Skip to content
2000
image of A2 Milk: The Impact of Genetic Variation in Milk Protein on Human Health

Abstract

Recently, a new type of cow’s milk has been commercialized in the markets, called A2 milk. It is derived from a specific allelic composition on chromosome 6. The only difference between A1 and A2 milk results from the polymorphism at the 67 amino acid chain. In this position, A2 milk has a proline amino acid, while A1 milk has a histidine amino acid. Proteins are one of the most important components of milk, especially casein, and have received significant attention as they are the source of bioactive >opioid peptides called beta-casomorphin-7. Peptides are released through enzymatic digestion of casein and whey proteins. More precisely, this bioactive peptide is produced by sequential gastrointestinal digestion of bovine A1 variants proteins, while this phenomenon is not present in variant A2. Studies have reported that A1 milk can be harmful to health not only for adults but also for infants and that β-casein A2 becomes a safer choice following the relationship between disease risk and consumption of the beta-casomorphin-7 peptide. Indeed, epidemiological studies suggest that the released beta-casomorphin-7 peptide is a risk factor for the development of diseases in humans, but this has not yet been validated by other studies. In contrast, A2 milk has been suggested as an appropriate substitute for A1 milk since populations consuming milk containing high levels of the A2 beta-casein variant have lower rates of diseases, such as diabetes, coronary heart disease, autism, and schizophrenia.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037366987250401183000
2025-04-24
2025-09-15
Loading full text...

Full text loading...

References

  1. Sebastiani C. Arcangeli C. Ciullo M. Torricelli M. Cinti G. Fisichella S. Biagetti M. Frequencies evaluation of β-casein gene polymorphisms in dairy cows reared in Central Italy. Animals 2020 10 2 252 10.3390/ani10020252 32033348
    [Google Scholar]
  2. Caroli A.M. Chessa S. Erhardt G.J. Invited review: Milk protein polymorphisms in cattle: Effect on animal breeding and human nutrition. J. Dairy Sci. 2009 92 11 5335 5352 10.3168/jds.2009‑2461 19841193
    [Google Scholar]
  3. Pereira P.C. Milk nutritional composition and its role in human health. Nutrition 2014 30 6 619 627 10.1016/j.nut.2013.10.011 24800664
    [Google Scholar]
  4. Pal S. Woodford K. Kukuljan S. Ho S. Milk intolerance, beta- casein and lactose. Nutrients 2015 7 9 7285 7297 10.3390/nu7095339 26404362
    [Google Scholar]
  5. Bodnár Á. Hajzsér A. Egerszegi I. Póti P. Kuchtik J. Pajor F. A2 milk and its importance in dairy production and global market. Anim. Welf. Etol. Tartástechnol. 2018 19 1 1 10 10.17205/szie.aweth.2018.1.001
    [Google Scholar]
  6. McLachlan C.N.S. β-casein A1, ischaemic heart disease mortality, and other illnesses. Med. Hypotheses 2001 56 2 262 272 10.1054/mehy.2000.1265 11425301
    [Google Scholar]
  7. Elliott R.B. Harris D.P. Hill J.P. Bibby N.J. Wasmuth H.E. Type I (insulin-dependent) diabetes mellitus and cow milk: Casein variant consumption. Diabetologia 1999 42 3 292 296 10.1007/s001250051153 10096780
    [Google Scholar]
  8. Park Y.W. Haenlein G.F.W. A2 bovine milk and caprine milk as a means of remedy for milk protein allergy. Dairy 2021 2 2 191 201 10.3390/dairy2020017
    [Google Scholar]
  9. Jianqin S. Leiming X. Lu X. Yelland G.W. Ni J. Clarke A.J. Effects of milk containing only A2 beta casein versus milk containing both A1 and A2 beta casein proteins on gastrointestinal physiology, symptoms of discomfort, and cognitive behavior of people with self-reported intolerance to traditional cows’ milk. Nutr. J. 2015 15 1 16
    [Google Scholar]
  10. Woodford, K.B. Devil in the milk: Illness, health and politics of A1 and A2 milk. White River Junction, VT: Chelsea Green Publishing; 2009. ISBN: 9781603581028.
  11. Shook G.E. Selection for disease resistance. J. Dairy Sci. 1989 72 5 1349 1362 10.3168/jds.S0022‑0302(89)79242‑0 2663944
    [Google Scholar]
  12. Winaya, A.; Coy, P.; Fauzi, N. (2019). Preventing saltwater intrusion in the Coastal of Terengganu, can BRIS soil system help? IOP Conference Series: Earth and Environmental Science, 1019(1), 012008. https://doi.org/10.1088/1755-1315/1019/1/012008
  13. Van Der Berg J.P. Kleter G.A. Battaglia E. Groenen M.A.M. Kok E.J. Developments in genetic modification of cattle and implications for regulation, safety and traceability. Front. Agric. Sci. Eng. 2020 7 2 136 10.15302/J‑FASE‑2019306
    [Google Scholar]
  14. Miglior F. Fleming A. Malchiodi F. Brito L.F. Martin P. Baes C.F. A 100-Year Review: Identification and genetic selection of economically important traits in dairy cattle. J. Dairy Sci. 2017 100 12 10251 10271 10.3168/jds.2017‑12968 29153164
    [Google Scholar]
  15. Mrode R. Ojango J.M.K. Okeyo A.M. Mwacharo J.M. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: Current status and future prospects. Front. Genet. 2019 9 694 10.3389/fgene.2018.00694 30687382
    [Google Scholar]
  16. Prasad M. Gourkhede D.P. Vidyarani H. Shinde B. Mishra B.P. Wankhade P.R. Belore B. Lalthanmawii J. Koneti P.B. Delving into the A1/A2 milk hypothesis: A comprehensive analysis of milk proteins and their impact on human health. Int. J. Vet. Sci. Anim. Husbandry 2024 9 1 594 605 10.22271/veterinary.2024.v9.i1Si.1082
    [Google Scholar]
  17. Brooke-Taylor S. Dwyer K. Woodford K. Kost N. Systematic review of the gastrointestinal effects of A1 compared with A2 β- casein. Adv. Nutr. 2017 8 5 739 748 10.3945/an.116.013953 28916574
    [Google Scholar]
  18. Mehta B.M. Chemical composition of milk and milk products. Handbook of Food Chemistry. Springer Berlin, Heidelberg 2015 511 533
    [Google Scholar]
  19. Andiç S. Ayaz R.M. Oğuz Ş. A1 milk and beta-casomorphin-7. Food and Health 2021 7 2 128 137 10.3153/FH21014
    [Google Scholar]
  20. Yasmin I. Iqbal R. Liaqat A. Khan W.A. Nadeem M. Iqbal A. Chughtai M.F.J. Rehman S.J.U. Tehseen S. Mehmood T. Ahsan S. Tanweer S. Naz S. Khaliq A. Characterization and comparative evaluation of milk protein variants from pakistani dairy breeds. Food Sci. Anim. Resour. 2020 40 5 689 698 10.5851/kosfa.2020.e44 32968722
    [Google Scholar]
  21. Kamiński S. Cieślińska A. Kostyra E. Polymorphism of bovine beta-casein and its potential effect on human health. J. Appl. Genet. 2007 48 3 189 198 10.1007/BF03195213 17666771
    [Google Scholar]
  22. Farhat L.B. Hoarau A. Tóth V. Suli A. Labas K.S. Abidi F. Mikó E. Genotypic Effects of β-casein in milk composition in jersey cows. Black Sea J. Agric. 2024 6 6 649 654 10.47115/bsagriculture.1297156
    [Google Scholar]
  23. Aschaffenburg R. Drewry J. Occurrence of different beta-lactoglobulins in cow’s milk. Nature 1955 176 4474 218 219 10.1038/176218b0 13244664
    [Google Scholar]
  24. Mayer H.K. Lenz K. Halbauer E.M. “A2 milk” authentication using isoelectric focusing and different PCR techniques. Food Res. Int. 2021 147 110523 10.1016/j.foodres.2021.110523 34399501
    [Google Scholar]
  25. Alim M.A. Dong T. Xie Y. Wu X.P. Zhang Y. Zhang S. Sun D.X. Effect of polymorphisms in the CSN3 (κ-casein) gene on milk production traits in Chinese Holstein Cattle. Mol. Biol. Rep. 2014 41 11 7585 7593 10.1007/s11033‑014‑3648‑x 25091943
    [Google Scholar]
  26. Prabakusuma A. Aleryani H. Genotyping, physicochemical characterization, and protein isoform quantification of β-casein A2 milk in chinese simmental and Angus cattle. Emir. J. Food Agric. 2022 10.9755/ejfa.2022.v34.i8.2882
    [Google Scholar]
  27. Gislon G. Bava L. Bisutti V. Tamburini A. Brasca M. Bovine beta casein polymorphism and environmental sustainability of cheese production: The case of Grana Padano PDO and mozzarella cheese. Sustain. Prod. Consum. 2023 35 85 94 10.1016/j.spc.2022.10.017
    [Google Scholar]
  28. Dantas A. Kumar H. Prudencio E.S. de Avila L.B. Junior Orellana-Palma P. Dosoky N.S. Nepovimova E. Kuča K. Cruz-Martins N. Verma R. Manickam S. Valko M. Kumar D. An approach on detection, quantification, technological properties, and trends market of A2 cow milk. Food Res. Int. 2023 167 112690 10.1016/j.foodres.2023.112690 37087212
    [Google Scholar]
  29. Banyko J. Distribution of α S1-casein” welsh” variant in some Slovak and Czech sheep breeds. Arch. Tierzucht 2007 50 381 387
    [Google Scholar]
  30. Ahmed A.S. Rahmatalla S. Bortfeldt R. Arends D. Reissmann M. Brockmann G.A. Milk protein polymorphisms and casein haplotypes in Butana cattle. J. Appl. Genet. 2017 58 2 261 271 10.1007/s13353‑016‑0381‑2 27924448
    [Google Scholar]
  31. Ceriotti G. Marletta D. Caroli A. Erhardt G. Milk protein loci polymorphism in taurine ( Bos taurus ) and zebu ( Bos indicus ) populations bred in hot climate. J. Anim. Breed. Genet. 2004 121 6 404 415 10.1111/j.1439‑0388.2004.00471.x
    [Google Scholar]
  32. Farrell H.M. Jr Jimenez-Flores R. Bleck G.T. Brown E.M. Butler J.E. Creamer L.K. Hicks C.L. Hollar C.M. Ng-Kwai-Hang K.F. Swaisgood H.E. Nomenclature of the proteins of cows’ milk--sixth revision. J. Dairy Sci. 2004 87 6 1641 1674 10.3168/jds.S0022‑0302(04)73319‑6 15453478
    [Google Scholar]
  33. Nuomin Nguyen Q.D. Aodaohu Nishino N. Frequency of β-casein gene polymorphisms in Jersey cows in western Japan. Animals 2022 12 16 2076 10.3390/ani12162076 36009666
    [Google Scholar]
  34. Truswell A.S. The A2 milk case: A critical review. Eur. J. Clin. Nutr. 2005 59 5 623 631 10.1038/sj.ejcn.1602104 15867940
    [Google Scholar]
  35. Bonsing J. M Ring J. Francis Stewart A. G Mackinlay A. Complete nucleotide sequence of the bovine beta-casein gene. Aust. J. Biol. Sci. 1988 41 4 527 537 10.1071/BI9880527 3271384
    [Google Scholar]
  36. Jiménez-Montenegro L. Alfonso L. Mendizabal J.A. Urrutia O. Worldwide research trends on milk containing only A2 β-casein: A bibliometric study. Animals 2022 12 15 1909 10.3390/ani12151909 35953898
    [Google Scholar]
  37. Ariton A-M. Neculai-Văleanu A-S. Poroșnicu I. Ungureanu E. A2 milk-advantages and challenges in the manufacturing of dairy products. Lucr. Stiint. Zooteh. Biotehnol. 2024 57 168 168
    [Google Scholar]
  38. Huppertz T. Fox P. Kelly A. The caseins: Structure, stability, and functionality. Proteins in food processing Elsevier 2018 49 92
    [Google Scholar]
  39. McCarthy N.A. Kelly A.L. O’Mahony J.A. Fenelon M.A. The physical characteristics and emulsification properties of partially dephosphorylated bovine β-casein. Food Chem. 2013 138 2-3 1304 1311 10.1016/j.foodchem.2012.11.080 23411247
    [Google Scholar]
  40. Horne D.S. Casein micelle structure and stability. Milk proteins Elsevier 2020 213 250 10.1016/B978‑0‑12‑815251‑5.00006‑2
    [Google Scholar]
  41. Raynes J.K. Day L. Augustin M.A. Carver J.A. Structural differences between bovine A1 and A2 β-casein alter micelle self-assembly and influence molecular chaperone activity. J. Dairy Sci. 2015 98 4 2172 2182 10.3168/jds.2014‑8800 25648798
    [Google Scholar]
  42. Daniloski D. McCarthy N.A. Markoska T. Auldist M.J. Vasiljevic T. Conformational and physicochemical characteristics of bovine skim milk obtained from cows with different genetic variants of β-casein. Food Hydrocoll. 2022 124 107186 10.1016/j.foodhyd.2021.107186
    [Google Scholar]
  43. Gustavsson F. Glantz M. Buitenhuis A.J. Lindmark-Månsson H. Stålhammar H. Andrén A. Paulsson M. Factors influencing chymosin-induced gelation of milk from individual dairy cows: Major effects of casein micelle size and calcium. Int. Dairy J. 2014 39 1 201 208 10.1016/j.idairyj.2014.06.011
    [Google Scholar]
  44. O’mahony J. Fox P. Milk proteins: Introduction and historical aspects. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects Springer 2012 43 85
    [Google Scholar]
  45. Daniloski D. McCarthy N.A. Vasiljevic T. Impact of heating on the properties of A1/A1, A1/A2, and A2/A2 β-casein milk phenotypes. Food Hydrocoll. 2022 128 107604 10.1016/j.foodhyd.2022.107604
    [Google Scholar]
  46. ul Haq M.R. Kapila R. Shandilya U.K. Kapila S. Impact of milk derived β-casomorphins on physiological functions and trends in research: A review. Int. J. Food Prop. 2014 17 8 1726 1741 10.1080/10942912.2012.712077
    [Google Scholar]
  47. Swaisgood H.E. Enzymes indigenous to bovine milk. Handbook of Milk Composition. Jensen R.G. New York, NY Academic Press 1995 472 475 10.1016/B978‑0‑12‑384430‑9.50047‑0
    [Google Scholar]
  48. Şahin, Ö.; Boztepe, S. Assessment of A1 and A2 variants in the CNS2 gene of some cattle breeds by using ACRS-PCR method. An. Biotechnol., 2022, 34(4), 1505–1513. https://doi.org/10.1080/10495398.2022.2036176
  49. Priyadarshini P. Mishra C. Mishra B. Swain K. Rout M. Mishra S.P. Impact of milk protein on human health: A1 verses A2. Int. J. Chem. Stud. 2018 6 531 535
    [Google Scholar]
  50. Gard F. Flad L.M. Weißer T. Ammer H. Deeg C.A. Effects of A1 milk, A2 milk and the opioid-like peptide β-casomorphin-7 on the proliferation of human peripheral blood mononuclear cells. Biomolecules 2024 14 6 690 10.3390/biom14060690 38927093
    [Google Scholar]
  51. Ikonen T. Ojala M. Ruottinen O. Associations between milk protein polymorphism and first lactation milk production traits in Finnish Ayrshire cows. J. Dairy Sci. 1999 82 5 1026 1033 10.3168/jds.S0022‑0302(99)75323‑3 10342242
    [Google Scholar]
  52. Lambers T.T. Broeren S. Heck J. Bragt M. Huppertz T. Processing affects beta-casomorphin peptide formation during simulated gastrointestinal digestion in both A1 and A2 milk. Int. Dairy J. 2021 121 105099 10.1016/j.idairyj.2021.105099
    [Google Scholar]
  53. Elitsur Y. Luk G.D. Beta-casomorphin (BCM) and human colonic lamina propria lymphocyte proliferation. Clin. Exp. Immunol. 2008 85 3 493 497 10.1111/j.1365‑2249.1991.tb05755.x 1893631
    [Google Scholar]
  54. Woodford K.B. A critique of Truswell’s A2 milk review. Eur. J. Clin. Nutr. 2006 60 3 437 439 10.1038/sj.ejcn.1602322 16278689
    [Google Scholar]
  55. Elliott, R.B.; Wasmuth, H.E.; Bibby, N.J.; Hill, J.P. The role of β-casein variants in the induction of insulin-dependent diabetes in the non-obese diabetic mouse and humans. In Milk Protein Polymorphism (pp. 445–453). Brussels, Belgium: International Dairy Federation; 1997.
  56. Jeong H. Park Y.S. Yoon S.S. A2 milk consumption and its health benefits: An update. Food Sci. Biotechnol. 2024 33 3 491 503 10.1007/s10068‑023‑01428‑5 38274187
    [Google Scholar]
  57. Laugesen M Elliott R Ischaemic heart disease, type 1 diabetes, and cow milk A1 beta-casein. N. Z. Med. J. 2003 116 1168 U295 12601419
    [Google Scholar]
  58. Chia J.S.J. McRae J.L. Kukuljan S. Woodford K. Elliott R.B. Swinburn B. Dwyer K.M. A1 beta-casein milk protein and other environmental pre-disposing factors for type 1 diabetes. Nutr. Diabetes 2017 7 5 e274 e274 10.1038/nutd.2017.16 28504710
    [Google Scholar]
  59. De Noni I. FitzGerald R.J. Korhonen H.J. Le Roux Y. Livesey C.T. Thorsdottir I. Tomé D. Witkamp R. Review of the potential health impact of β-casomorphins and related peptides. EFSA Sci. Rep. 2009 231 1 107
    [Google Scholar]
  60. Asledottir T. Picariello G. Mamone G. Ferranti P. Røseth A. Devold T.G. Vegarud G.E. Degradation of β-casomorphin-7 through in vitro gastrointestinal and jejunal brush border membrane digestion. J. Dairy Sci. 2019 102 10 8622 8629 10.3168/jds.2019‑16771 31351730
    [Google Scholar]
  61. Hegde N.G. Research on A1 and A2 milk: A1 milk is not a matter of health concern. Indian J. Anim. Sci. 2019 89 7 707 711 10.56093/ijans.v89i7.92010
    [Google Scholar]
  62. Tailford K. Berry C.L. Thomas A.C. Campbell J.H. A casein variant in cow’s milk is atherogenic. Atherosclerosis 2003 170 1 13 19 10.1016/S0021‑9150(03)00131‑X 12957678
    [Google Scholar]
  63. Chin-Dusting J. Shennan J. Jones E. Williams C. Kingwell B. Dart A. Effect of dietary supplementation with βcasein A1 or A2 on markers of disease development in individuals at high risk of cardiovascular disease. Br. J. Nutr. 2006 95 1 136 144 10.1079/BJN20051599 16441926
    [Google Scholar]
  64. Venn B.J. Skeaff C.M. Brown R. Mann J.I. Green T.J. A comparison of the effects of A1 and A2 β-casein protein variants on blood cholesterol concentrations in New Zealand adults. Atherosclerosis 2006 188 1 175 178 10.1016/j.atherosclerosis.2005.10.020 16298373
    [Google Scholar]
  65. Parashar A. Saini R.K. A1 milk and its controversy-a review. Int. J. Bioassays 2015 4 4611 4619
    [Google Scholar]
  66. Sokolov O. Kost N. Andreeva O. Korneeva E. Meshavkin V. Tarakanova Y. Dadayan A. Zolotarev Y. Grachev S. Mikheeva I. Varlamov O. Zozulya A. Autistic children display elevated urine levels of bovine casomorphin-7 immunoreactivity. Peptides 2014 56 68 71 10.1016/j.peptides.2014.03.007 24657283
    [Google Scholar]
  67. Teschemacher H. Umbach M. Hamel U. Praetorius K. Ahnert-Hilger G. Brantl V. Lottspeich F. Henschen A. No evidence for the presence of β-casomorphins in human plasma after ingestion of cows’ milk or milk products. J. Dairy Res. 1986 53 1 135 138 10.1017/S0022029900024730 3958290
    [Google Scholar]
  68. Sun Z. Zhang Z. Wang X. Cade R. Elmir Z. Fregly M. Relation of β-casomorphin to apnea in sudden infant death syndrome. Peptides 2003 24 6 937 943 10.1016/S0196‑9781(03)00156‑6 12948848
    [Google Scholar]
  69. De Noni I. Cattaneo S. Occurrence of β-casomorphins 5 and 7 in commercial dairy products and in their digests following in vitro simulated gastro-intestinal digestion. Food Chem. 2010 119 2 560 566 10.1016/j.foodchem.2009.06.058
    [Google Scholar]
  70. Küllenberg de Gaudry D. Lohner S. Schmucker C. Kapp P. Motschall E. Hörrlein S. Röger C. Meerpohl J.J. Milk A1 β- casein and health-related outcomes in humans: A systematic review. Nutr. Rev. 2019 77 5 278 306 10.1093/nutrit/nuy063 30722004
    [Google Scholar]
  71. Kappes R. Schneider V. Schweizer H. Nüske S. Knob D.A. Thaler Neto A. Scholz A.M. Effect of β-casein A1 or A2 milk on body composition, milk intake, and growth in Holstein, Simmental, and crossbred dairy calves of both sexes. J. Dairy Sci. 2024 107 6 4033 4044 10.3168/jds.2023‑24046 38246546
    [Google Scholar]
  72. Daher S. Tahan S. Solé D. Naspitz C.K. Da Silva Patrício F.R. Neto U.F. De Morais M.B. Cow’s milk protein intolerance and chronic constipation in children. Pediatr. Allergy Immunol. 2001 12 6 339 342 10.1034/j.1399‑3038.2001.0o057.x 11846872
    [Google Scholar]
  73. Ho S. Woodford K. Kukuljan S. Pal S. Comparative effects of A1 versus A2 beta-casein on gastrointestinal measures: A blinded randomised cross-over pilot study. Eur. J. Clin. Nutr. 2014 68 9 994 1000 10.1038/ejcn.2014.127 24986816
    [Google Scholar]
  74. Ramakrishnan M. Eaton T.K. Sermet O.M. Savaiano D.A. Milk containing A2 β-casein only, as a single meal, causes fewer symptoms of lactose intolerance than milk containing A1 and A2 β-caseins in subjects with lactose maldigestion and intolerance: A randomized, double-blind, crossover trial. Nutrients 2020 12 12 3855 10.3390/nu12123855 33348621
    [Google Scholar]
  75. Kaplan M. Baydemir B. Günar B.B. Arslan A. Duman H. Karav S. Benefits of A2 milk for sports nutrition, health and performance. Front. Nutr. 2022 9 935344 10.3389/fnut.2022.935344 35911103
    [Google Scholar]
  76. Fernández-Rico S. Mondragón A.C. López-Santamarina A. Cardelle-Cobas A. Regal P. Lamas A. Ibarra I.S. Cepeda A. Miranda J.M. A2 milk: New perspectives for food technology and human health. Foods 2022 11 16 2387 10.3390/foods11162387 36010390
    [Google Scholar]
  77. Deth R. Clarke A. Ni J. Trivedi M. Clinical evaluation of glutathione concentrations after consumption of milk containing different subtypes of β-casein: results from a randomized, cross-over clinical trial. Nutr. J. 2015 15 1 82 10.1186/s12937‑016‑0201‑x 27680716
    [Google Scholar]
  78. Giribaldi M. Lamberti C. Cirrincione S. Giuffrida M.G. Cavallarin L. A2 milk and BCM-7 peptide as emerging parameters of milk quality. Front. Nutr. 2022 9 842375 10.3389/fnut.2022.842375 35571904
    [Google Scholar]
  79. Juan B. Trujillo A.J. Acid and rennet coagulation properties of A2 milk. Foods 2022 11 22 3648 10.3390/foods11223648 36429240
    [Google Scholar]
  80. Ketto I.A. Knutsen T.M. Øyaas J. Heringstad B. Ådnøy T. Devold T.G. Skeie S.B. Effects of milk protein polymorphism and composition, casein micelle size and salt distribution on the milk coagulation properties in Norwegian Red cattle. Int. Dairy J. 2017 70 55 64 10.1016/j.idairyj.2016.10.010
    [Google Scholar]
  81. Poulsen N.A. Bertelsen H.P. Jensen H.B. Gustavsson F. Glantz M. Lindmark Månsson H. Andrén A. Paulsson M. Bendixen C. Buitenhuis A.J. Larsen L.B. The occurrence of noncoagulating milk and the association of bovine milk coagulation properties with genetic variants of the caseins in 3 Scandinavian dairy breeds. J. Dairy Sci. 2013 96 8 4830 4842 10.3168/jds.2012‑6422 23746587
    [Google Scholar]
  82. Bisutti V. Pegolo S. Giannuzzi D. Mota L.F.M. Vanzin A. Toscano A. Trevisi E. Ajmone Marsan P. Brasca M. Cecchinato A. The β-casein (CSN2) A2 allelic variant alters milk protein profile and slightly worsens coagulation properties in Holstein cows. J. Dairy Sci. 2022 105 5 3794 3809 10.3168/jds.2021‑21537 35248385
    [Google Scholar]
  83. Nguyen Q.V. Malau-Aduli B.S. Cavalieri J. Nichols P.D. Malau-Aduli A.E.O. Enhancing omega-3 long-chain polyunsaturated fatty acid content of dairy-derived foods for human consumption. Nutrients 2019 11 4 743 10.3390/nu11040743 30934976
    [Google Scholar]
  84. Gatica C. Alomar D. Variantes genéticas de beta caseína bovina: Implicancia en la producción, características tecnológicas de la leche y la salud humana. Agro Sur 2017 45 3 29 35 10.4206/agrosur.2017.v45n3‑05
    [Google Scholar]
  85. Urrutia O. Mendizabal J.A. Alfonso L. Conversion of dairy cattle farms to A2 production. Rev. Frisona Esp 2019 232 88 90
    [Google Scholar]
  86. Bentivoglio D. Finco A. Bucci G. Staffolani G. Is there a promising market for the A2 milk? Analysis of Italian consumer preferences. Sustainability 2020 12 17 6763 10.3390/su12176763
    [Google Scholar]
  87. de Vitte K. Kerziene S. Klementavičiūtė J. de Vitte M. Mišeikienė R. Kudlinskienė I. Čepaitė J. Dilbiene V. Stankevičius R. Relationship of β-casein genotypes (A1A1, A1A2 and A2A2) to the physicochemical composition and sensory characteristics of cows’ milk. J. Appl. Anim. Res. 2022 50 1 161 166 10.1080/09712119.2022.2046005
    [Google Scholar]
  88. Gustavsson F. Buitenhuis A.J. Johansson M. Bertelsen H.P. Glantz M. Poulsen N.A. Lindmark Månsson H. Stålhammar H. Larsen L.B. Bendixen C. Paulsson M. Andrén A. Effects of breed and casein genetic variants on protein profile in milk from Swedish Red, Danish Holstein, and Danish Jersey cows. J. Dairy Sci. 2014 97 6 3866 3877 10.3168/jds.2013‑7312 24704225
    [Google Scholar]
  89. Bittante G. Penasa M. Cecchinato A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012 95 12 6843 6870 10.3168/jds.2012‑5507 23021752
    [Google Scholar]
  90. Zoetis Genetics. Identifying milk proteins in one step with Clarifide [Internet]. 2013. Available from: https://www.zoetisus.com/products/clarifide/default.aspx
/content/journals/cpps/10.2174/0113892037366987250401183000
Loading
/content/journals/cpps/10.2174/0113892037366987250401183000
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: polymorphism ; A1 milk ; genetic variation ; health claims ; A2 milk ; Cow
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test