Skip to content
2000
image of What Can Proteomics Tell us About COVID-19 Infections? Mass Spectrometry as a Tool to Find New Proteins as Biomarkers

Abstract

The COVID-19 outbreak, caused by the SARS-CoV-2 coronavirus, has threatened and taken many lives since the end of 2019. Given the importance of COVID-19 worldwide, since its spread, many research groups have been seeking blood markers that could help to understand the disease establishment and prognosis. Usually, those markers are proteins with a differential accumulation only during infection. Based on that, proteomic studies have played a crucial role in elucidating diseases. Mass spectrometry (MS) is a promising technique in COVID-19 studies, allowing the identification and quantification of proteins present in the plasma or serum of affected patients. It helps us to understand pathological mechanisms, predict clinical outcomes, and develop specific therapies. MS proteomics revealed biomarkers associated with infection, disease severity, and immune response. Plasma or blood serum is easy to collect and store; however, its composition and the higher concentration of proteins ( albumins) shadow the identification of less abundant proteins, which usually are essential markers. So, clean-up approaches such as depletion strategies and fractionating are often required to analyze blood samples, allowing the identification of low-abundant proteins. This review will discuss many proteomic approaches to discovering new plasma biomarkers of COVID-19 employed in recently published studies. The challenges inherent to blood samples will also be discussed, such as sample preparation, data processing, and identifying reliable biomarkers.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037364237250402151440
2025-05-08
2025-09-15
Loading full text...

Full text loading...

References

  1. Mirtaleb M.S. Falak R. Heshmatnia J. Bakhshandeh B. Taheri R.A. Soleimanjahi H. Zolfaghari Emameh R. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations. Int. Immunopharmacol. 2023 117 109934 10.1016/j.intimp.2023.109934 36867924
    [Google Scholar]
  2. Costanzo M. Caterino M. Fedele R. Cevenini A. Pontillo M. Barra L. Ruoppolo M. COVIDomics: The proteomic and metabolomic signatures of COVID-19. Int. J. Mol. Sci. 2022 23 5 2414 10.3390/ijms23052414 35269564
    [Google Scholar]
  3. Naqvi A.A.T. Fatima K. Mohammad T. Fatima U. Singh I.K. Singh A. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach. Biochim. Biophys. Acta. Mol. Basi. Dis. 2020 1866 10 165878 10.1016/j.bbadis.2020.165878 32544429
    [Google Scholar]
  4. Zhang Y.Z. Holmes E.C. A genomic perspective on the origin and emergence of SARS-CoV-2. Cell 2020 181 2 223 227 10.1016/j.cell.2020.03.035 32220310
    [Google Scholar]
  5. Whetton A.D. Preston G.W. Abubeker S. Geifman N. Proteomics and informatics for understanding phases and identifying biomarkers in COVID-19 disease. J. Proteome Res. 2020 19 11 4219 4232 10.1021/acs.jproteome.0c00326 32657586
    [Google Scholar]
  6. Ahsan N. Rao R.S.P. Wilson R.S. Punyamurtula U. Salvato F. Petersen M. Ahmed M.K. Abid M.R. Verburgt J.C. Kihara D. Yang Z. Fornelli L. Foster S.B. Ramratnam B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics 2021 21 10 2000279 10.1002/pmic.202000279 33860983
    [Google Scholar]
  7. Sahin A.T. Yurtseven A. Dadmand S. Ozcan G. Akarlar B.A. Kucuk N.E.O. Senturk A. Ergonul O. Can F. Tuncbag N. Ozlu N. Plasma proteomics identify potential severity biomarkers from COVID-19 associated network. Proteomics Clin. Appl. 2023 17 2 2200070 10.1002/prca.202200070 36217943
    [Google Scholar]
  8. Lee H. Kim S.I. Review of liquid chromatography-mass spectrometry-based proteomic analyses of body fluids to diagnose infectious diseases. Int. J. Mol. Sci. 2022 23 4 2187 10.3390/ijms23042187 35216306
    [Google Scholar]
  9. Ray S. Reddy P.J. Jain R. Gollapalli K. Moiyadi A. Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead. Proteomics 2011 11 11 2139 2161 10.1002/pmic.201000460 21548090
    [Google Scholar]
  10. Mazzulli T. Low D.E. Poutanen S.M. Proteomics and severe acute respiratory syndrome (SARS): Emerging technology meets emerging pathogen. Clin. Chem. 2005 51 1 6 7 10.1373/clinchem.2004.041574 15613703
    [Google Scholar]
  11. Sperk M. van Domselaar R. Rodriguez J.E. Mikaeloff F. Sá Vinhas B. Saccon E. Sönnerborg A. Singh K. Gupta S. Végvári Á. Neogi U. Utility of proteomics in emerging and re-emerging infectious diseases caused by RNA viruses. J. Proteome Res. 2020 19 11 4259 4274 10.1021/acs.jproteome.0c00380 33095583
    [Google Scholar]
  12. Lazari L.C. Ghilardi F.D.R. Rosa-Fernandes L. Assis D.M. Nicolau J.C. Santiago V.F. Dalçóquio T.F. Angeli C.B. Bertolin A.J. Marinho C.R.F. Wrenger C. Durigon E.L. Siciliano R.F. Palmisano G. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19. Life Sci. Alliance 2021 4 8 e202000946 10.26508/lsa.202000946 34168074
    [Google Scholar]
  13. Memon D. Barrio-Hernandez I. Beltrao P. Individual COVID-19 disease trajectories revealed by plasma proteomics. EMBO Mol. Med. 2021 13 8 e14532 10.15252/emmm.202114532 34260159
    [Google Scholar]
  14. Sharma A. Ahmad Farouk I. Lal S.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention. Viruses 2021 13 2 202 10.3390/v13020202 33572857
    [Google Scholar]
  15. Richard V.R. Gaither C. Popp R. Chaplygina D. Brzhozovskiy A. Kononikhin A. Mohammed Y. Zahedi R.P. Nikolaev E.N. Borchers C.H. Early prediction of COVID-19 patient survival by targeted plasma multi-omics and machine learning. Mol. Cell. Proteomics 2022 21 10 100277 10.1016/j.mcpro.2022.100277 35931319
    [Google Scholar]
  16. Overmyer K.A. Shishkova E. Miller I.J. Balnis J. Bernstein M.N. Peters-Clarke T.M. Meyer J.G. Quan Q. Muehlbauer L.K. Trujillo E.A. He Y. Chopra A. Chieng H.C. Tiwari A. Judson M.A. Paulson B. Brademan D.R. Zhu Y. Serrano L.R. Linke V. Drake L.A. Adam A.P. Schwartz B.S. Singer H.A. Swanson S. Mosher D.F. Stewart R. Coon J.J. Jaitovich A. Large-scale multi-omic analysis of COVID-19 severity. Cell Syst. 2021 12 1 23 40.e7 10.1016/j.cels.2020.10.003 33096026
    [Google Scholar]
  17. Fernández-Costa C. Martínez-Bartolomé S. McClatchy D.B. Saviola A.J. Yu N.K. Yates J.R. III Impact of the identification strategy on the reproducibility of the DDA and DIA results. J. Proteome Res. 2020 19 8 3153 3161 10.1021/acs.jproteome.0c00153 32510229
    [Google Scholar]
  18. Jayasena T. Poljak A. Braidy N. Zhong L. Rowlands B. Muenchhoff J. Grant R. Smythe G. Teo C. Raftery M. Sachdev P. Application of targeted mass spectrometry for the quantification of sirtuins in the central nervous system. Sci. Rep. 2016 6 1 35391 10.1038/srep35391 27762282
    [Google Scholar]
  19. Nelson L.M. Simard J.F. Oluyomi A. Nava V. Rosas L.G. Bondy M. Linos E. US public concerns about the COVID-19 pandemic from results of a survey given via social media. JAMA Intern. Med. 2020 180 7 1020 1022 10.1001/jamainternmed.2020.1369 32259192
    [Google Scholar]
  20. Michels E.H.A. Appelman B. de Brabander J. van Amstel R.B.E. van Linge C.C.A. Chouchane O. Reijnders T.D.Y. Schuurman A.R. Sulzer T.A.L. Klarenbeek A.M. Douma R.A. Bos L.D.J. Wiersinga W.J. Peters-Sengers H. van der Poll T. van Agtmael M. Algera A.G. Appelman B. van Baarle F. Beudel M. Bogaard H.J. Bonta M.B.P. Bos L. Botta M. de Brabander J. de Bree G. de Bruin S. Bugiani M. Bulle E. Buis D.T.P. Cloherty O.C.A. Dijkstra M. Dongelmans D.A. Dujardin R.W.G. Elbers P. Fleuren L. Geijtenbeek S.G.T. Girbes A. Goorhuis B. Grobusch M.P. Hagens L. Hamann J. Harris V. Hemke R. Heunks S.M.H.L. Hollmann M. Horn J. Hovius J.W. de Jong H.K. de Jong M.D. Koning R. Lemkes B. Lim E.H.T. van Mourik N. Nellen J. Nossent E.J. Olie S. Paulus F. Peters E. Pina-Fuentes D.A.I. van der Poll T. Preckel B. Raasveld J. Reijnders T. de Rotte M.C.F.J. Schinkel M. Schultz M.J. Schrauwen F.A.P. Schuurman A. Schuurmans J. Sigaloff K. Slim M.A. Smeele P. Smit M. Stijnis C.S. Stilma W. Teunissen C. Thoral P. Tsonas A.M. Tuinman P.R. van der Valk M. Veelo D.P. Volleman C. de Vries H. Vught L.A. van Vugt M. Wouters D. Zwinderman A.H.K. Brouwer M.C. Wiersinga W.J. Vlaar A.P.J. van de Beek D. Host response changes and their association with mortality in COVID-19 patients with lymphopenia. Am. J. Respir. Crit. Care Med. 2024 209 4 402 416 10.1164/rccm.202305‑0890OC 37948687
    [Google Scholar]
  21. Shu T. Ning W. Wu D. Xu J. Han Q. Huang M. Zou X. Yang Q. Yuan Y. Bie Y. Pan S. Mu J. Han Y. Yang X. Zhou H. Li R. Ren Y. Chen X. Yao S. Qiu Y. Zhang D.Y. Xue Y. Shang Y. Zhou X. Plasma proteomics identify biomarkers and pathogenesis of COVID-19. Immunity 2020 53 5 1108 1122.e5 10.1016/j.immuni.2020.10.008 33128875
    [Google Scholar]
  22. Aebersold R. Mann M. Mass spectrometry-based proteomics. Nature 2003 422 6928 198 207 10.1038/nature01511 12634793
    [Google Scholar]
  23. Aebersold R. Mann M. Mass-spectrometric exploration of proteome structure and function. Nature 2016 537 7620 347 355 10.1038/nature19949 27629641
    [Google Scholar]
  24. Findeisen P. Neumaier M. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: Current status and future perspective. Clin. Chem. Lab. Med. 2009 47 6 666 684 10.1515/CCLM.2009.159 19445650
    [Google Scholar]
  25. Simanjuntak Y. Schamoni-Kast K. Grün A. Uetrecht C. Scaturro P. Top-down and bottom-up proteomics methods to study RNA virus biology. Viruses 2021 13 4 668 10.3390/v13040668 33924391
    [Google Scholar]
  26. Rana R. Rathi V. Ganguly N.K. A comprehensive overview of proteomics approach for COVID 19: New perspectives in target therapy strategies. J. Prot. Prot. 2020 11 4 223 232 10.1007/s42485‑020‑00052‑9 33162722
    [Google Scholar]
  27. Mahmud I. Garrett T.J. Mass spectrometry techniques in emerging pathogens studies: COVID-19 perspectives. J. Am. Soc. Mass Spectrom. 2020 31 10 2013 2024 10.1021/jasms.0c00238 32880453
    [Google Scholar]
  28. Zhao Y. Xue Q. Wang M. Meng B. Jiang Y. Zhai R. Zhang Y. Dai X. Fang X. Evolution of mass spectrometry instruments and techniques for blood proteomics. J. Proteome Res. 2023 22 4 1009 1023 10.1021/acs.jproteome.3c00102 36932955
    [Google Scholar]
  29. Mohammed Y. Goodlett D.R. Cheng M.P. Vinh D.C. Lee T.C. Mcgeer A. Sweet D. Tran K. Lee T. Murthy S. Boyd J.H. Singer J. Walley K.R. Patrick D.M. Quan C. Ismail S. Amar L. Pal A. Bassawon R. Fesdekjian L. Gou K. Lamontagne F. Marshall J. Haljan G. Fowler R. Winston B.W. Russell J.A. Longitudinal plasma proteomics analysis reveals novel candidate biomarkers in acute COVID-19. J. Proteome Res. 2022 21 4 975 992 10.1021/acs.jproteome.1c00863 35143212
    [Google Scholar]
  30. Suhre K. McCarthy M.I. Schwenk J.M. Genetics meets proteomics: Perspectives for large population-based studies. Nat. Rev. Genet. 2021 22 1 19 37 10.1038/s41576‑020‑0268‑2 32860016
    [Google Scholar]
  31. Ignjatovic V. Geyer P.E. Palaniappan K.K. Chaaban J.E. Omenn G.S. Baker M.S. Mass spectrometry-based plasma proteomics: Considerations from sample collection to achieving translational data. J. Prot. Res. 2019 18 12 4085 4097 10.1021/acs.jproteome.9b00503 31573204
    [Google Scholar]
  32. Adkins J.N. Varnum S.M. Auberry K.J. Moore R.J. Angell N.H. Smith R.D. Springer D.L. Pounds J.G. Toward a human blood serum proteome: Analysis by multidimensional separation coupled with mass spectrometry. Mol. Cell. Proteomics 2002 1 12 947 955 10.1074/mcp.M200066‑MCP200 12543931
    [Google Scholar]
  33. Hüttenhain R. Malmström J. Picotti P. Aebersold R. Perspectives of targeted mass spectrometry for protein biomarker verification. Curr. Opin. Chem. Biol. 2009 13 5-6 518 525 10.1016/j.cbpa.2009.09.014 19818677
    [Google Scholar]
  34. Zolotarjova N. Martosella J. Nicol G. Bailey J. Boyes B.E. Barrett W.C. Differences among techniques for high-abundant protein depletion. Proteomics 2005 5 13 3304 3313 10.1002/pmic.200402021 16052628
    [Google Scholar]
  35. Cavalcante J.S. de Almeida D.E.G. Moraes M.S. Santos S.R. Pincinato P.M. Riciopo P.M. de Oliveira L.L.B. Monteiro W.M. Ferreira-Junior R.S. Challenges and opportunities in clinical diagnostic routine of envenomation using blood plasma proteomics. Toxins (Basel) 2023 15 3 180 10.3390/toxins15030180 36977071
    [Google Scholar]
  36. Lee P.Y. Osman J. Low T.Y. Jamal R. Plasma/serum proteomics: Depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 2019 11 19 1799 1812 10.4155/bio‑2019‑0145 31617391
    [Google Scholar]
  37. Pietrowska M. Wlosowicz A. Gawin M. Widlak P. MS-based proteomic analysis of serum and plasma: Problem of high abundant components and lights and shadows of albumin removal. Adv. Exp. Med. Biol. 2019 1073 57 76 10.1007/978‑3‑030‑12298‑0_3 31236839
    [Google Scholar]
  38. Schwenk J.M. Omenn G.S. Sun Z. Campbell D.S. Baker M.S. Overall C.M. Aebersold R. Moritz R.L. Deutsch E.W. The human plasma proteome draft of 2017: Building on the human plasma peptideatlas from mass spectrometry and complementary assays. J. Proteome Res. 2017 16 12 4299 4310 10.1021/acs.jproteome.7b00467 28938075
    [Google Scholar]
  39. Li C. Yue L. Ju Y. Wang J. Chen M. Lu H. Liu S. Liu T. Wang J. Hu X. Tuohetaerbaike B. Wen H. Zhang W. Xu S. Jiang C. Chen F. Serum proteomic analysis for new types of long-term persistent COVID-19 patients in wuhan. Microbiol. Spectr. 2022 10 6 e01270-22 10.1128/spectrum.01270‑22 36314975
    [Google Scholar]
  40. Liu G. Zhao Y. Angeles A. Hamuro L.L. Arnold M.E. Shen J.X. A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins. Anal. Chem. 2014 86 16 8336 8343 10.1021/ac501837t 25083595
    [Google Scholar]
  41. Fernández C. Santos H.M. Ruíz-Romero C. Blanco F.J. Capelo-Martínez J.L. A comparison of depletion versus equalization for reducing high-abundance proteins in human serum. Electrophoresis 2011 32 21 2966 2974 10.1002/elps.201100183 21997478
    [Google Scholar]
  42. Warder S.E. Tucker L.A. Strelitzer T.J. McKeegan E.M. Meuth J.L. Jung P.M. Saraf A. Singh B. Lai-Zhang J. Gagne G. Rogers J.C. Reducing agent-mediated precipitation of high-abundance plasma proteins. Anal. Biochem. 2009 387 2 184 193 10.1016/j.ab.2009.01.013 19454248
    [Google Scholar]
  43. Bollineni R.C. Guldvik I.J. Grönberg H. Wiklund F. Mills I.G. Thiede B. A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst (Lond.) 2015 140 24 8109 8117 10.1039/C5AN01560J 26541119
    [Google Scholar]
  44. Chen Y.Y. Lin S.Y. Yeh Y.Y. Hsiao H.H. Wu C.Y. Chen S.T. Wang A.H.J. A modified protein precipitation procedure for efficient removal of albumin from serum. Electrophoresis 2005 26 11 2117 2127 10.1002/elps.200410381 15880626
    [Google Scholar]
  45. Andaç M. Baydemir G. Yavuz H. Denizli A. Molecularly imprinted composite cryogel for albumin depletion from human serum. J. Mol. Recognit. 2012 25 11 555 563 10.1002/jmr.2202 23108615
    [Google Scholar]
  46. Tamahkar E. Babaç C. Kutsal T. Pişkin E. Denizli A. Bacterial cellulose nanofibers for albumin depletion from human serum. Process Biochem. 2010 45 10 1713 1719 10.1016/j.procbio.2010.07.007
    [Google Scholar]
  47. Liu S. Lämmerhofer M. Functionalized gold nanoparticles for sample preparation: A review. Electrophoresis. 2019 40 18-19 2438 2461 10.1002/elps.201900111 31056767
    [Google Scholar]
  48. Viode A. van Zalm P. Smolen K.K. Fatou B. Stevenson D. Jha M. Levy O. Steen J. Steen H. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics. Sci. Adv. 2023 9 13 eadf9717 10.1126/sciadv.adf9717 36989362
    [Google Scholar]
  49. Gilquin B. Cubizolles M. Den Dulk R. Revol-Cavalier F. Alessio M. Goujon C.E. Echampard C. Arrizabalaga G. Adrait A. Louwagie M. Laurent P. Navarro F.P. Couté Y. Cosnier M.L. Brun V. PepS: An innovative microfluidic device for bedside whole blood processing before plasma proteomics analyses. Anal. Chem. 2021 93 2 683 690 10.1021/acs.analchem.0c02270 33319979
    [Google Scholar]
  50. Fu Q. Johnson C.W. Wijayawardena B.K. Kowalski M.P. Kheradmand M. Van Eyk J.E. A plasma sample preparation for mass spectrometry using an automated workstation. J. Vis. Exp. 2020 24 158 59842 10.3791/59842 32391810
    [Google Scholar]
  51. Blume J.E. Manning W.C. Troiano G. Hornburg D. Figa M. Hesterberg L. Platt T.L. Zhao X. Cuaresma R.A. Everley P.A. Ko M. Liou H. Mahoney M. Ferdosi S. Elgierari E.M. Stolarczyk C. Tangeysh B. Xia H. Benz R. Siddiqui A. Carr S.A. Ma P. Langer R. Farias V. Farokhzad O.C. Rapid, deep and precise profiling of the plasma proteome with multi- nanoparticle protein corona. Nat. Commun. 2020 11 1 3662 10.1038/s41467‑020‑17033‑7 32699280
    [Google Scholar]
  52. Geyer P.E. Arend F.M. Doll S. Louiset M.L. Virreira Winter S. Müller-Reif J.B. Torun F.M. Weigand M. Eichhorn P. Bruegel M. Strauss M.T. Holdt L.M. Mann M. Teupser D. High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion. EMBO Mol. Med. 2021 13 8 e14167 10.15252/emmm.202114167 34232570
    [Google Scholar]
  53. Shen B. Yi X. Sun Y. Bi X. Du J. Zhang C. Quan S. Zhang F. Sun R. Qian L. Ge W. Liu W. Liang S. Chen H. Zhang Y. Li J. Xu J. He Z. Chen B. Wang J. Yan H. Zheng Y. Wang D. Zhu J. Kong Z. Kang Z. Liang X. Ding X. Ruan G. Xiang N. Cai X. Gao H. Li L. Li S. Xiao Q. Lu T. Zhu Y. Liu H. Chen H. Guo T. Proteomic and metabolomic characterization of COVID-19 patient sera. Cell 2020 182 1 59 72.e15 10.1016/j.cell.2020.05.032 32492406
    [Google Scholar]
  54. Park J. Kim H. Kim S.Y. Kim Y. Lee J.S. Dan K. Seong M.W. Han D. In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients. Sci. Rep. 2020 10 1 22418 10.1038/s41598‑020‑80120‑8 33376242
    [Google Scholar]
  55. Alaiya A. Alshukairi A. Shinwari Z. AL-Fares M. Alotaibi J. AlOmaim W. Alsharif I. Bakheet R. Alharbi L. Allam R. Asiri A. Memish Z. Alromaih K. Al-Mozaini M. Alterations in the plasma proteome induced by SARS-CoV-2 and MERS- CoV reveal biomarkers for disease outcomes for COVID-19 patients. J. Inflamm. Res. 2021 14 4313 4328 10.2147/JIR.S322430 34511970
    [Google Scholar]
  56. Ward B. Pyr dit Ruys S. Balligand J.L. Belkhir L. Cani P.D. Collet J.F. De Greef J. Dewulf J.P. Gatto L. Haufroid V. Jodogne S. Kabamba B. Lingurski M. Yombi J.C. Vertommen D. Elens L. Deep plasma proteomics with data-independent acquisition: Clinical study protocol optimization with a COVID-19 cohort. J. Proteome Res. 2024 23 9 3806 3822 10.1021/acs.jproteome.4c00104 39159935
    [Google Scholar]
  57. Mun D.G. Vanderboom P.M. Madugundu A.K. Garapati K. Chavan S. Peterson J.A. Saraswat M. Pandey A. DIA-based proteome profiling of nasopharyngeal swabs from COVID-19 patients. J. Proteome Res. 2021 20 8 4165 4175 10.1021/acs.jproteome.1c00506 34292740
    [Google Scholar]
  58. Ihling C. Tänzler D. Hagemann S. Kehlen A. Hüttelmaier S. Arlt C. Sinz A. Mass spectrometric identification of SARS- CoV-2 proteins from gargle solution samples of COVID-19 patients. J. Proteome Res. 2020 19 11 4389 4392 10.1021/acs.jproteome.0c00280 32568543
    [Google Scholar]
  59. Gouveia D. Miotello G. Gallais F. Gaillard J.C. Debroas S. Bellanger L. Lavigne J.P. Sotto A. Grenga L. Pible O. Armengaud J. Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: A proof-of-concept focused on a 3 min mass spectrometry window. J. Proteome Res. 2020 19 11 4407 4416 10.1021/acs.jproteome.0c00535 32697082
    [Google Scholar]
  60. Bezstarosti K. Lamers M.M. Doff W.A.S. Wever P.C. Thai K.T.D. van Kampen J.J.A. Haagmans B.L. Demmers J.A.A. Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens. PLoS One 2021 16 11 e0259165 10.1371/journal.pone.0259165 34762662
    [Google Scholar]
  61. Gutmann C. Takov K. Burnap S.A. Singh B. Ali H. Theofilatos K. Reed E. Hasman M. Nabeebaccus A. Fish M. McPhail M.J.W. O’Gallagher K. Schmidt L.E. Cassel C. Rienks M. Yin X. Auzinger G. Napoli S. Mujib S.F. Trovato F. Sanderson B. Merrick B. Niazi U. Saqi M. Dimitrakopoulou K. Fernández-Leiro R. Braun S. Kronstein-Wiedemann R. Doores K.J. Edgeworth J.D. Shah A.M. Bornstein S.R. Tonn T. Hayday A.C. Giacca M. Shankar-Hari M. Mayr M. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care. Nat. Commun. 2021 12 1 3406 10.1038/s41467‑021‑23494‑1 34099652
    [Google Scholar]
  62. Liu H. Sadygov R.G. Yates J.R. III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 2004 76 14 4193 4201 10.1021/ac0498563 15253663
    [Google Scholar]
  63. Granger J. Siddiqui J. Copeland S. Remick D. Albumin depletion of human plasma also removes low abundance proteins including the cytokines. Proteomics 2005 5 18 4713 4718 10.1002/pmic.200401331 16281180
    [Google Scholar]
  64. Liu X. Abad L. Chatterjee L. Cristea I.M. Varjosalo M. Mapping protein–protein interactions by mass spectrometry. Mass Spectrom. Rev. 2024 21 mas.21887 10.1002/mas.21887 38742660
    [Google Scholar]
  65. Zhou Y. Tan Z. Xue P. Wang Y. Li X. Guan F. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry (“HIAP-DIA”). Proteomics 2021 21 5 2000264 10.1002/pmic.202000264 33460299
    [Google Scholar]
  66. Messner C.B. Demichev V. Wendisch D. Michalick L. White M. Freiwald A. Textoris-Taube K. Vernardis S.I. Egger A.S. Kreidl M. Ludwig D. Kilian C. Agostini F. Zelezniak A. Thibeault C. Pfeiffer M. Hippenstiel S. Hocke A. von Kalle C. Campbell A. Hayward C. Porteous D.J. Marioni R.E. Langenberg C. Lilley K.S. Kuebler W.M. Mülleder M. Drosten C. Suttorp N. Witzenrath M. Kurth F. Sander L.E. Ralser M. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection. Cell Syst. 2020 11 1 11 24.e4 10.1016/j.cels.2020.05.012 32619549
    [Google Scholar]
  67. Ludwig C. Gillet L. Rosenberger G. Amon S. Collins B.C. Aebersold R. Data-independent acquisition-based SWATH - MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018 14 8 e8126 10.15252/msb.20178126 30104418
    [Google Scholar]
  68. Renuse S. Vanderboom P.M. Maus A.D. Kemp J.V. Gurtner K.M. Madugundu A.K. Chavan S. Peterson J.A. Madden B.J. Mangalaparthi K.K. Mun D.G. Singh S. Kipp B.R. Dasari S. Singh R.J. Grebe S.K. Pandey A. A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens. EBioMedicine 2021 69 103465 10.1016/j.ebiom.2021.103465 34229274
    [Google Scholar]
  69. dos Santos F.M. Vindel-Alfageme J. Ciordia S. Castro V. Orera I. Garaigorta U. Gastaminza P. Corrales F. Dynamic cellular proteome remodeling during SARS-CoV-2 infection. identification of plasma protein readouts. J. Proteome Res. 2025 24 1 171 188 10.1021/acs.jproteome.4c00566 39593238
    [Google Scholar]
  70. Bodaghi A. Fattahi N. Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of COVID-19 and other diseases. Heliyon 2023 9 2 e13323 10.1016/j.heliyon.2023.e13323 36744065
    [Google Scholar]
  71. Bernardo L. Lomagno A. Mauri P.L. Silvestre D.D. Integration of omics data and network models to unveil negative aspects of SARS-CoV-2, from pathogenic mechanisms to drug repurposing. Biology. 2023 12 9 1196 10.3390/biology12091196 37759595
    [Google Scholar]
  72. Tyanova S. Temu T. Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016 11 12 2301 2319 10.1038/nprot.2016.136 27809316
    [Google Scholar]
  73. Tran N.H. Qiao R. Xin L. Chen X. Liu C. Zhang X. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry. Nat. Meth. 2018 16 1 63 66 10.1038/s41592‑018‑0260‑3 30573815
    [Google Scholar]
  74. Kong A.T. Leprevost F.V. Avtonomov D.M. Mellacheruvu D. Nesvizhskii A.I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics. Nat. Meth. 2017 14 5 513 520 10.1038/nmeth.4256 28394336
    [Google Scholar]
  75. Demichev V. Messner C.B. Vernardis S.I. Lilley K.S. Ralser M. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Meth. 2019 17 1 41 44 10.1038/s41592‑019‑0638‑x 31768060
    [Google Scholar]
  76. Carvalho P.C. Fischer J.S.G. Chen E.I. Yates J.R. III Barbosa V.C. PatternLab for proteomics: A tool for differential shotgun proteomics. BMC Bioinformat. 2008 9 1 316 10.1186/1471‑2105‑9‑316 18644148
    [Google Scholar]
  77. Tyanova S. Temu T. Sinitcyn P. Carlson A. Hein M.Y. Geiger T. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Meth. 2016 13 9 731 740 10.1038/nmeth.3901 27348712
    [Google Scholar]
  78. Pang Z. Xu L. Viau C. Lu Y. Salavati R. Basu N. MetaboAnalystR 4.0: A unified LC-MS workflow for global metabolomics. Nat. Commun. 2024 15 1 3675 10.1038/s41467‑024‑48009‑6 38693118
    [Google Scholar]
  79. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  80. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. Gable A.L. Fang T. Doncheva N.T. Pyysalo S. Bork P. Jensen L.J. von Mering C. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  81. Milacic M. Beavers D. Conley P. Gong C. Gillespie M. Griss J. Haw R. Jassal B. Matthews L. May B. Petryszak R. Ragueneau E. Rothfels K. Sevilla C. Shamovsky V. Stephan R. Tiwari K. Varusai T. Weiser J. Wright A. Wu G. Stein L. Hermjakob H. D’Eustachio P. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024 52 D1 D672 D678 10.1093/nar/gkad1025 37941124
    [Google Scholar]
  82. Alnakli A.A.A. Jabeen A. Chakraborty R. Mohamedali A. Ranganathan S. A bioinformatics approach to mine the microbial proteomic profile of COVID-19 mass spectrometry data. Appl. Microbiol. 2022 2 1 150 164 10.3390/applmicrobiol2010010
    [Google Scholar]
  83. Núñez-Franz L. Ramírez-Santana M. Rubilar P. Vial C. Apablaza M. González C. Said M. Olivares K. Cortés L.J. Hormazábal J. Canales L. Vial P. Icaza G. Quezada-Gaete R. Aguilera X. Seroprevalence of natural and acquired immunity against the SARS-CoV-2 virus in a population cohort from two Chilean cities, 2020–2022. Viruses 2023 15 1 201 10.3390/v15010201 36680241
    [Google Scholar]
  84. Messner C.B. Demichev V. Bloomfield N. Yu J.S.L. White M. Kreidl M. Egger A.S. Freiwald A. Ivosev G. Wasim F. Zelezniak A. Jürgens L. Suttorp N. Sander L.E. Kurth F. Lilley K.S. Mülleder M. Tate S. Ralser M. Ultra-fast proteomics with scanning SWATH. Nat. Biotechnol. 2021 39 7 846 854 10.1038/s41587‑021‑00860‑4 33767396
    [Google Scholar]
  85. Al-Nesf M.A.Y. Abdesselem H.B. Bensmail I. Ibrahim S. Saeed W.A.H. Mohammed S.S.I. Razok A. Alhussain H. Aly R.M.A. Al Maslamani M. Ouararhni K. Khatib M.Y. Hssain A.A. Omrani A.S. Al-Kaabi S. Al Khal A. Al-Thani A.A. Samsam W. Farooq A. Al-Suwaidi J. Al-Maadheed M. Al-Siddiqi H.H. Butler A.E. Decock J.V. Mohamed-Ali V. Al-Ejeh F. Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications. Nat. Commun. 2022 13 1 946 10.1038/s41467‑022‑28639‑4 35177642
    [Google Scholar]
  86. Völlmy F. van den Toorn H. Zenezini Chiozzi R. Zucchetti O. Papi A. Volta C.A. Marracino L. Vieceli Dalla Sega F. Fortini F. Demichev V. Tober-Lau P. Campo G. Contoli M. Ralser M. Kurth F. Spadaro S. Rizzo P. Heck A.J.R. A serum proteome signature to predict mortality in severe COVID-19 patients. Life Sci. Alliance 2021 4 9 e202101099 10.26508/lsa.202101099 34226277
    [Google Scholar]
  87. Villar M. Urra J.M. Rodríguez-del-Río F.J. Artigas-Jerónimo S. Jiménez-Collados N. Ferreras-Colino E. Contreras M. de Mera I.G.F. Estrada-Peña A. Gortázar C. de la Fuente J. Characterization by quantitative serum proteomics of immune-related prognostic biomarkers for COVID-19 symptomatology. Front. Immunol. 2021 12 730710 10.3389/fimmu.2021.730710 34566994
    [Google Scholar]
  88. Di B. Jia H. Luo O.J. Lin F. Li K. Zhang Y. Wang H. Liang H. Fan J. Yang Z. Identification and validation of predictive factors for progression to severe COVID-19 pneumonia by proteomics. Signal Transduct. Target. Ther. 2020 5 1 217 10.1038/s41392‑020‑00333‑1 33011738
    [Google Scholar]
  89. Wang D. Kumar V. Burnham K.L. Mentzer A.J. Marsden B.D. Knight J.C. COMBATdb: A database for the COVID-19 multi-omics blood atlas. Nucleic Acids Res. 2023 51 D1 D896 D905 10.1093/nar/gkac1019 36353986
    [Google Scholar]
  90. Byeon H. Prediction of adolescent suicidal ideation after the COVID-19 pandemic: A nationwide survey of a representative sample of Korea. Front Pediatr. 2022 10 951439 10.3389/fped.2022.951439 35958177
    [Google Scholar]
  91. Babačić H. Christ W. Araújo J.E. Mermelekas G. Sharma N. Tynell J. García M. Varnaite R. Asgeirsson H. Glans H. Lehtiö J. Gredmark-Russ S. Klingström J. Pernemalm M. Comprehensive proteomics and meta-analysis of COVID-19 host response. Nat. Commun. 2023 14 1 5921 10.1038/s41467‑023‑41159‑z 37739942
    [Google Scholar]
  92. Diray-Arce J. Fourati S. Doni Jayavelu N. Patel R. Maguire C. Chang A.C. Dandekar R. Qi J. Lee B.H. van Zalm P. Schroeder A. Chen E. Konstorum A. Brito A. Gygi J.P. Kho A. Chen J. Pawar S. Gonzalez-Reiche A.S. Hoch A. Milliren C.E. Overton J.A. Westendorf K. Cairns C.B. Rouphael N. Bosinger S.E. Kim-Schulze S. Krammer F. Rosen L. Grubaugh N.D. van Bakel H. Wilson M. Rajan J. Steen H. Eckalbar W. Cotsapas C. Langelier C.R. Levy O. Altman M.C. Maecker H. Montgomery R.R. Haddad E.K. Sekaly R.P. Esserman D. Ozonoff A. Becker P.M. Augustine A.D. Guan L. Peters B. Kleinstein S.H. Abraham J. Adkisson M. Albert M. Altamirano L.T. Alvarenga B. Anderson M.L. Anderson E.J. Arnett A. Asashima H. Atkinson M.A. Baden L.R. Barton B. Beach K. Beagle E. Becker P.M. Bell M.R. Bernui M. Bime C. Boddapati A.K. Booth J.L. Borresen B. Brakenridge S.C. Bristow L. Bryant R. Calfee C.S. Carreño J.M. Carrillo S. Chak S. Chang I. Connors J. Conway M. Corry D.B. Cowan D. Croen B. Dela Cruz C.S. Cusimano G. Eaker L. Edwards C. Ehrlich L.I.R. Elashoff D. Erickson H. Erle D.J. Farhadian S. Farrugia K. Fatou B. Fernandes A. Fernandez-Sesma A. Fragiadakis G.K. Furukawa S. Geltman J.N. Ghale R. Bermúdez González M.C. Goonewardene I.M. Guerrero E.S. Guirgis F.W. Hafler D.A. Hamilton S. Harris P. Hayati A.N. Hendrickson C.M. Agudelo Higuita N.I. Hodder T. Holland S.M. Hough C.L. Huerta C. Hurley K.C. Hutton S.R. Iwasaki A. Jauregui A. Jha M. Johnson B. Joyner D. Kangelaris K.N. Kelly G. Khalil Z. Khan Z. Kheradmand F. Kim J.N. Kimura H. Ko A.I. Kohr B. Kraft M. Krummel M. Kutzler M.A. Lasky-Su J. Lee S. Lee D. Leipold M. Lentucci C. Leroux C. Lin E. Liu S. Love C. Lu Z. Maliskova L. Manning B.R. Manohar M. Martens M. McComsey G.A. McEnaney K. McLin R. Melamed E. Melnyk N. Mendez K. Messer W.B. Metcalf J.P. Michelotti G. Mick E. Mohanty S. Mosier J. Mulder L.C.F. Murphy M. Nadeau K.R.C. Nelson E. Nelson A. Nguyen V. Oberhaus J. Panganiban B. Pellegrini K.L. Pickering H.C. Powell D.L. Presnell S. Pulendran B. Rahman A.H. Rashid A.S. Raskin A. Reed E.F. Ribeiro S.P. Rivera A.M. Rogers J.E. Rogers A. Rogowski B. Rooks R. Rosenberg-Hasson Y. Rothman J. Rousseau J.F. Salehi-Rad R. Saluvan M. Samaha H. Schaenman J. Schunk R. Semenza N.C. Sen S. Sevransky J. Seyfert-Margolis V. Shaheen T. Shaw A.C. Sieg S. Siegel S.A.R. Sigal N. Siles N. Simmons B. Simon V. Singh G. Sinko L. Smith C.M. Smolen K.K. Song L-Z. Srivastava K. Sullivan P. Syphurs C. Tcheou J. Tegos G.P. Tharp G.K. Tong A. Tsitsiklis A. Ungaro R.F. Vaysman T. Viode A. Vita R. Wang X. Ward A. Ward D.C. Willmore A. Woloszczuk K. Wong K. Woodruff P.G. Xu L. van Haren S. van de Guchte A. Zhao Y. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients. Cell Rep. Med. 2023 4 6 101079 10.1016/j.xcrm.2023.101079 37327781
    [Google Scholar]
  93. Mohammed I. Nauman A. Paul P. Ganesan S. Chen K.H. Jalil S.M.S. Jaouni S.H. Kawas H. Khan W.A. Vattoth A.L. Al-Hashimi Y.A. Fares A. Zeghlache R. Zakaria D. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: A systematic review. Hum. Vaccin. Immunother. 2022 18 1 2027160 10.1080/21645515.2022.2027160 35113777
    [Google Scholar]
  94. Zoodsma M. Schaafsma J. Examining the ‘age of apology’: Insights from the political apology database. J. Peace Res. 2022 59 3 436 448 10.1177/00223433211024696
    [Google Scholar]
  95. Li F. Zhou Y. Zhang Y. Yin J. Qiu Y. Gao J. Zhu F. POSREG: Proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability. Brief. Bioinform. 2022 23 2 bbac040 10.1093/bib/bbac040 35183059
    [Google Scholar]
  96. Yu X. Xu X. Wu T. Huang W. Xu C. Xie W. Long X. APOA1 level is negatively correlated with the severity of COVID-19. Int. J. Gen. Med. 2022 15 689 698 10.2147/IJGM.S332956 35082518
    [Google Scholar]
  97. Gajula S.N.R. Khairnar A.S. Jock P. Kumari N. Pratima K. Munjal V. Kalan P. Sonti R. LC-MS/MS: A sensitive and selective analytical technique to detect COVID-19 protein biomarkers in the early disease stage. Expert Rev. Proteomics 2023 20 1-3 5 18 10.1080/14789450.2023.2191845 36919634
    [Google Scholar]
  98. Lee J.S. Han D. Kim S.Y. Hong K.H. Jang M. Kim M.J. Kim Y. Park J.H. Cho S.I. Park W.B. Lee K.B. Shin H.S. Oh H.S. Kim T.S. Park S.S. Seong M.W. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression. Proteomics 2021 21 11-12 2000278 10.1002/pmic.202000278 33945677
    [Google Scholar]
  99. Suvarna K. Biswas D. Pai M.G.J. Acharjee A. Bankar R. Palanivel V. Salkar A. Verma A. Mukherjee A. Choudhury M. Ghantasala S. Ghosh S. Singh A. Banerjee A. Badaya A. Bihani S. Loya G. Mantri K. Burli A. Roy J. Srivastava A. Agrawal S. Shrivastav O. Shastri J. Srivastava S. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity with drug repurposing potential. Front. Physiol. 2021 12 652799 10.3389/fphys.2021.652799 33995121
    [Google Scholar]
  100. Pons M.J. Ymaña B. Mayanga-Herrera A. Sáenz Y. Alvarez-Erviti L. Tapia-Rojas S. Gamarra R. Blanco A.B. Moncunill G. Ugarte-Gil M.F. Cytokine profiles associated with worse prognosis in a hospitalized peruvian COVID-19 cohort. Front. Immunol. 2021 12 700921 10.3389/fimmu.2021.700921 34539631
    [Google Scholar]
  101. Wang Z. Cryar A. Lemke O. Tober-Lau P. Ludwig D. Helbig E.T. Hippenstiel S. Sander L.E. Blake D. Lane C.S. Sayers R.L. Mueller C. Zeiser J. Townsend S. Demichev V. Mülleder M. Kurth F. Sirka E. Hartl J. Ralser M. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: An observational multi-cohort study. EClinicalMedicine 2022 49 101495 10.1016/j.eclinm.2022.101495 35702332
    [Google Scholar]
  102. Ciccosanti F. Antonioli M. Sacchi A. Notari S. Farina A. Beccacece A. Fusto M. Vergori A. D’Offizi G. Taglietti F. Antinori A. Nicastri E. Marchioni L. Palmieri F. Ippolito G. Piacentini M. Agrati C. Fimia G.M. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation. Clin. Proteomics 2022 19 1 38 10.1186/s12014‑022‑09377‑7 36348270
    [Google Scholar]
  103. di Flora D.C. Dionizio A. Pereira H.A.B.S. Garbieri T.F. Grizzo L.T. Dionisio T.J. Leite A.L. Silva-Costa L.C. Buzalaf N.R. Reis F.N. Pereira V.B.R. Rosa D.M.C. dos Santos C.F. Buzalaf M.A.R. Analysis of plasma proteins involved in inflammation, immune response/complement system, and blood coagulation upon admission of COVID-19 patients to hospital may help to predict the prognosis of the disease. Cells 2023 12 12 1601 10.3390/cells12121601 37371071
    [Google Scholar]
  104. Vedula P. Tang H.Y. Speicher D.W. Kashina A. Unit UpCP. Protein posttranslational signatures identified in COVID-19 patient plasma. Front. Cell Dev. Biol. 2022 10 807149 10.3389/fcell.2022.807149 35223838
    [Google Scholar]
  105. Alghanem B. Mansour F.A. Shaibah H. Almuhalhil K. Almourfi F. Alamri H.S. Alajmi H. Rashid M. Alroqi F. Jalouli M. Harrath A.H. Boudjellal M. Barhoumi T. Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses. Heliyon 2023 9 4 e15224 10.1016/j.heliyon.2023.e15224 37064481
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037364237250402151440
Loading
/content/journals/cpps/10.2174/0113892037364237250402151440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: mass spectrometry ; Plasma biomarkers ; protein profile ; SARS-CoV-2 ; proteomics ; COVID-19
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test