Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

The COVID-19 outbreak, caused by the SARS-CoV-2 coronavirus, has threatened and taken many lives since the end of 2019. Given the importance of COVID-19 worldwide, since its spread, many research groups have been seeking blood markers that could help to understand the disease establishment and prognosis. Usually, those markers are proteins with a differential accumulation only during infection. Based on that, proteomic studies have played a crucial role in elucidating diseases. Mass spectrometry (MS) is a promising technique in COVID-19 studies, allowing the identification and quantification of proteins present in the plasma or serum of affected patients. It helps us to understand pathological mechanisms, predict clinical outcomes, and develop specific therapies. MS proteomics revealed biomarkers associated with infection, disease severity, and immune response. Plasma or blood serum is easy to collect and store; however, its composition and the higher concentration of proteins ( albumins) shadow the identification of less abundant proteins, which usually are essential markers. So, clean-up approaches such as depletion strategies and fractionating are often required to analyze blood samples, allowing the identification of low-abundant proteins. This review will discuss many proteomic approaches to discovering new plasma biomarkers of COVID-19 employed in recently published studies. The challenges inherent to blood samples will also be discussed, such as sample preparation, data processing, and identifying reliable biomarkers.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037364237250402151440
2025-05-08
2025-11-29
Loading full text...

Full text loading...

References

  1. MirtalebM.S. FalakR. HeshmatniaJ. BakhshandehB. TaheriR.A. SoleimanjahiH. Zolfaghari EmamehR. An insight overview on COVID-19 mRNA vaccines: Advantageous, pharmacology, mechanism of action, and prospective considerations.Int. Immunopharmacol.202311710993410.1016/j.intimp.2023.10993436867924
    [Google Scholar]
  2. CostanzoM. CaterinoM. FedeleR. CeveniniA. PontilloM. BarraL. RuoppoloM. COVIDomics: The proteomic and metabolomic signatures of COVID-19.Int. J. Mol. Sci.2022235241410.3390/ijms2305241435269564
    [Google Scholar]
  3. NaqviA.A.T. FatimaK. MohammadT. FatimaU. SinghI.K. SinghA. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach.Biochim. Biophys. Acta. Mol. Basi. Dis.202018661016587810.1016/j.bbadis.2020.16587832544429
    [Google Scholar]
  4. ZhangY.Z. HolmesE.C. A genomic perspective on the origin and emergence of SARS-CoV-2.Cell2020181222322710.1016/j.cell.2020.03.03532220310
    [Google Scholar]
  5. WhettonA.D. PrestonG.W. AbubekerS. GeifmanN. Proteomics and informatics for understanding phases and identifying biomarkers in COVID-19 disease.J. Proteome Res.202019114219423210.1021/acs.jproteome.0c0032632657586
    [Google Scholar]
  6. AhsanN. RaoR.S.P. WilsonR.S. PunyamurtulaU. SalvatoF. PetersenM. AhmedM.K. AbidM.R. VerburgtJ.C. KiharaD. YangZ. FornelliL. FosterS.B. RamratnamB. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches.Proteomics20212110200027910.1002/pmic.20200027933860983
    [Google Scholar]
  7. SahinA.T. YurtsevenA. DadmandS. OzcanG. AkarlarB.A. KucukN.E.O. SenturkA. ErgonulO. CanF. TuncbagN. OzluN. Plasma proteomics identify potential severity biomarkers from COVID-19 associated network.Proteomics Clin. Appl.2023172220007010.1002/prca.20220007036217943
    [Google Scholar]
  8. LeeH. KimS.I. Review of liquid chromatography-mass spectrometry-based proteomic analyses of body fluids to diagnose infectious diseases.Int. J. Mol. Sci.2022234218710.3390/ijms2304218735216306
    [Google Scholar]
  9. RayS. ReddyP.J. JainR. GollapalliK. MoiyadiA. SrivastavaS. Proteomic technologies for the identification of disease biomarkers in serum: Advances and challenges ahead.Proteomics201111112139216110.1002/pmic.20100046021548090
    [Google Scholar]
  10. MazzulliT. LowD.E. PoutanenS.M. Proteomics and severe acute respiratory syndrome (SARS): Emerging technology meets emerging pathogen.Clin. Chem.20055116710.1373/clinchem.2004.04157415613703
    [Google Scholar]
  11. SperkM. van DomselaarR. RodriguezJ.E. MikaeloffF. Sá VinhasB. SacconE. SönnerborgA. SinghK. GuptaS. VégváriÁ. NeogiU. Utility of proteomics in emerging and re-emerging infectious diseases caused by RNA viruses.J. Proteome Res.202019114259427410.1021/acs.jproteome.0c0038033095583
    [Google Scholar]
  12. LazariL.C. GhilardiF.D.R. Rosa-FernandesL. AssisD.M. NicolauJ.C. SantiagoV.F. DalçóquioT.F. AngeliC.B. BertolinA.J. MarinhoC.R.F. WrengerC. DurigonE.L. SicilianoR.F. PalmisanoG. Prognostic accuracy of MALDI-TOF mass spectrometric analysis of plasma in COVID-19.Life Sci. Alliance202148e20200094610.26508/lsa.20200094634168074
    [Google Scholar]
  13. MemonD. Barrio-HernandezI. BeltraoP. Individual COVID-19 disease trajectories revealed by plasma proteomics.EMBO Mol. Med.2021138e1453210.15252/emmm.20211453234260159
    [Google Scholar]
  14. SharmaA. Ahmad FaroukI. LalS.K. COVID-19: A review on the novel coronavirus disease evolution, transmission, detection, control and prevention.Viruses202113220210.3390/v1302020233572857
    [Google Scholar]
  15. RichardV.R. GaitherC. PoppR. ChaplyginaD. BrzhozovskiyA. KononikhinA. MohammedY. ZahediR.P. NikolaevE.N. BorchersC.H. Early prediction of COVID-19 patient survival by targeted plasma multi-omics and machine learning.Mol. Cell. Proteomics2022211010027710.1016/j.mcpro.2022.10027735931319
    [Google Scholar]
  16. OvermyerK.A. ShishkovaE. MillerI.J. BalnisJ. BernsteinM.N. Peters-ClarkeT.M. MeyerJ.G. QuanQ. MuehlbauerL.K. TrujilloE.A. HeY. ChopraA. ChiengH.C. TiwariA. JudsonM.A. PaulsonB. BrademanD.R. ZhuY. SerranoL.R. LinkeV. DrakeL.A. AdamA.P. SchwartzB.S. SingerH.A. SwansonS. MosherD.F. StewartR. CoonJ.J. JaitovichA. Large-scale multi-omic analysis of COVID-19 severity.Cell Syst.20211212340.e710.1016/j.cels.2020.10.00333096026
    [Google Scholar]
  17. Fernández-CostaC. Martínez-BartoloméS. McClatchyD.B. SaviolaA.J. YuN.K. YatesJ.R.III Impact of the identification strategy on the reproducibility of the DDA and DIA results.J. Proteome Res.20201983153316110.1021/acs.jproteome.0c0015332510229
    [Google Scholar]
  18. JayasenaT. PoljakA. BraidyN. ZhongL. RowlandsB. MuenchhoffJ. GrantR. SmytheG. TeoC. RafteryM. SachdevP. Application of targeted mass spectrometry for the quantification of sirtuins in the central nervous system.Sci. Rep.2016613539110.1038/srep3539127762282
    [Google Scholar]
  19. NelsonL.M. SimardJ.F. OluyomiA. NavaV. RosasL.G. BondyM. LinosE. US public concerns about the COVID-19 pandemic from results of a survey given via social media.JAMA Intern. Med.202018071020102210.1001/jamainternmed.2020.136932259192
    [Google Scholar]
  20. MichelsE.H.A. AppelmanB. de BrabanderJ. van AmstelR.B.E. van LingeC.C.A. ChouchaneO. ReijndersT.D.Y. SchuurmanA.R. SulzerT.A.L. KlarenbeekA.M. DoumaR.A. BosL.D.J. WiersingaW.J. Peters-SengersH. van der PollT. van AgtmaelM. AlgeraA.G. AppelmanB. van BaarleF. BeudelM. BogaardH.J. BontaM.B.P. BosL. BottaM. de BrabanderJ. de BreeG. de BruinS. BugianiM. BulleE. BuisD.T.P. ClohertyO.C.A. DijkstraM. DongelmansD.A. DujardinR.W.G. ElbersP. FleurenL. GeijtenbeekS.G.T. GirbesA. GoorhuisB. GrobuschM.P. HagensL. HamannJ. HarrisV. HemkeR. HeunksS.M.H.L. HollmannM. HornJ. HoviusJ.W. de JongH.K. de JongM.D. KoningR. LemkesB. LimE.H.T. van MourikN. NellenJ. NossentE.J. OlieS. PaulusF. PetersE. Pina-FuentesD.A.I. van der PollT. PreckelB. RaasveldJ. ReijndersT. de RotteM.C.F.J. SchinkelM. SchultzM.J. SchrauwenF.A.P. SchuurmanA. SchuurmansJ. SigaloffK. SlimM.A. SmeeleP. SmitM. StijnisC.S. StilmaW. TeunissenC. ThoralP. TsonasA.M. TuinmanP.R. van der ValkM. VeeloD.P. VollemanC. de VriesH. VughtL.A. van VugtM. WoutersD. ZwindermanA.H.K. BrouwerM.C. WiersingaW.J. VlaarA.P.J. van de BeekD. Host response changes and their association with mortality in COVID-19 patients with lymphopenia.Am. J. Respir. Crit. Care Med.2024209440241610.1164/rccm.202305‑0890OC37948687
    [Google Scholar]
  21. ShuT. NingW. WuD. XuJ. HanQ. HuangM. ZouX. YangQ. YuanY. BieY. PanS. MuJ. HanY. YangX. ZhouH. LiR. RenY. ChenX. YaoS. QiuY. ZhangD.Y. XueY. ShangY. ZhouX. Plasma proteomics identify biomarkers and pathogenesis of COVID-19.Immunity202053511081122.e510.1016/j.immuni.2020.10.00833128875
    [Google Scholar]
  22. AebersoldR. MannM. Mass spectrometry-based proteomics.Nature2003422692819820710.1038/nature0151112634793
    [Google Scholar]
  23. AebersoldR. MannM. Mass-spectrometric exploration of proteome structure and function.Nature2016537762034735510.1038/nature1994927629641
    [Google Scholar]
  24. FindeisenP. NeumaierM. Mass spectrometry based proteomics profiling as diagnostic tool in oncology: Current status and future perspective.Clin. Chem. Lab. Med.200947666668410.1515/CCLM.2009.15919445650
    [Google Scholar]
  25. SimanjuntakY. Schamoni-KastK. GrünA. UetrechtC. ScaturroP. Top-down and bottom-up proteomics methods to study RNA virus biology.Viruses202113466810.3390/v1304066833924391
    [Google Scholar]
  26. RanaR. RathiV. GangulyN.K. A comprehensive overview of proteomics approach for COVID 19: New perspectives in target therapy strategies.J. Prot. Prot.202011422323210.1007/s42485‑020‑00052‑933162722
    [Google Scholar]
  27. MahmudI. GarrettT.J. Mass spectrometry techniques in emerging pathogens studies: COVID-19 perspectives.J. Am. Soc. Mass Spectrom.202031102013202410.1021/jasms.0c0023832880453
    [Google Scholar]
  28. ZhaoY. XueQ. WangM. MengB. JiangY. ZhaiR. ZhangY. DaiX. FangX. Evolution of mass spectrometry instruments and techniques for blood proteomics.J. Proteome Res.20232241009102310.1021/acs.jproteome.3c0010236932955
    [Google Scholar]
  29. MohammedY. GoodlettD.R. ChengM.P. VinhD.C. LeeT.C. McgeerA. SweetD. TranK. LeeT. MurthyS. BoydJ.H. SingerJ. WalleyK.R. PatrickD.M. QuanC. IsmailS. AmarL. PalA. BassawonR. FesdekjianL. GouK. LamontagneF. MarshallJ. HaljanG. FowlerR. WinstonB.W. RussellJ.A. Longitudinal plasma proteomics analysis reveals novel candidate biomarkers in acute COVID-19.J. Proteome Res.202221497599210.1021/acs.jproteome.1c0086335143212
    [Google Scholar]
  30. SuhreK. McCarthyM.I. SchwenkJ.M. Genetics meets proteomics: Perspectives for large population-based studies.Nat. Rev. Genet.2021221193710.1038/s41576‑020‑0268‑232860016
    [Google Scholar]
  31. IgnjatovicV. GeyerP.E. PalaniappanK.K. ChaabanJ.E. OmennG.S. BakerM.S. Mass spectrometry-based plasma proteomics: Considerations from sample collection to achieving translational data.J. Prot. Res.201918124085409710.1021/acs.jproteome.9b0050331573204
    [Google Scholar]
  32. AdkinsJ.N. VarnumS.M. AuberryK.J. MooreR.J. AngellN.H. SmithR.D. SpringerD.L. PoundsJ.G. Toward a human blood serum proteome: Analysis by multidimensional separation coupled with mass spectrometry.Mol. Cell. Proteomics200211294795510.1074/mcp.M200066‑MCP20012543931
    [Google Scholar]
  33. HüttenhainR. MalmströmJ. PicottiP. AebersoldR. Perspectives of targeted mass spectrometry for protein biomarker verification.Curr. Opin. Chem. Biol.2009135-651852510.1016/j.cbpa.2009.09.01419818677
    [Google Scholar]
  34. ZolotarjovaN. MartosellaJ. NicolG. BaileyJ. BoyesB.E. BarrettW.C. Differences among techniques for high-abundant protein depletion.Proteomics20055133304331310.1002/pmic.20040202116052628
    [Google Scholar]
  35. CavalcanteJ.S. de AlmeidaD.E.G. MoraesM.S. SantosS.R. PincinatoP.M. RiciopoP.M. de OliveiraL.L.B. MonteiroW.M. Ferreira-JuniorR.S. Challenges and opportunities in clinical diagnostic routine of envenomation using blood plasma proteomics.Toxins (Basel)202315318010.3390/toxins1503018036977071
    [Google Scholar]
  36. LeeP.Y. OsmanJ. LowT.Y. JamalR. Plasma/serum proteomics: Depletion strategies for reducing high-abundance proteins for biomarker discovery.Bioanalysis201911191799181210.4155/bio‑2019‑014531617391
    [Google Scholar]
  37. PietrowskaM. WlosowiczA. GawinM. WidlakP. MS-based proteomic analysis of serum and plasma: Problem of high abundant components and lights and shadows of albumin removal.Adv. Exp. Med. Biol.20191073577610.1007/978‑3‑030‑12298‑0_331236839
    [Google Scholar]
  38. SchwenkJ.M. OmennG.S. SunZ. CampbellD.S. BakerM.S. OverallC.M. AebersoldR. MoritzR.L. DeutschE.W. The human plasma proteome draft of 2017: Building on the human plasma peptideatlas from mass spectrometry and complementary assays.J. Proteome Res.201716124299431010.1021/acs.jproteome.7b0046728938075
    [Google Scholar]
  39. LiC. YueL. JuY. WangJ. ChenM. LuH. LiuS. LiuT. WangJ. HuX. TuohetaerbaikeB. WenH. ZhangW. XuS. JiangC. ChenF. Serum proteomic analysis for new types of long-term persistent COVID-19 patients in wuhan.Microbiol. Spectr.2022106e01270-2210.1128/spectrum.01270‑2236314975
    [Google Scholar]
  40. LiuG. ZhaoY. AngelesA. HamuroL.L. ArnoldM.E. ShenJ.X. A novel and cost effective method of removing excess albumin from plasma/serum samples and its impacts on LC-MS/MS bioanalysis of therapeutic proteins.Anal. Chem.201486168336834310.1021/ac501837t25083595
    [Google Scholar]
  41. FernándezC. SantosH.M. Ruíz-RomeroC. BlancoF.J. Capelo-MartínezJ.L. A comparison of depletion versus equalization for reducing high-abundance proteins in human serum.Electrophoresis201132212966297410.1002/elps.20110018321997478
    [Google Scholar]
  42. WarderS.E. TuckerL.A. StrelitzerT.J. McKeeganE.M. MeuthJ.L. JungP.M. SarafA. SinghB. Lai-ZhangJ. GagneG. RogersJ.C. Reducing agent-mediated precipitation of high-abundance plasma proteins.Anal. Biochem.2009387218419310.1016/j.ab.2009.01.01319454248
    [Google Scholar]
  43. BollineniR.C. GuldvikI.J. GrönbergH. WiklundF. MillsI.G. ThiedeB. A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate.Analyst (Lond.)2015140248109811710.1039/C5AN01560J26541119
    [Google Scholar]
  44. ChenY.Y. LinS.Y. YehY.Y. HsiaoH.H. WuC.Y. ChenS.T. WangA.H.J. A modified protein precipitation procedure for efficient removal of albumin from serum.Electrophoresis200526112117212710.1002/elps.20041038115880626
    [Google Scholar]
  45. AndaçM. BaydemirG. YavuzH. DenizliA. Molecularly imprinted composite cryogel for albumin depletion from human serum.J. Mol. Recognit.2012251155556310.1002/jmr.220223108615
    [Google Scholar]
  46. TamahkarE. BabaçC. KutsalT. PişkinE. DenizliA. Bacterial cellulose nanofibers for albumin depletion from human serum.Process Biochem.201045101713171910.1016/j.procbio.2010.07.007
    [Google Scholar]
  47. LiuS. LämmerhoferM. Functionalized gold nanoparticles for sample preparation: A review.Electrophoresis.20194018-192438246110.1002/elps.20190011131056767
    [Google Scholar]
  48. ViodeA. van ZalmP. SmolenK.K. FatouB. StevensonD. JhaM. LevyO. SteenJ. SteenH. A simple, time- and cost-effective, high-throughput depletion strategy for deep plasma proteomics.Sci. Adv.2023913eadf971710.1126/sciadv.adf971736989362
    [Google Scholar]
  49. GilquinB. CubizollesM. Den DulkR. Revol-CavalierF. AlessioM. GoujonC.E. EchampardC. ArrizabalagaG. AdraitA. LouwagieM. LaurentP. NavarroF.P. CoutéY. CosnierM.L. BrunV. PepS: An innovative microfluidic device for bedside whole blood processing before plasma proteomics analyses.Anal. Chem.202193268369010.1021/acs.analchem.0c0227033319979
    [Google Scholar]
  50. FuQ. JohnsonC.W. WijayawardenaB.K. KowalskiM.P. KheradmandM. VanE.J.E. A plasma sample preparation for mass spectrometry using an automated workstation.J. Vis. Exp.2020241585984210.3791/5984232391810
    [Google Scholar]
  51. BlumeJ.E. ManningW.C. TroianoG. HornburgD. FigaM. HesterbergL. PlattT.L. ZhaoX. CuaresmaR.A. EverleyP.A. KoM. LiouH. MahoneyM. FerdosiS. ElgierariE.M. StolarczykC. TangeyshB. XiaH. BenzR. SiddiquiA. CarrS.A. MaP. LangerR. FariasV. FarokhzadO.C. Rapid, deep and precise profiling of the plasma proteome with multi- nanoparticle protein corona.Nat. Commun.2020111366210.1038/s41467‑020‑17033‑732699280
    [Google Scholar]
  52. GeyerP.E. ArendF.M. DollS. LouisetM.L. Virreira WinterS. Müller-ReifJ.B. TorunF.M. WeigandM. EichhornP. BruegelM. StraussM.T. HoldtL.M. MannM. TeupserD. High-resolution serum proteome trajectories in COVID-19 reveal patient-specific seroconversion.EMBO Mol. Med.2021138e1416710.15252/emmm.20211416734232570
    [Google Scholar]
  53. ShenB. YiX. SunY. BiX. DuJ. ZhangC. QuanS. ZhangF. SunR. QianL. GeW. LiuW. LiangS. ChenH. ZhangY. LiJ. XuJ. HeZ. ChenB. WangJ. YanH. ZhengY. WangD. ZhuJ. KongZ. KangZ. LiangX. DingX. RuanG. XiangN. CaiX. GaoH. LiL. LiS. XiaoQ. LuT. ZhuY. LiuH. ChenH. GuoT. Proteomic and metabolomic characterization of COVID-19 patient sera.Cell202018215972.e1510.1016/j.cell.2020.05.03232492406
    [Google Scholar]
  54. ParkJ. KimH. KimS.Y. KimY. LeeJ.S. DanK. SeongM.W. HanD. In-depth blood proteome profiling analysis revealed distinct functional characteristics of plasma proteins between severe and non-severe COVID-19 patients.Sci. Rep.20201012241810.1038/s41598‑020‑80120‑833376242
    [Google Scholar]
  55. AlaiyaA. AlshukairiA. ShinwariZ. AL-FaresM. AlotaibiJ. AlOmaimW. AlsharifI. BakheetR. AlharbiL. AllamR. AsiriA. MemishZ. AlromaihK. Al-MozainiM. Alterations in the plasma proteome induced by SARS-CoV-2 and MERS- CoV reveal biomarkers for disease outcomes for COVID-19 patients.J. Inflamm. Res.2021144313432810.2147/JIR.S32243034511970
    [Google Scholar]
  56. WardB. Pyr dit RuysS. BalligandJ.L. BelkhirL. CaniP.D. ColletJ.F. De GreefJ. DewulfJ.P. GattoL. HaufroidV. JodogneS. KabambaB. LingurskiM. YombiJ.C. VertommenD. ElensL. Deep plasma proteomics with data-independent acquisition: Clinical study protocol optimization with a COVID-19 cohort.J. Proteome Res.20242393806382210.1021/acs.jproteome.4c0010439159935
    [Google Scholar]
  57. MunD.G. VanderboomP.M. MadugunduA.K. GarapatiK. ChavanS. PetersonJ.A. SaraswatM. PandeyA. DIA-based proteome profiling of nasopharyngeal swabs from COVID-19 patients.J. Proteome Res.20212084165417510.1021/acs.jproteome.1c0050634292740
    [Google Scholar]
  58. IhlingC. TänzlerD. HagemannS. KehlenA. HüttelmaierS. ArltC. SinzA. Mass spectrometric identification of SARS-CoV-2 proteins from gargle solution samples of COVID-19 patients.J. Proteome Res.202019114389439210.1021/acs.jproteome.0c0028032568543
    [Google Scholar]
  59. GouveiaD. MiotelloG. GallaisF. GaillardJ.C. DebroasS. BellangerL. LavigneJ.P. SottoA. GrengaL. PibleO. ArmengaudJ. Proteotyping SARS-CoV-2 virus from nasopharyngeal swabs: A proof-of-concept focused on a 3 min mass spectrometry window.J. Proteome Res.202019114407441610.1021/acs.jproteome.0c0053532697082
    [Google Scholar]
  60. BezstarostiK. LamersM.M. DoffW.A.S. WeverP.C. ThaiK.T.D. van KampenJ.J.A. HaagmansB.L. DemmersJ.A.A. Targeted proteomics as a tool to detect SARS-CoV-2 proteins in clinical specimens.PLoS One20211611e025916510.1371/journal.pone.025916534762662
    [Google Scholar]
  61. GutmannC. TakovK. BurnapS.A. SinghB. AliH. TheofilatosK. ReedE. HasmanM. NabeebaccusA. FishM. McPhailM.J.W. O’GallagherK. SchmidtL.E. CasselC. RienksM. YinX. AuzingerG. NapoliS. MujibS.F. TrovatoF. SandersonB. MerrickB. NiaziU. SaqiM. DimitrakopoulouK. Fernández-LeiroR. BraunS. Kronstein-WiedemannR. DooresK.J. EdgeworthJ.D. ShahA.M. BornsteinS.R. TonnT. HaydayA.C. GiaccaM. Shankar-HariM. MayrM. SARS-CoV-2 RNAemia and proteomic trajectories inform prognostication in COVID-19 patients admitted to intensive care.Nat. Commun.2021121340610.1038/s41467‑021‑23494‑134099652
    [Google Scholar]
  62. LiuH. SadygovR.G. YatesJ.R.III. A model for random sampling and estimation of relative protein abundance in shotgun proteomics.Anal. Chem.200476144193420110.1021/ac049856315253663
    [Google Scholar]
  63. GrangerJ. SiddiquiJ. CopelandS. RemickD. Albumin depletion of human plasma also removes low abundance proteins including the cytokines.Proteomics20055184713471810.1002/pmic.20040133116281180
    [Google Scholar]
  64. LiuX. AbadL. ChatterjeeL. CristeaI.M. VarjosaloM. Mapping protein–protein interactions by mass spectrometry.Mass Spectrom. Rev.202421mas.2188710.1002/mas.2188738742660
    [Google Scholar]
  65. ZhouY. TanZ. XueP. WangY. LiX. GuanF. High-throughput, in-depth and estimated absolute quantification of plasma proteome using data-independent acquisition/mass spectrometry (“HIAP-DIA”).Proteomics2021215200026410.1002/pmic.20200026433460299
    [Google Scholar]
  66. MessnerC.B. DemichevV. WendischD. MichalickL. WhiteM. FreiwaldA. Textoris-TaubeK. VernardisS.I. EggerA.S. KreidlM. LudwigD. KilianC. AgostiniF. ZelezniakA. ThibeaultC. PfeifferM. HippenstielS. HockeA. von KalleC. CampbellA. HaywardC. PorteousD.J. MarioniR.E. LangenbergC. LilleyK.S. KueblerW.M. MüllederM. DrostenC. SuttorpN. WitzenrathM. KurthF. SanderL.E. RalserM. Ultra-high-throughput clinical proteomics reveals classifiers of COVID-19 infection.Cell Syst.20201111124.e410.1016/j.cels.2020.05.01232619549
    [Google Scholar]
  67. LudwigC. GilletL. RosenbergerG. AmonS. CollinsB.C. AebersoldR. Data-independent acquisition-based SWATH - MS for quantitative proteomics: A tutorial.Mol. Syst. Biol.2018148e812610.15252/msb.2017812630104418
    [Google Scholar]
  68. RenuseS. VanderboomP.M. MausA.D. KempJ.V. GurtnerK.M. MadugunduA.K. ChavanS. PetersonJ.A. MaddenB.J. MangalaparthiK.K. MunD.G. SinghS. KippB.R. DasariS. SinghR.J. GrebeS.K. PandeyA. A mass spectrometry-based targeted assay for detection of SARS-CoV-2 antigen from clinical specimens.EBioMedicine20216910346510.1016/j.ebiom.2021.10346534229274
    [Google Scholar]
  69. dos SantosF.M. Vindel-AlfagemeJ. CiordiaS. CastroV. OreraI. GaraigortaU. GastaminzaP. CorralesF. Dynamic cellular proteome remodeling during SARS-CoV-2 infection. identification of plasma protein readouts.J. Proteome Res.202524117118810.1021/acs.jproteome.4c0056639593238
    [Google Scholar]
  70. BodaghiA. FattahiN. RamazaniA. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of COVID-19 and other diseases.Heliyon202392e1332310.1016/j.heliyon.2023.e1332336744065
    [Google Scholar]
  71. BernardoL. LomagnoA. MauriP.L. SilvestreD.D. Integration of omics data and network models to unveil negative aspects of SARS-CoV-2, from pathogenic mechanisms to drug repurposing.Biology.2023129119610.3390/biology1209119637759595
    [Google Scholar]
  72. TyanovaS. TemuT. CoxJ. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics.Nat. Protoc.201611122301231910.1038/nprot.2016.13627809316
    [Google Scholar]
  73. TranN.H. QiaoR. XinL. ChenX. LiuC. ZhangX. Deep learning enables de novo peptide sequencing from data-independent-acquisition mass spectrometry.Nat. Meth.2018161636610.1038/s41592‑018‑0260‑330573815
    [Google Scholar]
  74. KongA.T. LeprevostF.V. AvtonomovD.M. MellacheruvuD. NesvizhskiiA.I. MSFragger: Ultrafast and comprehensive peptide identification in mass spectrometry–based proteomics.Nat. Meth.201714551352010.1038/nmeth.425628394336
    [Google Scholar]
  75. DemichevV. MessnerC.B. VernardisS.I. LilleyK.S. RalserM. DIA-NN: Neural networks and interference correction enable deep proteome coverage in high throughput.Nat. Meth.2019171414410.1038/s41592‑019‑0638‑x31768060
    [Google Scholar]
  76. CarvalhoP.C. FischerJ.S.G. ChenE.I. YatesJ.R.III BarbosaV.C. PatternLab for proteomics: A tool for differential shotgun proteomics.BMC Bioinformat.20089131610.1186/1471‑2105‑9‑31618644148
    [Google Scholar]
  77. TyanovaS. TemuT. SinitcynP. CarlsonA. HeinM.Y. GeigerT. The Perseus computational platform for comprehensive analysis of (prote)omics data.Nat. Meth.201613973174010.1038/nmeth.390127348712
    [Google Scholar]
  78. PangZ. XuL. ViauC. LuY. SalavatiR. BasuN. MetaboAnalystR 4.0: A unified LC-MS workflow for global metabolomics.Nat. Commun.2024151367510.1038/s41467‑024‑48009‑638693118
    [Google Scholar]
  79. ShermanB.T. HaoM. QiuJ. JiaoX. BaselerM.W. LaneH.C. ImamichiT. ChangW. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update).Nucleic Acids Res.202250W1W216W22110.1093/nar/gkac19435325185
    [Google Scholar]
  80. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  81. MilacicM. BeaversD. ConleyP. GongC. GillespieM. GrissJ. HawR. JassalB. MatthewsL. MayB. PetryszakR. RagueneauE. RothfelsK. SevillaC. ShamovskyV. StephanR. TiwariK. VarusaiT. WeiserJ. WrightA. WuG. SteinL. HermjakobH. D’EustachioP. The reactome pathway knowledgebase 2024.Nucleic Acids Res.202452D1D672D67810.1093/nar/gkad102537941124
    [Google Scholar]
  82. AlnakliA.A.A. JabeenA. ChakrabortyR. MohamedaliA. RanganathanS. A bioinformatics approach to mine the microbial proteomic profile of COVID-19 mass spectrometry data.Appl. Microbiol.20222115016410.3390/applmicrobiol2010010
    [Google Scholar]
  83. Núñez-FranzL. Ramírez-SantanaM. RubilarP. VialC. ApablazaM. GonzálezC. SaidM. OlivaresK. CortésL.J. HormazábalJ. CanalesL. VialP. IcazaG. Quezada-GaeteR. AguileraX. Seroprevalence of natural and acquired immunity against the SARS-CoV-2 virus in a population cohort from two Chilean cities, 2020–2022.Viruses202315120110.3390/v1501020136680241
    [Google Scholar]
  84. MessnerC.B. DemichevV. BloomfieldN. YuJ.S.L. WhiteM. KreidlM. EggerA.S. FreiwaldA. IvosevG. WasimF. ZelezniakA. JürgensL. SuttorpN. SanderL.E. KurthF. LilleyK.S. MüllederM. TateS. RalserM. Ultra-fast proteomics with scanning SWATH.Nat. Biotechnol.202139784685410.1038/s41587‑021‑00860‑433767396
    [Google Scholar]
  85. Al-NesfM.A.Y. AbdesselemH.B. BensmailI. IbrahimS. SaeedW.A.H. MohammedS.S.I. RazokA. AlhussainH. AlyR.M.A. Al MaslamaniM. OuararhniK. KhatibM.Y. HssainA.A. OmraniA.S. Al-KaabiS. Al KhalA. Al-ThaniA.A. SamsamW. FarooqA. Al-SuwaidiJ. Al-MaadheedM. Al-SiddiqiH.H. ButlerA.E. DecockJ.V. Mohamed-AliV. Al-EjehF. Prognostic tools and candidate drugs based on plasma proteomics of patients with severe COVID-19 complications.Nat. Commun.202213194610.1038/s41467‑022‑28639‑435177642
    [Google Scholar]
  86. VöllmyF. van den ToornH. Zenezini ChiozziR. ZucchettiO. PapiA. VoltaC.A. MarracinoL. Vieceli Dalla SegaF. FortiniF. DemichevV. Tober-LauP. CampoG. ContoliM. RalserM. KurthF. SpadaroS. RizzoP. HeckA.J.R. A serum proteome signature to predict mortality in severe COVID-19 patients.Life Sci. Alliance202149e20210109910.26508/lsa.20210109934226277
    [Google Scholar]
  87. VillarM. UrraJ.M. Rodríguez-del-RíoF.J. Artigas-JerónimoS. Jiménez-ColladosN. Ferreras-ColinoE. ContrerasM. de MeraI.G.F. Estrada-PeñaA. GortázarC. de la FuenteJ. Characterization by quantitative serum proteomics of immune-related prognostic biomarkers for COVID-19 symptomatology.Front. Immunol.20211273071010.3389/fimmu.2021.73071034566994
    [Google Scholar]
  88. DiB. JiaH. LuoO.J. LinF. LiK. ZhangY. WangH. LiangH. FanJ. YangZ. Identification and validation of predictive factors for progression to severe COVID-19 pneumonia by proteomics.Signal Transduct. Target. Ther.20205121710.1038/s41392‑020‑00333‑133011738
    [Google Scholar]
  89. WangD. KumarV. BurnhamK.L. MentzerA.J. MarsdenB.D. KnightJ.C. COMBATdb: A database for the COVID-19 multi-omics blood atlas.Nucleic Acids Res.202351D1D896D90510.1093/nar/gkac101936353986
    [Google Scholar]
  90. ByeonH. Prediction of adolescent suicidal ideation after the COVID-19 pandemic: A nationwide survey of a representative sample of Korea.Front Pediatr.20221095143910.3389/fped.2022.95143935958177
    [Google Scholar]
  91. BabačićH. ChristW. AraújoJ.E. MermelekasG. SharmaN. TynellJ. GarcíaM. VarnaiteR. AsgeirssonH. GlansH. LehtiöJ. Gredmark-RussS. KlingströmJ. PernemalmM. Comprehensive proteomics and meta-analysis of COVID-19 host response.Nat. Commun.2023141592110.1038/s41467‑023‑41159‑z37739942
    [Google Scholar]
  92. Diray-ArceJ. FouratiS. Doni JayaveluN. PatelR. MaguireC. ChangA.C. DandekarR. QiJ. LeeB.H. van ZalmP. SchroederA. ChenE. KonstorumA. BritoA. GygiJ.P. KhoA. ChenJ. PawarS. Gonzalez-ReicheA.S. HochA. MillirenC.E. OvertonJ.A. WestendorfK. CairnsC.B. RouphaelN. BosingerS.E. Kim-SchulzeS. KrammerF. RosenL. GrubaughN.D. van BakelH. WilsonM. RajanJ. SteenH. EckalbarW. CotsapasC. LangelierC.R. LevyO. AltmanM.C. MaeckerH. MontgomeryR.R. HaddadE.K. SekalyR.P. EssermanD. OzonoffA. BeckerP.M. AugustineA.D. GuanL. PetersB. KleinsteinS.H. AbrahamJ. AdkissonM. AlbertM. AltamiranoL.T. AlvarengaB. AndersonM.L. AndersonE.J. ArnettA. AsashimaH. AtkinsonM.A. BadenL.R. BartonB. BeachK. BeagleE. BeckerP.M. BellM.R. BernuiM. BimeC. BoddapatiA.K. BoothJ.L. BorresenB. BrakenridgeS.C. BristowL. BryantR. CalfeeC.S. CarreñoJ.M. CarrilloS. ChakS. ChangI. ConnorsJ. ConwayM. CorryD.B. CowanD. CroenB. Dela CruzC.S. CusimanoG. EakerL. EdwardsC. EhrlichL.I.R. ElashoffD. EricksonH. ErleD.J. FarhadianS. FarrugiaK. FatouB. FernandesA. Fernandez-SesmaA. FragiadakisG.K. FurukawaS. GeltmanJ.N. GhaleR. Bermúdez GonzálezM.C. GoonewardeneI.M. GuerreroE.S. GuirgisF.W. HaflerD.A. HamiltonS. HarrisP. HayatiA.N. HendricksonC.M. Agudelo HiguitaN.I. HodderT. HollandS.M. HoughC.L. HuertaC. HurleyK.C. HuttonS.R. IwasakiA. JaureguiA. JhaM. JohnsonB. JoynerD. KangelarisK.N. KellyG. KhalilZ. KhanZ. KheradmandF. KimJ.N. KimuraH. KoA.I. KohrB. KraftM. KrummelM. KutzlerM.A. Lasky-SuJ. LeeS. LeeD. LeipoldM. LentucciC. LerouxC. LinE. LiuS. LoveC. LuZ. MaliskovaL. ManningB.R. ManoharM. MartensM. McComseyG.A. McEnaneyK. McLinR. MelamedE. MelnykN. MendezK. MesserW.B. MetcalfJ.P. MichelottiG. MickE. MohantyS. MosierJ. MulderL.C.F. MurphyM. NadeauK.R.C. NelsonE. NelsonA. NguyenV. OberhausJ. PanganibanB. PellegriniK.L. PickeringH.C. PowellD.L. PresnellS. PulendranB. RahmanA.H. RashidA.S. RaskinA. ReedE.F. RibeiroS.P. RiveraA.M. RogersJ.E. RogersA. RogowskiB. RooksR. Rosenberg-HassonY. RothmanJ. RousseauJ.F. Salehi-RadR. SaluvanM. SamahaH. SchaenmanJ. SchunkR. SemenzaN.C. SenS. SevranskyJ. Seyfert-MargolisV. ShaheenT. ShawA.C. SiegS. SiegelS.A.R. SigalN. SilesN. SimmonsB. SimonV. SinghG. SinkoL. SmithC.M. SmolenK.K. SongL-Z. SrivastavaK. SullivanP. SyphursC. TcheouJ. TegosG.P. TharpG.K. TongA. TsitsiklisA. UngaroR.F. VaysmanT. ViodeA. VitaR. WangX. WardA. WardD.C. WillmoreA. WoloszczukK. WongK. WoodruffP.G. XuL. van HarenS. van de GuchteA. ZhaoY. Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients.Cell Rep. Med.20234610107910.1016/j.xcrm.2023.10107937327781
    [Google Scholar]
  93. MohammedI. NaumanA. PaulP. GanesanS. ChenK.H. JalilS.M.S. JaouniS.H. KawasH. KhanW.A. VattothA.L. Al-HashimiY.A. FaresA. ZeghlacheR. ZakariaD. The efficacy and effectiveness of the COVID-19 vaccines in reducing infection, severity, hospitalization, and mortality: A systematic review.Hum. Vaccin. Immunother.2022181202716010.1080/21645515.2022.202716035113777
    [Google Scholar]
  94. ZoodsmaM. SchaafsmaJ. Examining the ‘age of apology’: Insights from the political apology database.J. Peace Res.202259343644810.1177/00223433211024696
    [Google Scholar]
  95. LiF. ZhouY. ZhangY. YinJ. QiuY. GaoJ. ZhuF. POSREG: Proteomic signature discovered by simultaneously optimizing its reproducibility and generalizability.Brief. Bioinform.2022232bbac04010.1093/bib/bbac04035183059
    [Google Scholar]
  96. YuX. XuX. WuT. HuangW. XuC. XieW. LongX. APOA1 level is negatively correlated with the severity of COVID-19.Int. J. Gen. Med.20221568969810.2147/IJGM.S33295635082518
    [Google Scholar]
  97. GajulaS.N.R. KhairnarA.S. JockP. KumariN. PratimaK. MunjalV. KalanP. SontiR. LC-MS/MS: A sensitive and selective analytical technique to detect COVID-19 protein biomarkers in the early disease stage.Expert Rev. Proteomics2023201-351810.1080/14789450.2023.219184536919634
    [Google Scholar]
  98. LeeJ.S. HanD. KimS.Y. HongK.H. JangM. KimM.J. KimY. ParkJ.H. ChoS.I. ParkW.B. LeeK.B. ShinH.S. OhH.S. KimT.S. ParkS.S. SeongM.W. Longitudinal proteomic profiling provides insights into host response and proteome dynamics in COVID-19 progression.Proteomics20212111-12200027810.1002/pmic.20200027833945677
    [Google Scholar]
  99. SuvarnaK. BiswasD. PaiM.G.J. AcharjeeA. BankarR. PalanivelV. SalkarA. VermaA. MukherjeeA. ChoudhuryM. GhantasalaS. GhoshS. SinghA. BanerjeeA. BadayaA. BihaniS. LoyaG. MantriK. BurliA. RoyJ. SrivastavaA. AgrawalS. ShrivastavO. ShastriJ. SrivastavaS. Proteomics and machine learning approaches reveal a set of prognostic markers for COVID-19 severity with drug repurposing potential.Front. Physiol.20211265279910.3389/fphys.2021.65279933995121
    [Google Scholar]
  100. PonsM.J. YmañaB. Mayanga-HerreraA. SáenzY. Alvarez-ErvitiL. Tapia-RojasS. GamarraR. BlancoA.B. MoncunillG. Ugarte-GilM.F. Cytokine profiles associated with worse prognosis in a hospitalized peruvian COVID-19 cohort.Front. Immunol.20211270092110.3389/fimmu.2021.70092134539631
    [Google Scholar]
  101. WangZ. CryarA. LemkeO. Tober-LauP. LudwigD. HelbigE.T. HippenstielS. SanderL.E. BlakeD. LaneC.S. SayersR.L. MuellerC. ZeiserJ. TownsendS. DemichevV. MüllederM. KurthF. SirkaE. HartlJ. RalserM. A multiplex protein panel assay for severity prediction and outcome prognosis in patients with COVID-19: An observational multi-cohort study.EClinicalMedicine20224910149510.1016/j.eclinm.2022.10149535702332
    [Google Scholar]
  102. CiccosantiF. AntonioliM. SacchiA. NotariS. FarinaA. BeccaceceA. FustoM. VergoriA. D’OffiziG. TagliettiF. AntinoriA. NicastriE. MarchioniL. PalmieriF. IppolitoG. PiacentiniM. AgratiC. FimiaG.M. Proteomic analysis identifies a signature of disease severity in the plasma of COVID-19 pneumonia patients associated to neutrophil, platelet and complement activation.Clin. Proteomics20221913810.1186/s12014‑022‑09377‑736348270
    [Google Scholar]
  103. di FloraD.C. DionizioA. PereiraH.A.B.S. GarbieriT.F. GrizzoL.T. DionisioT.J. LeiteA.L. Silva-CostaL.C. BuzalafN.R. ReisF.N. PereiraV.B.R. RosaD.M.C. dos SantosC.F. BuzalafM.A.R. Analysis of plasma proteins involved in inflammation, immune response/complement system, and blood coagulation upon admission of COVID-19 patients to hospital may help to predict the prognosis of the disease.Cells20231212160110.3390/cells1212160137371071
    [Google Scholar]
  104. VedulaP. TangH.Y. SpeicherD.W. KashinaA. Unit UpCP. Protein posttranslational signatures identified in COVID-19 patient plasma.Front. Cell Dev. Biol.20221080714910.3389/fcell.2022.80714935223838
    [Google Scholar]
  105. AlghanemB. MansourF.A. ShaibahH. AlmuhalhilK. AlmourfiF. AlamriH.S. AlajmiH. RashidM. AlroqiF. JalouliM. HarrathA.H. BoudjellalM. BarhoumiT. Quantitative proteomics analysis of COVID-19 patients: Fetuin-A and tetranectin as potential modulators of innate immune responses.Heliyon202394e1522410.1016/j.heliyon.2023.e1522437064481
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037364237250402151440
Loading
/content/journals/cpps/10.2174/0113892037364237250402151440
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): COVID-19; mass spectrometry; Plasma biomarkers; protein profile; proteomics; SARS-CoV-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test