Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Recently, a new type of cow’s milk has been commercialized in the markets, called A2 milk. It is derived from a specific allelic composition on chromosome 6. The only difference between A1 and A2 milk results from the polymorphism at the 67 amino acid chain. In this position, A2 milk has a proline amino acid, while A1 milk has a histidine amino acid. Proteins are one of the most important components of milk, especially casein, and have received significant attention as they are the source of bioactive opioid peptides called beta-casomorphin-7. Peptides are released through enzymatic digestion of casein and whey proteins. More precisely, this bioactive peptide is produced by sequential gastrointestinal digestion of bovine A1 variants proteins, while this phenomenon is not present in variant A2. Studies have reported that A1 milk can be harmful to health not only for adults but also for infants and that β-casein A2 becomes a safer choice following the relationship between disease risk and consumption of the beta-casomorphin-7 peptide. Indeed, epidemiological studies suggest that the released beta-casomorphin-7 peptide is a risk factor for the development of diseases in humans, but this has not yet been validated by other studies. In contrast, A2 milk has been suggested as an appropriate substitute for A1 milk since populations consuming milk containing high levels of the A2 beta-casein variant have lower rates of diseases, such as diabetes, coronary heart disease, autism, and schizophrenia.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037366987250401183000
2025-04-24
2025-11-29
Loading full text...

Full text loading...

References

  1. SebastianiC. ArcangeliC. CiulloM. TorricelliM. CintiG. FisichellaS. BiagettiM. Frequencies evaluation of β-casein gene polymorphisms in dairy cows reared in Central Italy.Animals202010225210.3390/ani1002025232033348
    [Google Scholar]
  2. CaroliA.M. ChessaS. ErhardtG.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition.J. Dairy Sci.200992115335535210.3168/jds.2009‑246119841193
    [Google Scholar]
  3. PereiraP.C. Milk nutritional composition and its role in human health.Nutrition201430661962710.1016/j.nut.2013.10.01124800664
    [Google Scholar]
  4. PalS. WoodfordK. KukuljanS. HoS. Milk intolerance, beta- casein and lactose.Nutrients2015797285729710.3390/nu709533926404362
    [Google Scholar]
  5. BodnárÁ. HajzsérA. EgerszegiI. PótiP. KuchtikJ. PajorF. A2 milk and its importance in dairy production and global market.Anim. Welf. Etol. Tartástechnol.201819111010.17205/szie.aweth.2018.1.001
    [Google Scholar]
  6. McLachlanC.N.S. β-casein A1, ischaemic heart disease mortality, and other illnesses.Med. Hypotheses200156226227210.1054/mehy.2000.126511425301
    [Google Scholar]
  7. ElliottR.B. HarrisD.P. HillJ.P. BibbyN.J. WasmuthH.E. Type I (insulin-dependent) diabetes mellitus and cow milk: Casein variant consumption.Diabetologia199942329229610.1007/s00125005115310096780
    [Google Scholar]
  8. ParkY.W. HaenleinG.F.W. A2 bovine milk and caprine milk as a means of remedy for milk protein allergy.Dairy20212219120110.3390/dairy2020017
    [Google Scholar]
  9. JianqinS. LeimingX. LuX. YellandG.W. NiJ. ClarkeA.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk.Nutr. J.201515116
    [Google Scholar]
  10. Woodford, K.B. Devil in the milk: Illness, health and politics of A1 and A2 milk. White River Junction, VT: Chelsea Green Publishing; 2009. ISBN: 9781603581028.
  11. ShookG.E. Selection for disease resistance.J. Dairy Sci.19897251349136210.3168/jds.S0022‑0302(89)79242‑02663944
    [Google Scholar]
  12. Winaya, A.; Coy, P.; Fauzi, N. (2019). Preventing saltwater intrusion in the Coastal of Terengganu, can BRIS soil system help? IOP Conference Series: Earth and Environmental Science, 1019(1), 012008.10.1088/1755‑1315/1019/1/012008
  13. Van Der BergJ.P. KleterG.A. BattagliaE. GroenenM.A.M. KokE.J. Developments in genetic modification of cattle and implications for regulation, safety and traceability.Front. Agric. Sci. Eng.20207213610.15302/J‑FASE‑2019306
    [Google Scholar]
  14. MigliorF. FlemingA. MalchiodiF. BritoL.F. MartinP. BaesC.F. A 100-year review: Identification and genetic selection of economically important traits in dairy cattle.J. Dairy Sci.201710012102511027110.3168/jds.2017‑1296829153164
    [Google Scholar]
  15. MrodeR. OjangoJ.M.K. OkeyoA.M. MwacharoJ.M. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects.Front. Genet.2019969410.3389/fgene.2018.0069430687382
    [Google Scholar]
  16. PrasadM. GourkhedeD.P. VidyaraniH. ShindeB. MishraB.P. WankhadeP.R. BeloreB. LalthanmawiiJ. KonetiP.B. Delving into the A1/A2 milk hypothesis: A comprehensive analysis of milk proteins and their impact on human health.Int. J. Vet. Sci. Anim. Husbandry20249159460510.22271/veterinary.2024.v9.i1Si.1082
    [Google Scholar]
  17. Brooke-TaylorS. DwyerK. WoodfordK. KostN. Systematic review of the gastrointestinal effects of A1 compared with A2 β- casein.Adv. Nutr.20178573974810.3945/an.116.01395328916574
    [Google Scholar]
  18. MehtaB.M. Chemical composition of milk and milk products.Handbook of Food Chemistry.SpringerBerlin, Heidelberg2015511533
    [Google Scholar]
  19. AndiçS. AyazR.M. OğuzŞ. A1 milk and beta-casomorphin-7.Food and Health20217212813710.3153/FH21014
    [Google Scholar]
  20. YasminI. IqbalR. LiaqatA. KhanW.A. NadeemM. IqbalA. ChughtaiM.F.J. RehmanS.J.U. TehseenS. MehmoodT. AhsanS. TanweerS. NazS. KhaliqA. Characterization and comparative evaluation of milk protein variants from pakistani dairy breeds.Food Sci. Anim. Resour.202040568969810.5851/kosfa.2020.e4432968722
    [Google Scholar]
  21. KamińskiS. CieślińskaA. KostyraE. Polymorphism of bovine beta-casein and its potential effect on human health.J. Appl. Genet.200748318919810.1007/BF0319521317666771
    [Google Scholar]
  22. FarhatL.B. HoarauA. TóthV. SuliA. LabasK.S. AbidiF. MikóE. Genotypic Effects of β-casein in milk composition in jersey cows.Black Sea J. Agric.20246664965410.47115/bsagriculture.1297156
    [Google Scholar]
  23. AschaffenburgR. DrewryJ. Occurrence of different beta-lactoglobulins in cow’s milk.Nature1955176447421821910.1038/176218b013244664
    [Google Scholar]
  24. MayerH.K. LenzK. HalbauerE.M. “A2 milk” authentication using isoelectric focusing and different PCR techniques.Food Res. Int.202114711052310.1016/j.foodres.2021.11052334399501
    [Google Scholar]
  25. AlimM.A. DongT. XieY. WuX.P. ZhangY. ZhangS. SunD.X. Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein Cattle.Mol. Biol. Rep.201441117585759310.1007/s11033‑014‑3648‑x25091943
    [Google Scholar]
  26. PrabakusumaA. AleryaniH. Genotyping, physicochemical characterization, and protein isoform quantification of β-casein A2 milk in chinese simmental and Angus cattle.Emir. J. Food Agric.202210.9755/ejfa.2022.v34.i8.2882
    [Google Scholar]
  27. GislonG. BavaL. BisuttiV. TamburiniA. BrascaM. Bovine beta casein polymorphism and environmental sustainability of cheese production: The case of Grana Padano PDO and mozzarella cheese.Sustain. Prod. Consum.202335859410.1016/j.spc.2022.10.017
    [Google Scholar]
  28. DantasA. KumarH. PrudencioE.S. de AvilaL.B.Junior Orellana-PalmaP. DosokyN.S. NepovimovaE. KučaK. Cruz-MartinsN. VermaR. ManickamS. ValkoM. KumarD. An approach on detection, quantification, technological properties, and trends market of A2 cow milk.Food Res. Int.202316711269010.1016/j.foodres.2023.11269037087212
    [Google Scholar]
  29. BanykoJ. Distribution of α S1-casein” welsh” variant in some Slovak and Czech sheep breeds.Arch. Tierzucht200750381387
    [Google Scholar]
  30. AhmedA.S. RahmatallaS. BortfeldtR. ArendsD. ReissmannM. BrockmannG.A. Milk protein polymorphisms and casein haplotypes in Butana cattle.J. Appl. Genet.201758226127110.1007/s13353‑016‑0381‑227924448
    [Google Scholar]
  31. CeriottiG. MarlettaD. CaroliA. ErhardtG. Milk protein loci polymorphism in taurine ( Bos taurus ) and zebu ( Bos indicus ) populations bred in hot climate.J. Anim. Breed. Genet.2004121640441510.1111/j.1439‑0388.2004.00471.x
    [Google Scholar]
  32. FarrellH.M.Jr Jimenez-FloresR. BleckG.T. BrownE.M. ButlerJ.E. CreamerL.K. HicksC.L. HollarC.M. Ng-Kwai-HangK.F. SwaisgoodH.E. Nomenclature of the proteins of cows’ milk--sixth revision.J. Dairy Sci.20048761641167410.3168/jds.S0022‑0302(04)73319‑615453478
    [Google Scholar]
  33. Nuomin NguyenQ.D. Aodaohu NishinoN. Frequency of β-casein gene polymorphisms in Jersey cows in western Japan.Animals20221216207610.3390/ani1216207636009666
    [Google Scholar]
  34. TruswellA.S. The A2 milk case: A critical review.Eur. J. Clin. Nutr.200559562363110.1038/sj.ejcn.160210415867940
    [Google Scholar]
  35. BonsingJ. M RingJ. Francis StewartA. G MackinlayA. Complete nucleotide sequence of the bovine beta-casein gene.Aust. J. Biol. Sci.198841452753710.1071/BI98805273271384
    [Google Scholar]
  36. Jiménez-MontenegroL. AlfonsoL. MendizabalJ.A. UrrutiaO. Worldwide research trends on milk containing only A2 β-casein: A bibliometric study.Animals20221215190910.3390/ani1215190935953898
    [Google Scholar]
  37. AritonA-M. Neculai-VăleanuA-S. PoroșnicuI. UngureanuE. A2 milk-advantages and challenges in the manufacturing of dairy products.Lucr. Stiint. Zooteh. Biotehnol.202457168168
    [Google Scholar]
  38. HuppertzT. FoxP. KellyA. The caseins: Structure, stability, and functionality.Proteins in food processingElsevier20184992
    [Google Scholar]
  39. McCarthyN.A. KellyA.L. O’MahonyJ.A. FenelonM.A. The physical characteristics and emulsification properties of partially dephosphorylated bovine β-casein.Food Chem.20131382-31304131110.1016/j.foodchem.2012.11.08023411247
    [Google Scholar]
  40. HorneD.S. Casein micelle structure and stability.Milk proteinsElsevier202021325010.1016/B978‑0‑12‑815251‑5.00006‑2
    [Google Scholar]
  41. RaynesJ.K. DayL. AugustinM.A. CarverJ.A. Structural differences between bovine A1 and A2 β-casein alter micelle self-assembly and influence molecular chaperone activity.J. Dairy Sci.20159842172218210.3168/jds.2014‑880025648798
    [Google Scholar]
  42. DaniloskiD. McCarthyN.A. MarkoskaT. AuldistM.J. VasiljevicT. Conformational and physicochemical characteristics of bovine skim milk obtained from cows with different genetic variants of β-casein.Food Hydrocoll.202212410718610.1016/j.foodhyd.2021.107186
    [Google Scholar]
  43. GustavssonF. GlantzM. BuitenhuisA.J. Lindmark-MånssonH. StålhammarH. AndrénA. PaulssonM. Factors influencing chymosin-induced gelation of milk from individual dairy cows: Major effects of casein micelle size and calcium.Int. Dairy J.201439120120810.1016/j.idairyj.2014.06.011
    [Google Scholar]
  44. O’mahonyJ. FoxP. Milk proteins: Introduction and historical aspects.Advanced Dairy Chemistry: Volume 1A: Proteins: Basic AspectsSpringer20124385
    [Google Scholar]
  45. DaniloskiD. McCarthyN.A. VasiljevicT. Impact of heating on the properties of A1/A1, A1/A2, and A2/A2 β-casein milk phenotypes.Food Hydrocoll.202212810760410.1016/j.foodhyd.2022.107604
    [Google Scholar]
  46. ul HaqM.R. KapilaR. ShandilyaU.K. KapilaS. Impact of milk derived β-casomorphins on physiological functions and trends in research: A review.Int. J. Food Prop.20141781726174110.1080/10942912.2012.712077
    [Google Scholar]
  47. SwaisgoodH.E. Enzymes indigenous to bovine milk.Handbook of Milk Composition. JensenR.G. New York, NYAcademic Press199547247510.1016/B978‑0‑12‑384430‑9.50047‑0
    [Google Scholar]
  48. Şahin, Ö.; Boztepe, S. Assessment of A1 and A2 variants in the CNS2 gene of some cattle breeds by using ACRS-PCR method. An. Biotechnol., 2022, 34(4), 1505–1513. https://doi.org/10.1080/10495398.2022.2036176
  49. PriyadarshiniP. MishraC. MishraB. SwainK. RoutM. MishraS.P. Impact of milk protein on human health: A1 verses A2.Int. J. Chem. Stud.20186531535
    [Google Scholar]
  50. GardF. FladL.M. WeißerT. AmmerH. DeegC.A. Effects of A1 milk, A2 milk and the opioid-like peptide β-casomorphin-7 on the proliferation of human peripheral blood mononuclear cells.Biomolecules202414669010.3390/biom1406069038927093
    [Google Scholar]
  51. IkonenT. OjalaM. RuottinenO. Associations between milk protein polymorphism and first lactation milk production traits in Finnish Ayrshire cows.J. Dairy Sci.19998251026103310.3168/jds.S0022‑0302(99)75323‑310342242
    [Google Scholar]
  52. LambersT.T. BroerenS. HeckJ. BragtM. HuppertzT. Processing affects beta-casomorphin peptide formation during simulated gastrointestinal digestion in both A1 and A2 milk.Int. Dairy J.202112110509910.1016/j.idairyj.2021.105099
    [Google Scholar]
  53. ElitsurY. LukG.D. Beta-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation.Clin. Exp. Immunol.200885349349710.1111/j.1365‑2249.1991.tb05755.x1893631
    [Google Scholar]
  54. WoodfordK.B. A critique of Truswell’s A2 milk review.Eur. J. Clin. Nutr.200660343743910.1038/sj.ejcn.160232216278689
    [Google Scholar]
  55. Elliott, R.B.; Wasmuth, H.E.; Bibby, N.J.; Hill, J.P. The role of β-casein variants in the induction of insulin-dependent diabetes in the non-obese diabetic mouse and humans. In Milk Protein Polymorphism (pp. 445–453). Brussels, Belgium: International Dairy Federation; 1997.
  56. JeongH. ParkY.S. YoonS.S. A2 milk consumption and its health benefits: An update.Food Sci. Biotechnol.202433349150310.1007/s10068‑023‑01428‑538274187
    [Google Scholar]
  57. LaugesenM ElliottR Ischaemic heart disease, type 1 diabetes, and cow milk A1 beta-casein.N. Z. Med. J.20031161168U29512601419
    [Google Scholar]
  58. ChiaJ.S.J. McRaeJ.L. KukuljanS. WoodfordK. ElliottR.B. SwinburnB. DwyerK.M. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes.Nutr. Diabetes201775e274e27410.1038/nutd.2017.1628504710
    [Google Scholar]
  59. De NoniI. FitzGeraldR.J. KorhonenH.J. Le RouxY. LiveseyC.T. ThorsdottirI. ToméD. WitkampR. Review of the potential health impact of β-casomorphins and related peptides.EFSA Sci. Rep.20092311107
    [Google Scholar]
  60. AsledottirT. PicarielloG. MamoneG. FerrantiP. RøsethA. DevoldT.G. VegarudG.E. Degradation of β-casomorphin-7 through in vitro gastrointestinal and jejunal brush border membrane digestion.J. Dairy Sci.2019102108622862910.3168/jds.2019‑1677131351730
    [Google Scholar]
  61. HegdeN.G. Research on A1 and A2 milk: A1 milk is not a matter of health concern.Indian J. Anim. Sci.201989770771110.56093/ijans.v89i7.92010
    [Google Scholar]
  62. TailfordK. BerryC.L. ThomasA.C. CampbellJ.H. A casein variant in cow’s milk is atherogenic.Atherosclerosis20031701131910.1016/S0021‑9150(03)00131‑X12957678
    [Google Scholar]
  63. Chin-DustingJ. ShennanJ. JonesE. WilliamsC. KingwellB. DartA. Effect of dietary supplementation with βcasein A1 or A2 on markers of disease development in individuals at high risk of cardiovascular disease.Br. J. Nutr.200695113614410.1079/BJN2005159916441926
    [Google Scholar]
  64. VennB.J. SkeaffC.M. BrownR. MannJ.I. GreenT.J. A comparison of the effects of A1 and A2 β-casein protein variants on blood cholesterol concentrations in New Zealand adults.Atherosclerosis2006188117517810.1016/j.atherosclerosis.2005.10.02016298373
    [Google Scholar]
  65. ParasharA. SainiR.K. A1 milk and its controversy-a review.Int. J. Bioassays2015446114619
    [Google Scholar]
  66. SokolovO. KostN. AndreevaO. KorneevaE. MeshavkinV. TarakanovaY. DadayanA. ZolotarevY. GrachevS. MikheevaI. VarlamovO. ZozulyaA. Autistic children display elevated urine levels of bovine casomorphin-7 immunoreactivity.Peptides201456687110.1016/j.peptides.2014.03.00724657283
    [Google Scholar]
  67. TeschemacherH. UmbachM. HamelU. PraetoriusK. Ahnert-HilgerG. BrantlV. LottspeichF. HenschenA. No evidence for the presence of β-casomorphins in human plasma after ingestion of cows’ milk or milk products.J. Dairy Res.198653113513810.1017/S00220299000247303958290
    [Google Scholar]
  68. SunZ. ZhangZ. WangX. CadeR. ElmirZ. FreglyM. Relation of β-casomorphin to apnea in sudden infant death syndrome.Peptides200324693794310.1016/S0196‑9781(03)00156‑612948848
    [Google Scholar]
  69. De NoniI. CattaneoS. Occurrence of β-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastro-intestinal digestion.Food Chem.2010119256056610.1016/j.foodchem.2009.06.058
    [Google Scholar]
  70. Küllenberg de GaudryD. LohnerS. SchmuckerC. KappP. MotschallE. HörrleinS. RögerC. MeerpohlJ.J. Milk A1 β- casein and health-related outcomes in humans: A systematic review.Nutr. Rev.201977527830610.1093/nutrit/nuy06330722004
    [Google Scholar]
  71. KappesR. SchneiderV. SchweizerH. NüskeS. KnobD.A. Thaler NetoA. ScholzA.M. Effect of β-casein A1 or A2 milk on body composition, milk intake, and growth in Holstein, Simmental, and crossbred dairy calves of both sexes.J. Dairy Sci.202410764033404410.3168/jds.2023‑2404638246546
    [Google Scholar]
  72. DaherS. TahanS. SoléD. NaspitzC.K. Da Silva PatrícioF.R. NetoU.F. De MoraisM.B. Cow’s milk protein intolerance and chronic constipation in children.Pediatr. Allergy Immunol.200112633934210.1034/j.1399‑3038.2001.0o057.x11846872
    [Google Scholar]
  73. HoS. WoodfordK. KukuljanS. PalS. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomised cross-over pilot study.Eur. J. Clin. Nutr.2014689994100010.1038/ejcn.2014.12724986816
    [Google Scholar]
  74. RamakrishnanM. EatonT.K. SermetO.M. SavaianoD.A. Milk containing A2 β-casein only, as a single meal, causes fewer symptoms of lactose intolerance than milk containing A1 and A2 β-caseins in subjects with lactose maldigestion and intolerance: A randomized, double-blind, crossover trial.Nutrients20201212385510.3390/nu1212385533348621
    [Google Scholar]
  75. KaplanM. BaydemirB. GünarB.B. ArslanA. DumanH. KaravS. Benefits of A2 milk for sports nutrition, health and performance.Front. Nutr.2022993534410.3389/fnut.2022.93534435911103
    [Google Scholar]
  76. Fernández-RicoS. MondragónA.C. López-SantamarinaA. Cardelle-CobasA. RegalP. LamasA. IbarraI.S. CepedaA. MirandaJ.M. A2 milk: New perspectives for food technology and human health.Foods20221116238710.3390/foods1116238736010390
    [Google Scholar]
  77. DethR. ClarkeA. NiJ. TrivediM. Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of β-casein: results from a randomized, cross-over clinical trial.Nutr. J.20151518210.1186/s12937‑016‑0201‑x27680716
    [Google Scholar]
  78. GiribaldiM. LambertiC. CirrincioneS. GiuffridaM.G. CavallarinL. A2 milk and BCM-7 peptide as emerging parameters of milk quality.Front. Nutr.2022984237510.3389/fnut.2022.84237535571904
    [Google Scholar]
  79. JuanB. TrujilloA.J. Acid and rennet coagulation properties of A2 milk.Foods20221122364810.3390/foods1122364836429240
    [Google Scholar]
  80. KettoI.A. KnutsenT.M. ØyaasJ. HeringstadB. ÅdnøyT. DevoldT.G. SkeieS.B. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in Norwegian Red cattle.Int. Dairy J.201770556410.1016/j.idairyj.2016.10.010
    [Google Scholar]
  81. PoulsenN.A. BertelsenH.P. JensenH.B. GustavssonF. GlantzM. Lindmark MånssonH. AndrénA. PaulssonM. BendixenC. BuitenhuisA.J. LarsenL.B. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds.J. Dairy Sci.20139684830484210.3168/jds.2012‑642223746587
    [Google Scholar]
  82. BisuttiV. PegoloS. GiannuzziD. MotaL.F.M. VanzinA. ToscanoA. TrevisiE. Ajmone MarsanP. BrascaM. CecchinatoA. The β-casein (CSN2) A2 allelic variant alters milk protein profile and slightly worsens coagulation properties in Holstein cows.J. Dairy Sci.202210553794380910.3168/jds.2021‑2153735248385
    [Google Scholar]
  83. NguyenQ.V. Malau-AduliB.S. CavalieriJ. NicholsP.D. Malau-AduliA.E.O. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption.Nutrients201911474310.3390/nu1104074330934976
    [Google Scholar]
  84. GaticaC. AlomarD. Variantes genéticas de beta caseína bovina: Implicancia en la producción, características tecnológicas de la leche y la salud humana.Agro Sur2017453293510.4206/agrosur.2017.v45n3‑05
    [Google Scholar]
  85. UrrutiaO. MendizabalJ.A. AlfonsoL. Conversion of dairy cattle farms to A2 production.Rev. Frisona Esp20192328890
    [Google Scholar]
  86. BentivoglioD. FincoA. BucciG. StaffolaniG. Is there a promising market for the A2 milk? Analysis of Italian consumer preferences.Sustainability20201217676310.3390/su12176763
    [Google Scholar]
  87. de VitteK. KerzieneS. KlementavičiūtėJ. de VitteM. MišeikienėR. KudlinskienėI. ČepaitėJ. DilbieneV. StankevičiusR. Relationship of β-casein genotypes (A1A1, A1A2 and A2A2) to the physicochemical composition and sensory characteristics of cows’ milk.J. Appl. Anim. Res.202250116116610.1080/09712119.2022.2046005
    [Google Scholar]
  88. GustavssonF. BuitenhuisA.J. JohanssonM. BertelsenH.P. GlantzM. PoulsenN.A. Lindmark MånssonH. StålhammarH. LarsenL.B. BendixenC. PaulssonM. AndrénA. Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows.J. Dairy Sci.20149763866387710.3168/jds.2013‑731224704225
    [Google Scholar]
  89. BittanteG. PenasaM. CecchinatoA. Invited review: Genetics and modeling of milk coagulation properties.J. Dairy Sci.201295126843687010.3168/jds.2012‑550723021752
    [Google Scholar]
  90. Zoetis Genetics. Identifying milk proteins in one step with Clarifide 2013. Available from: https://www.zoetisus.com/products/clarifide/default.aspx
/content/journals/cpps/10.2174/0113892037366987250401183000
Loading
/content/journals/cpps/10.2174/0113892037366987250401183000
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): A1 milk; A2 milk; Cow; genetic variation; health claims; polymorphism
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test