2023.0013437205310
    [Google Scholar]
  144. KarimiA. MoradiM.T. HashemiL. AlidadiS. SoltaniA. In vitro anti-proliferative activity of clove extract on human gastric carcinoma.Res. J. Pharmacog.2017444148
    [Google Scholar]
  145. BiY. WangQ. YangY. WangQ. ZhangK. ZhangX. ChoW.C. ShuZ. LiJ. LiuL. SiC. HongF. Establishment of a human gastric cancer xenograft model in immunocompetent mice using the microcarrier-6.BioMed Res. Int.202020201189343410.1155/2020/189343432337226
    [Google Scholar]
  146. GrabarskaA. LuszczkiJ.J. GawelK. Kukula-KochW. JuszczakM. Slawinska-BrychA. AdamczukG. Dmoszynska-GraniczkaM. KoshevaN. RzeskiW. StepulakA. Heterogeneous cellular response of primary and metastatic human gastric adenocarcinoma cell lines to magnoflorine and its additive interaction with docetaxel.Int. J. Mol. Sci.202324211551110.3390/ijms24211551137958494
    [Google Scholar]
  147. ZengM. PiC. LiK. ShengL. ZuoY. YuanJ. ZouY. ZhangX. ZhaoW. LeeR.J. WeiY. ZhaoL. Patient-derived xenograft: A more standard “avatar” model in preclinical studies of gastric cancer.Front. Oncol.20221289856310.3389/fonc.2022.89856335664756
    [Google Scholar]
  148. PuauxA.L. OngL.C. JinY. TehI. HongM. ChowP.K.H. GolayX. AbastadoJ.P. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals.Int. J. Mol. Imaging2011201111210.1155/2011/32153822121481
    [Google Scholar]
  149. KodamaM. MurakamiK. SatoR. OkimotoT. NishizonoA. FujiokaT. Helicobacter pylori-infected animal models are extremely suitable for the investigation of gastric carcinogenesis.World J. Gastroenterol.200511457063707110.3748/wjg.v11.i45.706316437649
    [Google Scholar]
  150. JiangX. ZhuX. HuangW. XuH. ZhaoZ. LiS. LiS. CaiJ. CaoJ. Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice.Int. Immunopharmacol.20174813514510.1016/j.intimp.2017.05.00428501767
    [Google Scholar]
  151. WangR. LeeY.G. DhandapaniS. BaekN.I. KimK.P. ChoY.E. XuX. KimY.J. 8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma.Pharmacol. Res.202318710661010.1016/j.phrs.2022.10661036521573
    [Google Scholar]
  152. LiG. ZhangY. XieE. YangX. WangH. WangX. LiW. SongZ. MuQ. ZhanW. WuQ. HuangJ. ChenY. ZhangY. WangF. MinJ. Functional characterization of a potent anti-tumor polysaccharide in a mouse model of gastric cancer.Life Sci.2019219111910.1016/j.lfs.2019.01.00330611785
    [Google Scholar]
  153. LeiX. LvX. LiuM. YangZ. JiM. GuoX. DongW. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo.Biochem. Biophys. Res. Commun.2012417286486810.1016/j.bbrc.2011.12.06322206670
    [Google Scholar]
  154. WuW. CaoY. ChengL. WangL. YuQ. PengH. ZhouF. LiuH. ZhangQ. Cryptotanshinone from Salvia miltiorrhiza inhibits the growth of tumors and enhances the efficacy of chemotherapy in a gastric cancer mouse model.Nat. Prod. Commun.202217101934578X22113087410.1177/1934578X221130874
    [Google Scholar]
  155. ZhangQ. WangX. CaoS. SunY. HeX. JiangB. YuY. DuanJ. QiuF. KangN. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways.Biomed. Pharmacother.202012811024510.1016/j.biopha.2020.11024532454290
    [Google Scholar]
  156. HouG. YuanX. LiY. HouG. LiuX. Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway.Invest. New Drugs202038232933910.1007/s10637‑019‑00781‑931102118
    [Google Scholar]
  157. LeeH. LeeS. ShinY. ChoM. KangH. ChoH. Anti- cancer effect of quercetin in xenograft models with EBV-associated human gastric carcinoma.Molecules20162110128610.3390/molecules2110128627681719
    [Google Scholar]
  158. WangL. XueJ. WeiF. ZhengG. ChengM. LiuS. Chemopreventive effect of galangin against benzo(a)pyrene-induced stomach tumorigenesis through modulating aryl hydrocarbon receptor in Swiss albino mice.Hum. Exp. Toxicol.20214091434144410.1177/096032712199797933663268
    [Google Scholar]
  159. MasudaS. MasudaH. ShimamuraY. SugiyamaC. TakabayashiF. Improvement effects of Wasabi (Wasabia Japonica) leaves and allyl isothiocyanate on stomach lesions of Mongolian gerbils infected with Helicobacter pylori.Nat. Prod. Commun.20171241934578X170120043110.1177/1934578X170120043130520603
    [Google Scholar]
  160. ManikandanP. VinothiniG. Vidya PriyadarsiniR. PrathibaD. NaginiS. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG.Invest. New Drugs201129111011710.1007/s10637‑009‑9345‑219851710
    [Google Scholar]
  161. DuanC. ZhangB. DengC. CaoY. ZhouF. WuL. ChenM. ShenS. XuG. ZhangS. DuanG. YanH. ZouX. Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo.Tumour Biol.2016378107931080410.1007/s13277‑016‑4792‑926874726
    [Google Scholar]
  162. WuH. XinY. XiaoY. ZhaoJ. Low-dose docetaxel combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts.Cancer Biother. Radiopharm.201227320420910.1089/cbr.2011.110322283637
    [Google Scholar]
  163. WuH. XinY. XuC. XiaoY. Capecitabine combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts.Exp. Ther. Med.20123465065410.3892/etm.2012.44822969946
    [Google Scholar]
  164. ManikandanP. MuruganR.S. PriyadarsiniR.V. VinothiniG. NaginiS. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG.Life Sci.20108625-2693694110.1016/j.lfs.2010.04.01020434464
    [Google Scholar]
  165. LiW.Q. ZhangJ.Y. MaJ.L. LiZ.X. ZhangL. ZhangY. GuoY. ZhouT. LiJ.Y. ShenL. LiuW.D. HanZ.X. BlotW.J. GailM.H. PanK.F. YouW.C. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: Follow-up of a randomized intervention trial.BMJ2019366l501610.1136/bmj.l501631511230
    [Google Scholar]
  166. ChaiworramukkulA. SeetalaromK. SaichamchanS. PrasongsookN. A double-blind, placebo-controlled randomized phase iia study: Evaluating the effect of curcumin for treatment of cancer anorexia–cachexia syndrome in solid cancer patients.Asian Pac. J. Cancer Prev.20222372333234010.31557/APJCP.2022.23.7.233335901339
    [Google Scholar]
  167. SongN. ZhaoY. XuH. WangJ. LaiZ. YuX. WuY. Clinical observation of cancer-related fatigue treated with ginger-isolated moxibustion in the patients with gastric cancer.World J. Acupunct. Moxibustion20213111510.1016/j.wjam.2020.11.014
    [Google Scholar]
  168. YarT. SalemE.M. BamosaA. Al-QuorainA. YasawyM. AlsulaimanR. RandhawaM. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia.Saudi J. Gastroenterol.201016320721410.4103/1319‑3767.6520120616418
    [Google Scholar]
  169. ZhangD. KeL. NiZ. ChenY. ZhangL.H. ZhuS.H. LiC.J. ShangL. LiangJ. ShiY.Q. Berberine containing quadruple therapy for initial Helicobacter pylori eradication.Medicine (Baltimore)20179632e769710.1097/MD.000000000000769728796053
    [Google Scholar]
  170. HajiaghamohammadiA.A. ZargarA. OveisiS. SamimiR. ReisianS. To evaluate of the effect of adding licorice to the standard treatment regimen of Helicobacter pylori.Braz. J. Infect. Dis.201620653453810.1016/j.bjid.2016.07.01527614124
    [Google Scholar]
  171. ZhangH.-G Exosomal compositions and methods for the treatment of disease. US Patent 20230355525A12024
  172. ChengC.-T. HsiehC.-Y. LinC.-F. LinK.-Y. SuC.-M. LauP.Y. Nanoparticle complex with defined sizes. US Patent 20230263743A12024
  173. Ho-yongS. Yong-kyungK. Function-enhanced fermented ginger using lactic acid bacteria and making method thereof. KR Patent 102573406B12024
  174. AlugupalliA. AlugupalliK. Cannabinoid compositions and methods of use thereof for immune modulation. US Patent 20220193003A12024
  175. AshktorabH. Saffron as anti-inflammatory agent in treating inflammatory bowel disease. WO Patent 2022109092A12024
  176. DattR. KumarR. PandeyS. ShrivastavaP. Multifunctional formulation composed of natural ingredients and its preparation / manufacturing method. ES Patent 2885052T32024
  177. KovarikJ.E. Method for reducing the likelihood of developing cancer in an individual human being. US Patent 10940169B22024
  178. DrennanT. Nano-penetrative cannabinoid oil blends and compositions and methods of formulation thereof. US Patent 20210330638A12024
  179. ProtterA.A. LumP.P. LuedtkeG.R. Derivatives of piperlongumine and uses thereof. US Patent 20200377510A12024
/content/journals/cpps/10.2174/0113892037353177250409095158
Loading
/content/journals/cpps/10.2174/0113892037353177250409095158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test