Skip to content
2000
image of Herbs and their Active Constituents for Gastric Cancer and Related Problems - Preclinical and Clinical Studies

Abstract

Gastric cancer remains one of the leading cancer-related deaths worldwide. Despite the research advances, many challenges persist because the diseases are usually diagnosed at an advanced stage and have a complex treatment protocol. Conventional treatments such as chemotherapy, radiation, and surgery pose several side effects and low efficiency. The growing worldwide interest in herbal products, particularly, their bioactive ingredients, presents a promising prospect for auxiliary or alternative therapies for gastric cancer. experiments show that the given compounds increase the effectiveness and decrease the cumulative harmful impact of conventional anticancer treatments, which may have additive effects. Furthermore, clinical trials have revealed that phytoconstituents have possible anti-gastric cancer properties in humans. Nonetheless, these encouraging preclinical observations have not progressed into clinical practice all that much due to the absence of adequately powered Phase III trials for GC. Therefore, this review stresses the need for well-controlled human interventions to confirm the effectiveness and safety of herb-based therapies. In the long run, the incorporation of these herbal products could present a new approach to constructing the gastric cancer prevention and treatment outlook while minimizing the side effects of conventional treatments and opening up arenas of functional foods and pharmaceuticals.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037353177250409095158
2025-05-06
2025-09-22
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Gastric Cancer Treatment (PDQ®). PDQ Cancer Information Summaries Bethesda (MD) National Cancer Institute (US) 2023 1 6 26389328
    [Google Scholar]
  3. Sexton R.E. Hallak M.N.A. Uddin M.H. Diab M. Azmi A.S. Gastric cancer heterogeneity and clinical outcomes. Technol. Cancer Res. Treat. 2020 19 1533033820935477 10.1177/1533033820935477 32799763
    [Google Scholar]
  4. Sohn B.H. Hwang J.E. Jang H.J. Lee H.S. Oh S.C. Shim J.J. Lee K.W. Kim E.H. Yim S.Y. Lee S.H. Cheong J.H. Jeong W. Cho J.Y. Kim J. Chae J. Lee J. Kang W.K. Kim S. Noh S.H. Ajani J.A. Lee J.S. Clinical significance of four molecular subtypes of gastric cancer identified by The Cancer Genome Atlas project. Clin. Cancer Res. 2017 23 15 4441 4449 10.1158/1078‑0432.CCR‑16‑2211 28747339
    [Google Scholar]
  5. Li L. Wang X. Identification of gastric cancer subtypes based on pathway clustering. NPJ Precis. Oncol. 2021 5 1 46 10.1038/s41698‑021‑00186‑z 34079012
    [Google Scholar]
  6. Kim J.H. Lee J. Choi I.J. Kim Y.I. Kim J. Dietary patterns and gastric cancer risk in a Korean population: A case–control study. Eur. J. Nutr. 2021 60 1 389 397 10.1007/s00394‑020‑02253‑w 32350654
    [Google Scholar]
  7. Salvatori S. Marafini I. Laudisi F. Monteleone G. Stolfi C. Helicobacter pylori and gastric cancer: Pathogenetic mechanisms. Int. J. Mol. Sci. 2023 24 3 2895 10.3390/ijms24032895 36769214
    [Google Scholar]
  8. Mohammadzadeh R. Menbari S. Pishdadian A. Farsiani H. Helicobacter pylori virulence factors: Subversion of host immune system and development of various clinical outcomes. Expert Rev. Mol. Med. 2023 25 e23 10.1017/erm.2023.17 37309681
    [Google Scholar]
  9. Birkett N. Al-Zoughool M. Bird M. Baan R.A. Zielinski J. Krewski D. Overview of biological mechanisms of human carcinogens. J. Toxicol. Environ. Health B Crit. Rev. 2019 22 7-8 288 359 10.1080/10937404.2019.1643539 31631808
    [Google Scholar]
  10. Kim J.W. Kim J.H. Lee Y.J. The role of adipokines in tumor progression and its association with obesity. Biomedicines 2024 12 1 97 10.3390/biomedicines12010097 38255203
    [Google Scholar]
  11. Ko K.P. Risk factors of gastric cancer and lifestyle modification for prevention. J. Gastric Cancer 2024 24 1 99 107 10.5230/jgc.2024.24.e10 38225769
    [Google Scholar]
  12. Hansford S. Kaurah P. Li-Chang H. Woo M. Senz J. Pinheiro H. Schrader K.A. Schaeffer D.F. Shumansky K. Zogopoulos G. Santos T.A. Claro I. Carvalho J. Nielsen C. Padilla S. Lum A. Talhouk A. Baker-Lange K. Richardson S. Lewis I. Lindor N.M. Pennell E. MacMillan A. Fernandez B. Keller G. Lynch H. Shah S.P. Guilford P. Gallinger S. Corso G. Roviello F. Caldas C. Oliveira C. Pharoah P.D.P. Huntsman D.G. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol. 2015 1 1 23 32 10.1001/jamaoncol.2014.168 26182300
    [Google Scholar]
  13. Lecuit T. Yap A.S. E-cadherin junctions as active mechanical integrators in tissue dynamics. Nat. Cell Biol. 2015 17 5 533 539 10.1038/ncb3136 25925582
    [Google Scholar]
  14. Kang M.Y. Jung J. Koo J.W. Kim I. Kim H.R. Myong J.P. Increased risk of gastric cancer in workers with occupational dust exposure. Korean J. Intern. Med. (Korean. Assoc. Intern. Med.) 2021 36 Suppl. 1 S18 S26 10.3904/kjim.2019.421 32375207
    [Google Scholar]
  15. Baj J. Forma A. Sitarz M. Portincasa P. Garruti G. Krasowska D. Maciejewski R. Helicobacter pylori virulence factors—mechanisms of bacterial pathogenicity in the gastric microenvironment. Cells 2020 10 1 27 10.3390/cells10010027 33375694
    [Google Scholar]
  16. Graziano F. Fischer N.W. Bagaloni I. Di Bartolomeo M. Lonardi S. Vincenzi B. Perrone G. Fornaro L. Ongaro E. Aprile G. Bisonni R. Prisciandaro M. Malkin D. Gariépy J. Fassan M. Loupakis F. Sarti D. Del Prete M. Catalano V. Alessandroni P. Magnani M. Ruzzo A. Tp53 mutation analysis in gastric cancer and clinical outcomes of patients with metastatic disease treated with ramucirumab/paclitaxel or standard chemotherapy. Cancers (Basel) 2020 12 8 2049 10.3390/cancers12082049 32722340
    [Google Scholar]
  17. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  18. Heit C. Dong H. Chen Y. Shah Y.M. Thompson D.C. Vasiliou V. Transgenic mouse models for alcohol metabolism, toxicity, and cancer. Adv. Exp. Med. Biol. 2015 815 375 387 10.1007/978‑3‑319‑09614‑8_22 25427919
    [Google Scholar]
  19. Hallinan J.T.P.D. Venkatesh S.K. Gastric carcinoma: Imaging diagnosis, staging and assessment of treatment response. Cancer Imaging 2013 13 2 212 227 10.1102/1470‑7330.2013.0023 23722535
    [Google Scholar]
  20. Zeng Z. Yang B. Liao Z. Biomarkers in immunotherapy-based precision treatments of digestive system tumors. Front. Oncol. 2021 11 650481 10.3389/fonc.2021.650481 33777812
    [Google Scholar]
  21. Joshi S.S. Badgwell B.D. Current treatment and recent progress in gastric cancer. CA Cancer J. Clin. 2021 71 3 264 279 10.3322/caac.21657 33592120
    [Google Scholar]
  22. Wakahara T. Ueno N. Maeda T. Kanemitsu K. Yoshikawa T. Tsuchida S. Toyokawa A. Impact of gastric cancer surgery in elderly patients. Oncology 2018 94 2 79 84 10.1159/000481404 29045948
    [Google Scholar]
  23. Duarte Mendes A. Vicente R. Fernandes M. Silva M. Hyperthermic intraperitoneal chemotherapy in gastric cancer: A clinical case involving long-term survival. Cureus 2023 15 9 e45302 10.7759/cureus.45302 37846258
    [Google Scholar]
  24. Cashin P.H. Graf W. Sequential postoperative intraperitoneal chemotherapy for colorectal cancer with peritoneal metastases: A narrative review. J. Gastrointest. Oncol. 2021 12 S1 Suppl. 1 S131 S135 10.21037/jgo‑20‑137 33968433
    [Google Scholar]
  25. Goodman M.D. McPartland S. Detelich D. Saif M.W. Chemotherapy for intraperitoneal use: A review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy. J. Gastrointest. Oncol. 2016 7 1 45 57 10.3978/j.issn.2078‑6891.2015.111 26941983
    [Google Scholar]
  26. Sexton R.E. Al Hallak M.N. Diab M. Azmi A.S. Gastric cancer: A comprehensive review of current and future treatment strategies. Cancer Metastasis Rev. 2020 39 4 1179 1203 10.1007/s10555‑020‑09925‑3 32894370
    [Google Scholar]
  27. Waddingham W. Nieuwenburg S.A.V. Carlson S. Rodriguez-Justo M. Spaander M. Kuipers E.J. Jansen M. Graham D.G. Banks M. Recent advances in the detection and management of early gastric cancer and its precursors. Frontline Gastroenterol. 2021 12 4 322 331 10.1136/flgastro‑2018‑101089 34249318
    [Google Scholar]
  28. Zhang T. Chen W. Jiang X. Liu L. Wei K. Du H. Wang H. Li J. Anticancer effects and underlying mechanism of Colchicine on human gastric cancer cell lines in vitro and in vivo. Biosci. Rep. 2019 39 1 BSR20181802 10.1042/BSR20181802 30429232
    [Google Scholar]
  29. Song Z. Wu Y. Yang J. Yang D. Fang X. Progress in the treatment of advanced gastric cancer. Tumour Biol. 2017 39 7 10.1177/1010428317714626 28671042
    [Google Scholar]
  30. Khan T. Ali M. Khan A. Nisar P. Jan S.A. Afridi S. Shinwari Z.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects. Biomolecules 2019 10 1 47 10.3390/biom10010047 31892257
    [Google Scholar]
  31. Rajabi S. Maresca M. Yumashev A.V. Choopani R. Hajimehdipoor H. The most competent plant-derived natural products for targeting apoptosis in cancer therapy. Biomolecules 2021 11 4 534 10.3390/biom11040534 33916780
    [Google Scholar]
  32. Choudhari A.S. Mandave P.C. Deshpande M. Ranjekar P. Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol. 2020 10 1614 10.3389/fphar.2019.01614 32116665
    [Google Scholar]
  33. Ning F.L. Lyu J. Pei J.P. Gu W.J. Zhang N.N. Cao S.Y. Zeng Y.J. Abe M. Nishiyama K. Zhang C.D. The burden and trend of gastric cancer and possible risk factors in five Asian countries from 1990 to 2019. Sci. Rep. 2022 12 1 5980 10.1038/s41598‑022‑10014‑4 35395871
    [Google Scholar]
  34. Akbari A. Ashtari S. Tabaiean S.P. Mehrdad-Majd H. Farsi F. Shojaee S. Agah S. Overview of epidemiological characteristics, clinical features, and risk factors of gastric cancer in Asia-Pacific region. Asia Pac. J. Clin. Oncol. 2022 18 6 493 505 10.1111/ajco.13654 35073453
    [Google Scholar]
  35. Thrift A.P. El-Serag H.B. Burden of gastric cancer. Clin. Gastroenterol. Hepatol. 2020 18 3 534 542 10.1016/j.cgh.2019.07.045 31362118
    [Google Scholar]
  36. Karimi P. Islami F. Anandasabapathy S. Freedman N.D. Kamangar F. Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol. Biomarkers Prev. 2014 23 5 700 713 10.1158/1055‑9965.EPI‑13‑1057 24618998
    [Google Scholar]
  37. Asombang A.W. Rahman R. Ibdah J.A. Gastric cancer in Africa: Current management and outcomes. World J. Gastroenterol. 2014 20 14 3875 3879 10.3748/wjg.v20.i14.3875 24833842
    [Google Scholar]
  38. Correa P. Gastric cancer. Gastroenterol. Clin. North Am. 2013 42 2 211 217 10.1016/j.gtc.2013.01.002 23639637
    [Google Scholar]
  39. Oh S.Y. Lee J.H. Lee H.J. Kim T.H. Huh Y.J. Ahn H.S. Suh Y.S. Kong S.H. Kim G.H. Ahn S.J. Kim S.H. Choi Y. Yang H.K. Natural history of gastric cancer: Observational study of gastric cancer patients not treated during follow-up. Ann. Surg. Oncol. 2019 26 9 2905 2911 10.1245/s10434‑019‑07455‑z 31190210
    [Google Scholar]
  40. Shrikhande S.V. Sirohi B. Barreto S.G. Chacko R.T. Parikh P.M. Pautu J. Arya S. Patil P. Chilukuri S.C. Ganesh B. Kaur T. Shukla D. Rath G.S. Indian Council of Medical Research consensus document for the management of gastric cancer. Indian J. Med. Paediatr. Oncol. 2014 35 4 239 243 10.4103/0971‑5851.144970 25538398
    [Google Scholar]
  41. Danwang C. Bigna J.J. Epidemiology of gastric cancer in Africa: A systematic review and meta-analysis protocol. Syst. Rev. 2019 8 1 276 10.1186/s13643‑019‑1214‑2 31722746
    [Google Scholar]
  42. Elseweidy M.M. Brief review on the causes, diagnosis and therapeutic treatment of gastritis disease. Altern. Integr. Med. 2017 6 1 10.4172/2327‑5162.1000231
    [Google Scholar]
  43. Kumar S. Patel G.K. Ghoshal U.C. Helicobacter pylori-induced inflammation: Possible factors modulating the risk of gastric cancer. Pathogens 2021 10 9 1099 10.3390/pathogens10091099 34578132
    [Google Scholar]
  44. Lahner E. Esposito G. Galli G. Annibale B. Atrophic gastritis and pre-malignant gastric lesions. Transl. Gastrointest. Canc. 2015 4 4 272 281 10.3978/j.issn.2224‑4778.2015.05.05
    [Google Scholar]
  45. Sun L. Jin X. Huang L. Zhao J. Jin H. Chen M. Zhang C. Lu B. Risk of progression in patients with chronic atrophic gastritis: A retrospective study. Front. Oncol. 2022 12 942091 10.3389/fonc.2022.942091 35978825
    [Google Scholar]
  46. Piscione M. Mazzone M. Di Marcantonio M.C. Muraro R. Mincione G. Eradication of Helicobacter pylori and gastric cancer: A controversial relationship. Front. Microbiol. 2021 12 630852 10.3389/fmicb.2021.630852 33613500
    [Google Scholar]
  47. Rakici H. Uyanik E. Rakici I.M. Polat H.B. Akdogan R.A. Aydin G. Ayvaz M.A. Bedir R. Gastric intestinal metaplasia. Niger. J. Clin. Pract. 2022 25 3 315 324 10.4103/njcp.njcp_1548_21 35295055
    [Google Scholar]
  48. Jencks D.S. Adam J.D. Borum M.L. Koh J.M. Stephen S. Doman D.B. Overview of current concepts in gastric intestinal metaplasia and gastric cancer. Gastroenterol. Hepatol. (N. Y.) 2018 14 2 92 101 29606921
    [Google Scholar]
  49. Riera K.M. Jang B. Min J. Roland J.T. Yang Q. Fesmire W.T. Camilleri-Broet S. Ferri L. Kim W.H. Choi E. Goldenring J.R. Trop2 is upregulated in the transition to dysplasia in the metaplastic gastric mucosa. J. Pathol. 2020 251 3 336 347 10.1002/path.5469 32432338
    [Google Scholar]
  50. Goral V. Etiopathogenesis of gastric cancer. Asian Pac. J. Cancer Prev. 2016 17 6 2745 2750 27356684
    [Google Scholar]
  51. Leiting J.L. Grotz T.E. Advancements and challenges in treating advanced gastric cancer in the West. World J. Gastrointest. Oncol. 2019 11 9 652 664 10.4251/wjgo.v11.i9.652 31558971
    [Google Scholar]
  52. Miao Z.F. Chen H. Wang Z.N. Ji J.F. Liang H. Xu H.M. Wang J. Progress and remaining challenges in comprehensive gastric cancer treatment. Holis. Integra. Oncol. 2022 1 1 4 10.1007/s44178‑022‑00002‑z
    [Google Scholar]
  53. Farrell C. Brearley S.G. Pilling M. Molassiotis A. The impact of chemotherapy-related nausea on patients’ nutritional status, psychological distress and quality of life. Support. Care Cancer 2013 21 1 59 66 10.1007/s00520‑012‑1493‑9 22610269
    [Google Scholar]
  54. Majeed H. Gupta V. Adverse effects of radiation therapy. StatPearls. Treasure Island (FL) StatPearls Publishing 2020 1 6 33085406
    [Google Scholar]
  55. Fico V. Altieri G. Di Grezia M. Bianchi V. Chiarello M.M. Pepe G. Tropeano G. Brisinda G. Surgical complications of oncological treatments: A narrative review. World J. Gastrointest. Surg. 2023 15 6 1056 1067 10.4240/wjgs.v15.i6.1056 37405101
    [Google Scholar]
  56. Ali M. Wani S.U.D. Salahuddin M. S N M. K M. Dey T. Zargar M.I. Singh J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023 9 2 e13684 10.1016/j.heliyon.2023.e13684 36865478
    [Google Scholar]
  57. Kim S.D. Kim J.H. Kim D.H. Park J.H. Gong Y. Sun C. Yoo H.S. Park S.J. Comprehensive evaluation of traditional herbal medicine combined with adjuvant chemotherapy on post-surgical gastric cancer: A systematic review and meta-analysis. Integr. Cancer Ther. 2024 23 15347354231226256 10.1177/15347354231226256 38281123
    [Google Scholar]
  58. Tan Y. Wang H. Xu B. Zhang X. Zhu G. Ge Y. Lu T. Gao R. Li J. Chinese herbal medicine combined with oxaliplatin-based chemotherapy for advanced gastric cancer: A systematic review and meta-analysis of contributions of specific medicinal materials to tumor response. Front. Pharmacol. 2022 13 977708 10.3389/fphar.2022.977708 36091754
    [Google Scholar]
  59. Zhang Q.Y. Wang F.X. Jia K.K. Kong L.D. Natural product interventions for chemotherapy and radiotherapy-induced side effects. Front. Pharmacol. 2018 9 1253 10.3389/fphar.2018.01253 30459615
    [Google Scholar]
  60. Hoffman R.D. Li C.Y. He K. Wu X. He B.C. He T.C. Gao J.L. Chinese herbal medicine and its regulatory effects on tumor related T cells. Front. Pharmacol. 2020 11 492 10.3389/fphar.2020.00492 32372963
    [Google Scholar]
  61. Hassen G. Belete G. Carrera K.G. Iriowen R.O. Araya H. Alemu T. Solomon N. Bam D.S. Nicola S.M. Araya M.E. Debele T. Zouetr M. Jain N. Clinical implications of herbal supplements in conventional medical practice: A us perspective. Cureus 2022 14 7 e26893 10.7759/cureus.26893 35978741
    [Google Scholar]
  62. Choi J. Lee J. Kim K. Choi H.K. Lee S.A. Lee H.J. Effects of ginger intake on chemotherapy-induced nausea and vomiting: A systematic review of randomized clinical trials. Nutrients 2022 14 23 4982 10.3390/nu14234982 36501010
    [Google Scholar]
  63. Gupta Shankar E. Gupta S. Chamomile: A herbal medicine of the past with a bright future (Review). Mol. Med. Rep. 2010 3 6 895 901 10.3892/mmr.2010.377 21132119
    [Google Scholar]
  64. Mao Q.Q. Xu X.Y. Shang A. Gan R.Y. Wu D.T. Atanasov A.G. Li H.B. Phytochemicals for the prevention and treatment of gastric cancer: Effects and mechanisms. Int. J. Mol. Sci. 2020 21 2 570 10.3390/ijms21020570 31963129
    [Google Scholar]
  65. Luo R. Fang D. Hang H. Tang Z. The mechanism in gastric cancer chemoprevention by Allicin. Anticancer. Agents Med. Chem. 2016 16 7 802 809 10.2174/1871520616666151111115443 26555611
    [Google Scholar]
  66. Sarvizadeh M. Hasanpour O. Naderi Ghale-Noie Z. Mollazadeh S. Rezaei M. Pourghadamyari H. Masoud Khooy M. Aschner M. Khan H. Rezaei N. Shojaie L. Mirzaei H. Allicin and digestive system cancers: From chemical structure to its therapeutic opportunities. Front. Oncol. 2021 11 650256 10.3389/fonc.2021.650256 33987085
    [Google Scholar]
  67. Zhou Y. Li X. Luo W. Zhu J. Zhao J. Wang M. Sang L. Chang B. Wang B. Allicin in digestive system cancer: From biological effects to clinical treatment. Front. Pharmacol. 2022 13 903259 10.3389/fphar.2022.903259 35770084
    [Google Scholar]
  68. Pandey P. Khan F. Alshammari N. Saeed A. Aqil F. Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front. Pharmacol. 2023 14 1154034 10.3389/fphar.2023.1154034 37021043
    [Google Scholar]
  69. Tomko A.M. Whynot E.G. Ellis L.D. Dupré D.J. Anti-cancer potential of cannabinoids, terpenes, and flavonoids present in cannabis. Cancers (Basel) 2020 12 7 1985 10.3390/cancers12071985 32708138
    [Google Scholar]
  70. Zhang X. Qin Y. Pan Z. Li M. Liu X. Chen X. Qu G. Zhou L. Xu M. Zheng Q. Li D. Cannabidiol induces cell cycle arrest and cell apoptosis in human gastric cancer SGC-7901 cells. Biomolecules 2019 9 8 302 10.3390/biom9080302 31349651
    [Google Scholar]
  71. Jeong S. Jo M.J. Yun H.K. Kim D.Y. Kim B.R. Kim J.L. Park S.H. Na Y.J. Jeong Y.A. Kim B.G. Ashktorab H. Smoot D.T. Heo J.Y. Han J. Il Lee S. Do Kim H. Kim D.H. Oh S.C. Lee D.H. Cannabidiol promotes apoptosis via regulation of XIAP/Smac in gastric cancer. Cell Death Dis. 2019 10 11 846 10.1038/s41419‑019‑2001‑7 31699976
    [Google Scholar]
  72. Olivas-Aguirre M. Torres-López L. Villatoro-Gómez K. Perez-Tapia S.M. Pottosin I. Dobrovinskaya O. Cannabidiol on the path from the lab to the cancer patient: Opportunities and challenges. Pharmaceuticals (Basel) 2022 15 3 366 10.3390/ph15030366 35337163
    [Google Scholar]
  73. Imran M. Saeed F. Alsagaby S.A. Imran A. Ahmad I. El Ghorab A.H. Abdelgawad M.A. Qaisrani T.B. Mehmood T. Umar M. Mumtaz M.A. Sajid A. Manzoor Q. Hussain M. Al Abdulmonem W. Al Jbawi E. Curcumin: Recent updates on gastrointestinal cancers. CYTA J. Food 2023 21 1 502 513 10.1080/19476337.2023.2245009
    [Google Scholar]
  74. Hassanalilou T. Ghavamzadeh S. Khalili L. Curcumin and gastric cancer: A review on mechanisms of action. J. Gastrointest. Canc. 2019 50 2 185 192 10.1007/s12029‑018‑00186‑6 30725357
    [Google Scholar]
  75. Zhang W. Cui N. Ye J. Yang B. Sun Y. Kuang H. Curcumin’s prevention of inflammation-driven early gastric cancer and its molecular mechanism. Chin. Herb. Med. 2022 14 2 244 253 10.1016/j.chmed.2021.11.003 36117672
    [Google Scholar]
  76. Zhou S. Yao D. Guo L. Teng L. Curcumin suppresses gastric cancer by inhibiting gastrin-mediated acid secretion. FEBS Open Bio 2017 7 8 1078 1084 10.1002/2211‑5463.12237 28781948
    [Google Scholar]
  77. Jakubek M. Kejík Z. Kaplánek R. Hromádka R. Šandriková V. Sýkora D. Antonyová V. Urban M. Dytrych P. Mikula I. Martásek P. Král V. Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomed. Pharmacother. 2019 118 109278 10.1016/j.biopha.2019.109278 31387004
    [Google Scholar]
  78. Prasad S. Tyagi A.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract. 2015 2015 1 11 10.1155/2015/142979 25838819
    [Google Scholar]
  79. Salari Z. Khosravi A. Pourkhandani E. Molaakbari E. Salarkia E. Keyhani A. Sharifi I. Tavakkoli H. Sohbati S. Dabiri S. Ren G. Shafie’ei M. The inhibitory effect of 6-gingerol and cisplatin on ovarian cancer and antitumor activity: In silico, in vitro, and in vivo. Front. Oncol. 2023 13 1098429 10.3389/fonc.2023.1098429 36937441
    [Google Scholar]
  80. Luo Y. Zha L. Luo L. Chen X. Zhang Q. Gao C. Zhuang X. Yuan S. Qiao T. [6]-Gingerol enhances the cisplatin sensitivity of gastric cancer cells through inhibition of proliferation and invasion via PI 3 K / AKT signaling pathway. Phytother. Res. 2019 33 5 1353 1362 10.1002/ptr.6325 30811726
    [Google Scholar]
  81. Shanmugam K.R. Shanmugam B. Venkatasubbaiah G. Ravi S. Reddy K.S. Recent updates on the bioactive compounds of ginger (Zingiber officinale) on cancer: A study with special emphasis of gingerol and its anticancer potential. Handbook of Oxidative Stress in Cancer: Therapeutic Aspects. Chakraborti S. Singapore Springer 2022 1 18 10.1007/978‑981‑16‑1247‑3_188‑1
    [Google Scholar]
  82. Luo Y. Chen X. Luo L. Zhang Q. Gao C. Zhuang X. Yuan S. Qiao T. [6]-Gingerol enhances the radiosensitivity of gastric cancer via G2/M phase arrest and apoptosis induction. Oncol. Rep. 2018 39 5 2252 2260 10.3892/or.2018.6292 29512739
    [Google Scholar]
  83. Chen G.Q. Nan Y. Huang S.C. Ning N. Du Y.H. Lu D.D. Yang Y.T. Meng F.D. Yuan L. Research progress of ginger in the treatment of gastrointestinal tumors. World J. Gastrointest. Oncol. 2023 15 11 1835 1851 10.4251/wjgo.v15.i11.1835 38077642
    [Google Scholar]
  84. Chen L. He C. Zhou M. Long J. Li L. Research progress on the mechanisms of polysaccharides against gastric cancer. Molecules 2022 27 18 5828 10.3390/molecules27185828 36144560
    [Google Scholar]
  85. Huang X. Chen X. Xian Y. Jiang F. The material sources, pharmacological activities of bamboo polysaccharides and influencing factors: A review. Ind. Crops Prod. 2024 210 118037 10.1016/j.indcrop.2024.118037
    [Google Scholar]
  86. Xiao Z. Li J. Wang H. Zhang Q. Ge Q. Mao J. Sha R. Hemicellulosic polysaccharides from bamboo leaves promoted by phosphotungstic acids and its attenuation of oxidative stress in HEPG2 cells. Front. Nutr. 2022 9 917432 10.3389/fnut.2022.917432 35769382
    [Google Scholar]
  87. Türkdoğan K.M. Kocyigit A. Guler E.M. Ozer F.O. Thymoquinone against gastric cancer: A new hope of therapy. Am. J. Gastroenterol. 2017 112 S672 S673 10.14309/00000434‑201710001‑01234
    [Google Scholar]
  88. Feng L.M. Wang X.F. Huang Q.X. Thymoquinone induces cytotoxicity and reprogramming of EMT in gastric cancer cells by targeting PI3K/Akt/mTOR pathway. J. Biosci. 2017 42 4 547 554 10.1007/s12038‑017‑9708‑3 29229873
    [Google Scholar]
  89. Sheikhnia F. Rashidi V. Maghsoudi H. Majidinia M. Potential anticancer properties and mechanisms of thymoquinone in colorectal cancer. Cancer Cell Int. 2023 23 1 320 10.1186/s12935‑023‑03174‑4 38087345
    [Google Scholar]
  90. Asaduzzaman Khan M. Tania M. Fu S. Fu J. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget 2017 8 31 51907 51919 10.18632/oncotarget.17206 28881699
    [Google Scholar]
  91. Li Z. Zou J. Cao D. Ma X. Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed. Pharmacother. 2020 130 110599 10.1016/j.biopha.2020.110599 33236719
    [Google Scholar]
  92. Xu Z. Chen L. Xiao Z. Zhu Y. Jiang H. Jin Y. Gu C. Wu Y. Wang L. Zhang W. Zuo J. Zhou D. Luan J. Shen J. Potentiation of the anticancer effect of doxorubicinin drug-resistant gastric cancer cells by tanshinone IIA. Phytomedicine 2018 51 58 67 10.1016/j.phymed.2018.05.012 30466628
    [Google Scholar]
  93. Fang Z. Zhang M. Liu J. Zhao X. Zhang Y. Fang L. Tanshinone IIA: A review of its anticancer effects. Front. Pharmacol. 2021 11 611087 10.3389/fphar.2020.611087 33597880
    [Google Scholar]
  94. Su C.C. Tanshinone IIA inhibits gastric carcinoma AGS cells through increasing p-p38, p-JNK and p53 but reducing p-ERK, CDC2 and cyclin B1 expression. Anticancer Res. 2014 34 12 7097 7110 25503137
    [Google Scholar]
  95. Zou K. Li Z. Zhang Y. Zhang H. Li B. Zhu W. Shi J. Jia Q. Li Y. Advances in the study of berberine and its derivatives: A focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol. Sin. 2017 38 2 157 167 10.1038/aps.2016.125 27917872
    [Google Scholar]
  96. Kou Y. Tong B. Wu W. Liao X. Zhao M. Berberine improves chemo-sensitivity to cisplatin by enhancing cell apoptosis and repressing PI3K/AKT/MTOR signaling pathway in gastric cancer. Front. Pharmacol. 2020 11 616251 10.3389/fphar.2020.616251 33362566
    [Google Scholar]
  97. Xiong R.G. Huang S.Y. Wu S.X. Zhou D.D. Yang Z.J. Saimaiti A. Zhao C.N. Shang A. Zhang Y.J. Gan R.Y. Li H.B. Anticancer effects and mechanisms of berberine from medicinal herbs: An update review. Molecules 2022 27 14 4523 10.3390/molecules27144523 35889396
    [Google Scholar]
  98. Li L.L. Peng Z. Hu Q. Xu L.J. Zou X. Huang D.M. Yi P. Berberine retarded the growth of gastric cancer xenograft tumors by targeting hepatocyte nuclear factor 4α. World J. Gastrointest. Oncol. 2022 14 4 842 857 10.4251/wjgo.v14.i4.842 35582103
    [Google Scholar]
  99. Chen H. Sheng H. Zhao Y. Zhu G. Piperine inhibits cell proliferation and induces apoptosis of human gastric cancer cells by downregulating phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Med. Sci. Monit. 2021 27 e928403 e1 10.12659/MSM.928403 33382670
    [Google Scholar]
  100. Tharmalingam N. Kim S.H. Park M. Woo H.J. Kim H.W. Yang J.Y. Rhee K.J. Kim J.B. Inhibitory effect of piperine on Helicobacter pylori growth and adhesion to gastric adenocarcinoma cells. Infect. Agent. Cancer 2014 9 1 43 10.1186/1750‑9378‑9‑43 25584066
    [Google Scholar]
  101. Guo L. Yang Y. Sheng Y. Wang J. Ruan S. Han C. Mechanism of piperine in affecting apoptosis and proliferation of gastric cancer cells via ROS-mitochondria-associated signalling pathway. J. Cell. Mol. Med. 2021 25 20 9513 9522 10.1111/jcmm.16891 34464498
    [Google Scholar]
  102. Benayad S. Wahnou H. El Kebbaj R. Liagre B. Sol V. Oudghiri M. Saad E.M. Duval R.E. Limami Y. The promise of piperine in cancer chemoprevention. Cancers (Basel) 2023 15 22 5488 10.3390/cancers15225488 38001748
    [Google Scholar]
  103. Ramos I.N.F. da Silva M.F. Lopes J.M.S. Cruz J.N. Alves F.S. do Rego J.A.R. Costa M.L. Assumpção P.P. Barros Brasil D.S. Khayat A.S. Extraction, characterization, and evaluation of the cytotoxic activity of piperine in its isolated form and in combination with chemotherapeutics against gastric cancer. Molecules 2023 28 14 5587 10.3390/molecules28145587 37513459
    [Google Scholar]
  104. Wang Z. Tang X. Wu X. Yang M. Wang W. Wang L. Tang D. Wang D. Cardamonin exerts anti-gastric cancer activity via inhibiting LncRNA-PVT1-STAT3 axis. Biosci. Rep. 2019 39 5 BSR20190357 10.1042/BSR20190357 31028131
    [Google Scholar]
  105. Ramchandani S. Naz I. Dhudha N. Garg M. An overview of the potential anticancer properties of cardamonin. Explor. Target. Antitumor Ther. 2020 1 6 413 426 10.37349/etat.2020.00026 36046386
    [Google Scholar]
  106. Lu T. Zheng C. Fan Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. Pharm. Biol. 2022 60 1 1011 1021 10.1080/13880209.2022.2069823 35645356
    [Google Scholar]
  107. Li Y. Qin Y. Yang C. Zhang H. Li Y. Wu B. Huang J. Zhou X. Huang B. Yang K. Wu G. Cardamonin induces ROS-mediated G2/M phase arrest and apoptosis through inhibition of NF-κB pathway in nasopharyngeal carcinoma. Cell Death Dis. 2017 8 8 e3024 10.1038/cddis.2017.407 29048425
    [Google Scholar]
  108. Shen X. Si Y. Wang Z. Wang J. Guo Y. Zhang X. Quercetin inhibits the growth of human gastric cancer stem cells by inducing mitochondrial-dependent apoptosis through the inhibition of PI3K/Akt signaling. Int. J. Mol. Med. 2016 38 2 619 626 10.3892/ijmm.2016.2625 27278820
    [Google Scholar]
  109. Mirazimi S.M.A. Dashti F. Tobeiha M. Shahini A. Jafari R. Khoddami M. Sheida A.H. EsnaAshari P. Aflatoonian A.H. Elikaii F. Zakeri M.S. Hamblin M.R. Aghajani M. Bavarsadkarimi M. Mirzaei H. Application of quercetin in the treatment of gastrointestinal cancers. Front. Pharmacol. 2022 13 860209 10.3389/fphar.2022.860209 35462903
    [Google Scholar]
  110. Shahbaz M. Naeem H. Momal U. Imran M. Alsagaby S.A. Al Abdulmonem W. Waqar A.B. El-Ghorab A.H. Ghoneim M.M. Abdelgawad M.A. Shaker M.E. Umar M. Hussain M. Kumar R. Al Jbawi E. Anticancer and apoptosis inducing potential of quercetin against a wide range of human malignancies. Int. J. Food Prop. 2023 26 1 2590 2626 10.1080/10942912.2023.2252619
    [Google Scholar]
  111. Lei C.S. Hou Y.C. Pai M.H. Lin M.T. Yeh S.L. Effects of quercetin combined with anticancer drugs on metastasis-associated factors of gastric cancer cells: in vitro and in vivo studies. J. Nutr. Biochem. 2018 51 105 113 10.1016/j.jnutbio.2017.09.011 29125991
    [Google Scholar]
  112. Veisi A. Akbari G. Mard S.A. Badfar G. Zarezade V. Mirshekar M.A. Role of crocin in several cancer cell lines: An updated review. Iran. J. Basic Med. Sci. 2020 23 1 3 12 10.22038/IJBMS.2019.37821.8995 32405344
    [Google Scholar]
  113. Wu Z. Hui J. Crocin reverses 1-methyl-3-nitroso-1-nitroguanidine (MNNG)-induced malignant transformation in GES-1 cells through the Nrf2/Hippo signaling pathway. J. Gastrointest. Oncol. 2020 11 6 1242 1252 10.21037/jgo‑20‑406 33456997
    [Google Scholar]
  114. Luo Y. Yu P. Zhao J. Guo Q. Fan B. Diao Y. Jin Y. Zhang C. Pathogenesis and anti-proliferation mechanisms of Crocin in human gastric carcinoma cells. Int. J. Clin. Exp. Pathol. 2020 13 5 912 922 32509062
    [Google Scholar]
  115. Naeimi M. Shafiee M. Kermanshahi F. Khorasanchi Z. Khazaei M. Ryzhikov M. Avan A. Gorji N. Hassanian S.M. Saffron ( Crocus sativus ) in the treatment of gastrointestinal cancers: Current findings and potential mechanisms of action. J. Cell. Biochem. 2019 120 10 16330 16339 10.1002/jcb.29126 31245875
    [Google Scholar]
  116. Shariat Razavi S.M. Mahmoudzadeh Vaziri R. Karimi G. Arabzadeh S. Keyvani V. Behravan J. Kalalinia F. Crocin increases gastric cancer cells’ sensitivity to doxorubicin. Asian Pac. J. Cancer Prev. 2020 21 7 1959 1967 10.31557/APJCP.2020.21.7.1959 32711421
    [Google Scholar]
  117. Li A. Cao W. Downregulation of SODD mediates carnosol-induced reduction in cell proliferation in esophageal adenocarcinoma cells. Sci. Rep. 2023 13 1 10580 10.1038/s41598‑023‑37796‑5 37386230
    [Google Scholar]
  118. Wang L. Zhang Y. Liu K. Chen H. Yang R. Ma X. Kim H.G. Bode A.M. Kim D.J. Dong Z. Carnosol suppresses patient-derived gastric tumor growth by targeting RSK2. Oncotarget 2018 9 76 34200 34212 10.18632/oncotarget.24409 30344937
    [Google Scholar]
  119. O’Neill E.J. Den Hartogh D.J. Azizi K. Tsiani E. Anticancer properties of carnosol: A summary of in vitro and in vivo evidence. Antioxidants 2020 9 10 961 10.3390/antiox9100961 33049974
    [Google Scholar]
  120. Tao A. Feng X. Song Z. Xu R. Zhao Y. A study on the mechanism of action of galangal in the treatment of gastric cancer using network pharmacology technology. Processes (Basel) 2022 10 10 1988 10.3390/pr10101988
    [Google Scholar]
  121. Liang X. Wang P. Yang C. Huang F. Wu H. Shi H. Wu X. Galangin inhibits gastric cancer growth through enhancing STAT3 mediated ROS production. Front. Pharmacol. 2021 12 646628 10.3389/fphar.2021.646628 33981228
    [Google Scholar]
  122. Tuli H.S. Sak K. Adhikary S. Kaur G. Aggarwal D. Kaur J. Kumar M. Parashar N.C. Parashar G. Sharma U. Jain A. Galangin: A metabolite that suppresses anti-neoplastic activities through modulation of oncogenic targets. Exp. Biol. Med. (Maywood) 2022 247 4 345 359 10.1177/15353702211062510 34904901
    [Google Scholar]
  123. Zhong Y. Li M.Y. Han L. Tai Y. Cao S. Li J. Zhao H. Wang R. Lv B. Shan Z. Zuo H.X. Piao L. Jin H.L. Xing Y. Jin X. Ma J. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity. Phytomedicine 2023 116 154877 10.1016/j.phymed.2023.154877 37267692
    [Google Scholar]
  124. Uto T. Hou D.X. Morinaga O. Shoyama Y. Molecular mechanisms underlying anti-inflammatory actions of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (wasabia japonica). Adv. Pharmacol. Sci. 2012 2012 1 8 10.1155/2012/614046 22927840
    [Google Scholar]
  125. Park J.E. Lee T.H. Ham S.L. Subedi L. Hong S.M. Kim S.Y. Choi S.U. Kim C.S. Lee K.R. Anticancer and anti-neuroinflammatory constituents isolated from the roots of Wasabia japonica. Antioxidants 2022 11 3 482 10.3390/antiox11030482 35326132
    [Google Scholar]
  126. Hsuan S.W. Chyau C.C. Hung H.Y. Chen J.H. Chou F.P. The induction of apoptosis and autophagy by Wasabia japonica extract in colon cancer. Eur. J. Nutr. 2016 55 2 491 503 10.1007/s00394‑015‑0866‑5 25720497
    [Google Scholar]
  127. Sadeghi S. Davoodvandi A. Pourhanifeh M.H. Sharifi N. ArefNezhad R. Sahebnasagh R. Moghadam S.A. Sahebkar A. Mirzaei H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem. 2019 178 131 140 10.1016/j.ejmech.2019.05.067 31195168
    [Google Scholar]
  128. Begum S.N. Ray A.S. Rahaman C.H. A comprehensive and systematic review on potential anticancer activities of eugenol: From pre-clinical evidence to molecular mechanisms of action. Phytomedicine 2022 107 154456 10.1016/j.phymed.2022.154456 36152592
    [Google Scholar]
  129. Padhy I. Paul P. Sharma T. Banerjee S. Mondal A. Molecular mechanisms of action of eugenol in cancer: Recent trends and advancement. Life (Basel) 2022 12 11 1795 10.3390/life12111795 36362950
    [Google Scholar]
  130. Larasati Y.A. Meiyanto E. Revealing the potency of cinnamon as an anti-cancer and chemopreventive agent. Indon. J. Canc. Chemoprev. 2018 9 1 47 10.14499/indonesianjcanchemoprev9iss1pp47‑62
    [Google Scholar]
  131. Parama D. Rana V. Girisa S. Verma E. Daimary U.D. Thakur K.K. Kumar A. Kunnumakkara A.B. The promising potential of piperlongumine as an emerging therapeutics for cancer. Explor. Target. Antitumor Ther. 2021 2 4 323 354 10.37349/etat.2021.00049 36046754
    [Google Scholar]
  132. Chen D. Wei X. Yang K. Liu X. Song Y. Bai F. Jiang Y. Guo Y. Jha R.K. Piperlongumine combined with vitamin C as a new adjuvant therapy against gastric cancer regulates the ROS–STAT3 pathway. J. Int. Med. Res. 2022 50 4 03000605221093308 10.1177/03000605221093308 35481419
    [Google Scholar]
  133. Zhang P. Shi L. Zhang T. Hong L. He W. Cao P. Shen X. Zheng P. Xia Y. Zou P. Piperlongumine potentiates the antitumor efficacy of oxaliplatin through ROS induction in gastric cancer cells. Cell Oncol. (Dordr.) 2019 42 6 847 860 10.1007/s13402‑019‑00471‑x 31493144
    [Google Scholar]
  134. Van Cutsem E. Boni C. Tabernero J. Massuti B. Middleton G. Dane F. Reichardt P. Pimentel F.L. Cohn A. Follana P. Clemens M. Zaniboni A. Moiseyenko V. Harrison M. Richards D.A. Prenen H. Pernot S. Ecstein-Fraisse E. Hitier S. Rougier P. Docetaxel plus oxaliplatin with or without fluorouracil or capecitabine in metastatic or locally recurrent gastric cancer: A randomized phase II study. Ann. Oncol. 2015 26 1 149 156 10.1093/annonc/mdu496 25416687
    [Google Scholar]
  135. Inno A. Basso M. Cassano A. Barone C. A review of docetaxel: Its use in the treatment of gastric cancer. Clin. Med. Insights Ther. 2010 2 CMT.S5191 10.4137/CMT.S5191
    [Google Scholar]
  136. Ajani J.A. Docetaxel for gastric and esophageal carcinomas. Oncology (Williston Park) 2002 16 6 Suppl. 6 89 96 12108902
    [Google Scholar]
  137. Maeda S. Sugiura T. Saikawa Y. Kubota T. Otani Y. Kumai K. Kitajima M. Docetaxel enhances the cytotoxicity of cisplatin to gastric cancer cells by modification of intracellular platinum metabolism. Cancer Sci. 2004 95 8 679 684 10.1111/j.1349‑7006.2004.tb03329.x 15298732
    [Google Scholar]
  138. Yang C. Du W. Yang D. Inhibition of green tea polyphenol EGCG((−)-epigallocatechin-3-gallate) on the proliferation of gastric cancer cells by suppressing canonical wnt/β-catenin signalling pathway. Int. J. Food Sci. Nutr. 2016 67 7 818 827 10.1080/09637486.2016.1198892 27338284
    [Google Scholar]
  139. Sharifi-Rad M. Pezzani R. Redaelli M. Zorzan M. Imran M. Ahmed Khalil A. Salehi B. Sharopov F. Cho W.C. Sharifi-Rad J. Preclinical activities of epigallocatechin gallate in signaling pathways in cancer. Molecules 2020 25 3 467 10.3390/molecules25030467 31979082
    [Google Scholar]
  140. Zhu F. Xu Y. Pan J. Li M. Chen F. Xie G. Epigallocatechin gallate protects against mnng-induced precancerous lesions of gastric carcinoma in rats via PI3K/Akt/mTOR pathway. Evid. Based Complement. Alternat. Med. 2021 2021 1 10 10.1155/2021/8846813 33628319
    [Google Scholar]
  141. Mokra D. Joskova M. Mokry J. Therapeutic effects of green tea polyphenol (‒)-epigallocatechin-3-gallate (EGCG) in relation to molecular pathways controlling inflammation, oxidative stress, and apoptosis. Int. J. Mol. Sci. 2022 24 1 340 10.3390/ijms24010340 36613784
    [Google Scholar]
  142. Zari A.T. Zari T.A. Hakeem K.R. Anticancer properties of eugenol: A review. Molecules 2021 26 23 7407 10.3390/molecules26237407 34885992
    [Google Scholar]
  143. Abdulrahman M.D. Hama H.A. Anticancer of genus Syzygium: A systematic review. Explor. Target. Antitumor Ther. 2023 4 2 273 293 10.37349/etat.2023.00134 37205310
    [Google Scholar]
  144. Karimi A. Moradi M.T. Hashemi L. Alidadi S. Soltani A. In vitro anti-proliferative activity of clove extract on human gastric carcinoma. Res. J. Pharmacog. 2017 4 4 41 48
    [Google Scholar]
  145. Bi Y. Wang Q. Yang Y. Wang Q. Zhang K. Zhang X. Cho W.C. Shu Z. Li J. Liu L. Si C. Hong F. Establishment of a human gastric cancer xenograft model in immunocompetent mice using the microcarrier-6. BioMed Res. Int. 2020 2020 1 1893434 10.1155/2020/1893434 32337226
    [Google Scholar]
  146. Grabarska A. Luszczki J.J. Gawel K. Kukula-Koch W. Juszczak M. Slawinska-Brych A. Adamczuk G. Dmoszynska-Graniczka M. Kosheva N. Rzeski W. Stepulak A. Heterogeneous cellular response of primary and metastatic human gastric adenocarcinoma cell lines to magnoflorine and its additive interaction with docetaxel. Int. J. Mol. Sci. 2023 24 21 15511 10.3390/ijms242115511 37958494
    [Google Scholar]
  147. Zeng M. Pi C. Li K. Sheng L. Zuo Y. Yuan J. Zou Y. Zhang X. Zhao W. Lee R.J. Wei Y. Zhao L. Patient-derived xenograft: A more standard “avatar” model in preclinical studies of gastric cancer. Front. Oncol. 2022 12 898563 10.3389/fonc.2022.898563 35664756
    [Google Scholar]
  148. Puaux A.L. Ong L.C. Jin Y. Teh I. Hong M. Chow P.K.H. Golay X. Abastado J.P. A comparison of imaging techniques to monitor tumor growth and cancer progression in living animals. Int. J. Mol. Imaging 2011 2011 1 12 10.1155/2011/321538 22121481
    [Google Scholar]
  149. Kodama M. Murakami K. Sato R. Okimoto T. Nishizono A. Fujioka T. Helicobacter pylori-infected animal models are extremely suitable for the investigation of gastric carcinogenesis. World J. Gastroenterol. 2005 11 45 7063 7071 10.3748/wjg.v11.i45.7063 16437649
    [Google Scholar]
  150. Jiang X. Zhu X. Huang W. Xu H. Zhao Z. Li S. Li S. Cai J. Cao J. Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. Int. Immunopharmacol. 2017 48 135 145 10.1016/j.intimp.2017.05.004 28501767
    [Google Scholar]
  151. Wang R. Lee Y.G. Dhandapani S. Baek N.I. Kim K.P. Cho Y.E. Xu X. Kim Y.J. 8-paradol from ginger exacerbates PINK1/Parkin mediated mitophagy to induce apoptosis in human gastric adenocarcinoma. Pharmacol. Res. 2023 187 106610 10.1016/j.phrs.2022.106610 36521573
    [Google Scholar]
  152. Li G. Zhang Y. Xie E. Yang X. Wang H. Wang X. Li W. Song Z. Mu Q. Zhan W. Wu Q. Huang J. Chen Y. Zhang Y. Wang F. Min J. Functional characterization of a potent anti-tumor polysaccharide in a mouse model of gastric cancer. Life Sci. 2019 219 11 19 10.1016/j.lfs.2019.01.003 30611785
    [Google Scholar]
  153. Lei X. Lv X. Liu M. Yang Z. Ji M. Guo X. Dong W. Thymoquinone inhibits growth and augments 5-fluorouracil-induced apoptosis in gastric cancer cells both in vitro and in vivo. Biochem. Biophys. Res. Commun. 2012 417 2 864 868 10.1016/j.bbrc.2011.12.063 22206670
    [Google Scholar]
  154. Wu W. Cao Y. Cheng L. Wang L. Yu Q. Peng H. Zhou F. Liu H. Zhang Q. Cryptotanshinone from Salvia miltiorrhiza inhibits the growth of tumors and enhances the efficacy of chemotherapy in a gastric cancer mouse model. Nat. Prod. Commun. 2022 17 10 1934578X221130874 10.1177/1934578X221130874
    [Google Scholar]
  155. Zhang Q. Wang X. Cao S. Sun Y. He X. Jiang B. Yu Y. Duan J. Qiu F. Kang N. Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed. Pharmacother. 2020 128 110245 10.1016/j.biopha.2020.110245 32454290
    [Google Scholar]
  156. Hou G. Yuan X. Li Y. Hou G. Liu X. Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway. Invest. New Drugs 2020 38 2 329 339 10.1007/s10637‑019‑00781‑9 31102118
    [Google Scholar]
  157. Lee H. Lee S. Shin Y. Cho M. Kang H. Cho H. Anti- cancer effect of quercetin in xenograft models with EBV-associated human gastric carcinoma. Molecules 2016 21 10 1286 10.3390/molecules21101286 27681719
    [Google Scholar]
  158. Wang L. Xue J. Wei F. Zheng G. Cheng M. Liu S. Chemopreventive effect of galangin against benzo(a)pyrene-induced stomach tumorigenesis through modulating aryl hydrocarbon receptor in Swiss albino mice. Hum. Exp. Toxicol. 2021 40 9 1434 1444 10.1177/0960327121997979 33663268
    [Google Scholar]
  159. Masuda S. Masuda H. Shimamura Y. Sugiyama C. Takabayashi F. Improvement effects of Wasabi (Wasabia Japonica) leaves and allyl isothiocyanate on stomach lesions of Mongolian gerbils infected with Helicobacter pylori. Nat. Prod. Commun. 2017 12 4 1934578X1701200431 10.1177/1934578X1701200431 30520603
    [Google Scholar]
  160. Manikandan P. Vinothini G. Vidya Priyadarsini R. Prathiba D. Nagini S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Invest. New Drugs 2011 29 1 110 117 10.1007/s10637‑009‑9345‑2 19851710
    [Google Scholar]
  161. Duan C. Zhang B. Deng C. Cao Y. Zhou F. Wu L. Chen M. Shen S. Xu G. Zhang S. Duan G. Yan H. Zou X. Piperlongumine induces gastric cancer cell apoptosis and G2/M cell cycle arrest both in vitro and in vivo. Tumour Biol. 2016 37 8 10793 10804 10.1007/s13277‑016‑4792‑9 26874726
    [Google Scholar]
  162. Wu H. Xin Y. Xiao Y. Zhao J. Low-dose docetaxel combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts. Cancer Biother. Radiopharm. 2012 27 3 204 209 10.1089/cbr.2011.1103 22283637
    [Google Scholar]
  163. Wu H. Xin Y. Xu C. Xiao Y. Capecitabine combined with (-)-epigallocatechin-3-gallate inhibits angiogenesis and tumor growth in nude mice with gastric cancer xenografts. Exp. Ther. Med. 2012 3 4 650 654 10.3892/etm.2012.448 22969946
    [Google Scholar]
  164. Manikandan P. Murugan R.S. Priyadarsini R.V. Vinothini G. Nagini S. Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci. 2010 86 25-26 936 941 10.1016/j.lfs.2010.04.010 20434464
    [Google Scholar]
  165. Li W.Q. Zhang J.Y. Ma J.L. Li Z.X. Zhang L. Zhang Y. Guo Y. Zhou T. Li J.Y. Shen L. Liu W.D. Han Z.X. Blot W.J. Gail M.H. Pan K.F. You W.C. Effects of Helicobacter pylori treatment and vitamin and garlic supplementation on gastric cancer incidence and mortality: Follow-up of a randomized intervention trial. BMJ 2019 366 l5016 10.1136/bmj.l5016 31511230
    [Google Scholar]
  166. Chaiworramukkul A. Seetalarom K. Saichamchan S. Prasongsook N. A double-blind, placebo-controlled randomized phase iia study: Evaluating the effect of curcumin for treatment of cancer anorexia–cachexia syndrome in solid cancer patients. Asian Pac. J. Cancer Prev. 2022 23 7 2333 2340 10.31557/APJCP.2022.23.7.2333 35901339
    [Google Scholar]
  167. Song N. Zhao Y. Xu H. Wang J. Lai Z. Yu X. Wu Y. Clinical observation of cancer-related fatigue treated with ginger-isolated moxibustion in the patients with gastric cancer. World J. Acupunct. Moxibustion 2021 31 1 1 5 10.1016/j.wjam.2020.11.014
    [Google Scholar]
  168. Yar T. Salem E.M. Bamosa A. Al-Quorain A. Yasawy M. Alsulaiman R. Randhawa M. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J. Gastroenterol. 2010 16 3 207 214 10.4103/1319‑3767.65201 20616418
    [Google Scholar]
  169. Zhang D. Ke L. Ni Z. Chen Y. Zhang L.H. Zhu S.H. Li C.J. Shang L. Liang J. Shi Y.Q. Berberine containing quadruple therapy for initial Helicobacter pylori eradication. Medicine (Baltimore) 2017 96 32 e7697 10.1097/MD.0000000000007697 28796053
    [Google Scholar]
  170. Hajiaghamohammadi A.A. Zargar A. Oveisi S. Samimi R. Reisian S. To evaluate of the effect of adding licorice to the standard treatment regimen of Helicobacter pylori. Braz. J. Infect. Dis. 2016 20 6 534 538 10.1016/j.bjid.2016.07.015 27614124
    [Google Scholar]
  171. Zhang H.-G Exosomal compositions and methods for the treatment of disease. US Patent 20230355525A1 2024
  172. Cheng C.-T. Hsieh C.-Y. Lin C.-F. Lin K.-Y. Su C.-M. Lau P.Y. Nanoparticle complex with defined sizes. US Patent 20230263743A1 2024
  173. Ho-yong S. Yong-kyung K. Function-enhanced fermented ginger using lactic acid bacteria and making method thereof. KR Patent 102573406B1 2024
  174. Alugupalli A. Alugupalli K. Cannabinoid compositions and methods of use thereof for immune modulation. US Patent 20220193003A1 2024
  175. Ashktorab H. Saffron as anti-inflammatory agent in treating inflammatory bowel disease. WO Patent 2022109092A1 2024
  176. Datt R. Kumar R. Pandey S. Shrivastava P. Multifunctional formulation composed of natural ingredients and its preparation / manufacturing method. ES Patent 2885052T3 2024
  177. Kovarik J.E. Method for reducing the likelihood of developing cancer in an individual human being. US Patent 10940169B2 2024
  178. Drennan T. Nano-penetrative cannabinoid oil blends and compositions and methods of formulation thereof. US Patent 20210330638A1 2024
  179. Protter A.A. Lum P.P. Luedtke G.R. Derivatives of piperlongumine and uses thereof. US Patent 20200377510A1 2024
/content/journals/cpps/10.2174/0113892037353177250409095158
Loading
/content/journals/cpps/10.2174/0113892037353177250409095158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test