Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction/Objectives

Silver nanoparticles (AgNPs) are promising antimicrobial agents, but their synthesis often involves toxic reducing agents. To address this, we developed a green synthesis methodology employing an approach for synthesizing AgNPs within self-assembled ultrashort peptide hydrogels through photochemical synthesis, eliminating the need for toxic chemicals.

Methods

A novel tetrapeptide was designed and synthesized to form hydrogels in aqueous solutions. AgNPs were incorporated into the hydrogel photochemical synthesis using sunlight. The hydrogel and AgNPs were characterized through spectroscopic and microscopic techniques. The antibacterial efficacy of the AgNP-loaded hydrogel was assessed against gram-positive and gram-negative bacteria, and its wound-healing potential in mammalian cell lines was evaluated.

Results

Among the peptides synthesized, PHG-2 formed a hydrogel at a 1% w/v concentration in aqueous solution. Characterization using the gel inversion assay, circular dichroism (CD) spectroscopy, and transmission electron microscopy (TEM) revealed uniform nanofibril self-assembly. UV spectroscopy and TEM confirmed the formation of AgNPs within the hydrogel. While the peptide hydrogel exhibited moderate antibacterial activity alone, the AgNP-loaded hydrogel demonstrated synergistic antibacterial effects against methicillin-resistant (MRSA) and . A docking study of all the synthesized peptides was performed against FmtA (an enzyme for cell wall synthesis of MRSA) and results were correlated with the obtained docking score. The silver-loaded peptide hydrogel showed a twofold increase in antibacterial activity against MRSA compared to silver nitrate solutions. The hydrogel significantly promoted wound healing in HEK-293T and MCF-7 cells compared to the control.

Conclusion

This study introduces a novel ultrashort tetrapeptide sequence for developing antibacterial agents that are effective against infected wounds while supporting wound healing. Utilizing photochemical synthesis, the green synthesis approach provides an environmentally friendly and sustainable alternative to conventional methods.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037367553250327084808
2025-04-14
2025-11-08
Loading full text...

Full text loading...

References

  1. SzczyglewskaP. Feliczak-GuzikA. NowakI. Nanotechnology–general aspects: A chemical reduction approach to the synthesis of nanoparticles.Molecules20232813493210.3390/molecules2813493237446593
    [Google Scholar]
  2. MohanbabaS. GurunathanS. Differential biological activities of silver nanoparticles against Gram-negative and Gram-positive bacteria: A novel approach for antimicrobial therapy.Nanobiomaterials in Antimicrobial TherapyWilliam Andrew2016193227
    [Google Scholar]
  3. PokrajacL. AbbasA. ChrzanowskiW. DiasG.M. EggletonB.J. MaguireS. MaineE. MalloyT. NathwaniJ. NazarL. SipsA. SoneJ. van den BergA. WeissP.S. MitraS. Nanotechnology for a sustainable future: Addressing global challenges with the international network4sustainable nanotechnology.ACS Nano20211512186081862310.1021/acsnano.1c1091934910476
    [Google Scholar]
  4. ElzeinB. Nano Revolution: Tiny tech, big impact: How nanotechnology is driving SDGs progress.Heliyon20241010e3139310.1016/j.heliyon.2024.e3139338818162
    [Google Scholar]
  5. MalikS. MuhammadK. WaheedY. Emerging applications of nanotechnology in healthcare and medicine.Molecules20232818662410.3390/molecules2818662437764400
    [Google Scholar]
  6. ZhangX.F. LiuZ.G. ShenW. GurunathanS. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches.Int. J. Mol. Sci.2016179153410.3390/ijms17091534
    [Google Scholar]
  7. LekhaD.C. ShanmugamR. MadhuriK. DwarampudiL.P. BhaskaranM. KongaraD. TesfayeJ.L. NagaprasadN. BhargaviV.L.N. KrishnarajR. Review on silver nanoparticle synthesis method, antibacterial activity, drug delivery vehicles, and toxicity pathways: Recent advances and future aspects.J. Nanomater.20212021111110.1155/2021/4401829
    [Google Scholar]
  8. GherasimO. PuiuR.A. BîrcăA.C. BurdușelA.C. GrumezescuA.M. An updated review on silver nanoparticles in biomedicine.Nanomaterials20201011231810.3390/nano1011231833238486
    [Google Scholar]
  9. LiaoC. LiY. TjongS.C. Bactericidal and cytotoxic properties of silver nanoparticles.Int. J. Mol. Sci.201920449
    [Google Scholar]
  10. FranciG. FalangaA. GaldieroS. PalombaL. RaiM. MorelliG. GaldieroM. Silver nanoparticles as potential antibacterial agents.Molecules20152058856887410.3390/molecules2005885625993417
    [Google Scholar]
  11. MulfingerL. SolomonS.D. BahadoryM. JeyarajasingamA.V. RutkowskyS.A. BoritzC. Synthesis and study of silver nanoparticles.J. Chem. Educ.200784232232510.1021/ed084p322
    [Google Scholar]
  12. LooY.Y. RukayadiY. Nor-KhaizuraM.A.R. KuanC.H. ChiengB.W. NishibuchiM. RaduS. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected gram-negative foodborne pathogens.Front. Microbiol.20189155510.3389/fmicb.2018.0155530061871
    [Google Scholar]
  13. NyabadzaA. McCarthyÉ. MakhesanaM. HeidarinassabS. PlouzeA. VazquezM. BrabazonD. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage.Adv. Colloid Interface Sci.202332110301010.1016/j.cis.2023.10301037804661
    [Google Scholar]
  14. AhmadS. MunirS. ZebN. UllahA. KhanB. AliJ. BilalM. OmerM. AlamzebM. SalmanS.M. AliS. Green nanotechnology: A review on green synthesis of silver nanoparticles — An ecofriendly approach.Int. J. Nanomedicine2019145087510710.2147/IJN.S20025431371949
    [Google Scholar]
  15. RafiqueM. SadafI. RafiqueM.S. TahirM.B. A review on green synthesis of silver nanoparticles and their applications.Artif. Cells Nanomed. Biotechnol.20174571272129110.1080/21691401.2016.124179227825269
    [Google Scholar]
  16. YazdiM. YousefvandA. HosseiniH.M. MirhosseiniS.A. Green synthesis of silver nanoparticles using nisin and its antibacterial activity against Pseudomonas aeruginosa. Adv. Biomed. Res.20221115610.4103/abr.abr_99_2135982857
    [Google Scholar]
  17. VanlalveniC. LallianrawnaS. BiswasA. SelvarajM. ChangmaiB. RokhumS.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature.RSC Advances20211152804283710.1039/D0RA09941D35424248
    [Google Scholar]
  18. RoyA. BulutO. SomeS. MandalA.K. YilmazM.D. Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity.RSC Advances2019952673270210.1039/C8RA08982E35520490
    [Google Scholar]
  19. WichterleO. LímD. Hydrophilic gels for biological use.Nature1960185470611711810.1038/185117a0
    [Google Scholar]
  20. LiL. XieL. ZhengR. SunR. Self-assembly dipeptide hydrogel: The structures and properties.Front Chem.2021973979110.3389/fchem.2021.73979134540806
    [Google Scholar]
  21. AhnW. LeeJ.H. KimS.R. LeeJ. LeeE.J. Designed protein- and peptide-based hydrogels for biomedical sciences.J. Mater. Chem. B Mater. Biol. Med.2021981919194010.1039/D0TB02604B33475659
    [Google Scholar]
  22. LeeS. TrinhT.H.T. YooM. ShinJ. LeeH. KimJ. HwangE. LimY. RyouC. Self-assembling peptides and their application in the treatment of diseases.Int. J. Mol. Sci.20192023585010.3390/ijms2023585031766475
    [Google Scholar]
  23. LiJ. XingR. BaiS. YanX. Recent advances of self-assembling peptide-based hydrogels for biomedical applications.Soft Matter20191581704171510.1039/C8SM02573H30724947
    [Google Scholar]
  24. ShankarS. SinghG. RahimJ.U. QayumA. SharmaP.R. KatochM. RaiR. Investigation of α/γ hybrid peptide self-assembled structures with antimicrobial and antibiofilm properties.J. Pept. Sci.2020264-5e324310.1002/psc.324332153090
    [Google Scholar]
  25. FichmanG. GazitE. Self-assembly of short peptides to form hydrogels: Design of building blocks, physical properties and technological applications.Acta Biomater.20141041671168210.1016/j.actbio.2013.08.01323958781
    [Google Scholar]
  26. SchnaiderL. BrahmachariS. SchmidtN.W. MensaB. Shaham-NivS. BychenkoD. Adler-AbramovichL. ShimonL.J.W. KolushevaS. DeGradoW.F. GazitE. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.Nat. Commun.201781136510.1038/s41467‑017‑01447‑x29118336
    [Google Scholar]
  27. SainiA. ChauhanV.S. Self-assembling properties of peptides derived from TDP-43 C-terminal fragment.Langmuir201430133845385610.1021/la404710w24559403
    [Google Scholar]
  28. Prasad DewanganR. KumariS. Kumar MahtoA. JainA. PashaS. Self assembly and hydrogelation of N-terminal modified tetrapeptide for sustained release and synergistic action of antibacterial drugs against methicillin resistant S. aureus.Bioorg. Chem.202010210405210.1016/j.bioorg.2020.10405232659487
    [Google Scholar]
  29. DewanganR.P. JainA. TanwarS. YarM.S. PashaS. Self assembly and hydrogelation of spermine functionalized aromatic peptidomimetics against planktonic and sessile methicillin resistant S. aureus.RSC Advances2016611311265611266610.1039/C6RA24502A
    [Google Scholar]
  30. CoplingA. AkantibilaM. KumaresanR. FleischerG. CortesD. TripathiR.S. CarabettaV.J. VegaS.L. Recent advances in antimicrobial peptide hydrogels.Int. J. Mol. Sci.2023248756310.3390/ijms2408756337108725
    [Google Scholar]
  31. ReithoferM.R. LakshmananA. PingA.T.K. ChinJ.M. HauserC.A.E. In situ synthesis of size-controlled, stable silver nanoparticles within ultrashort peptide hydrogels and their anti-bacterial properties.Biomaterials201435267535754210.1016/j.biomaterials.2014.04.10224933510
    [Google Scholar]
  32. ZhaoY. ZhangM. LiQ. ChenX. Tissue engineering material KLD-12 Polypeptide /TGF-β1 the protective effect and mechanism of nanofiber gel on early intervertebral disc degeneration.Cell. Mol. Biol.2022683282293
    [Google Scholar]
  33. TripathiJ.K. PalS. AwasthiB. KumarA. TandonA. MitraK. ChattopadhyayN. GhoshJ.K. Variants of self-assembling peptide, KLD-12 that show both rapid fracture healing and antimicrobial properties.Biomaterials2015569210310.1016/j.biomaterials.2015.03.04625934283
    [Google Scholar]
  34. CoinI. BeyermannM. BienertM. Solid-phase peptide synthesis: From standard procedures to the synthesis of difficult sequences.Nat. Protoc.20072123247325610.1038/nprot.2007.45418079725
    [Google Scholar]
  35. PalomoJ.M. Solid-phase peptide synthesis: An overview focused on the preparation of biologically relevant peptides.RSC Advances2014462326583267210.1039/C4RA02458C
    [Google Scholar]
  36. ChengL. De Leon-RodriguezL.M. GilbertE.P. LooT. PettersL. YangZ. Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins.Int. J. Biol. Macromol.2024259Pt 212929610.1016/j.ijbiomac.2024.12929638199549
    [Google Scholar]
  37. ZakiaM. KooJ.M. KimD. JiK. HuhP. YoonJ. YooS.I. Development of silver nanoparticle-based hydrogel composites for antimicrobial activity.Green Chem. Lett. Rev.2020131344010.1080/17518253.2020.1725149
    [Google Scholar]
  38. GreenfieldN.J. Methods to estimate the conformation of proteins and polypeptides from circular dichroism data.Anal. Biochem.1996235111010.1006/abio.1996.00848850540
    [Google Scholar]
  39. WiklerM.A. Cockerill FR, Sheehan DJ, Craig WA, Tenover FC, Dudley ML LDE. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.Clinical and Laboratory Standards InstituteWayne, PA2006
    [Google Scholar]
  40. MahtoA.K. Kanupriya KumariS. YarM.S. DewanganR.P. Hydrocarbon stapled temporin-L analogue as potential antibacterial and antiendotoxin agents with enhanced protease stability.Bioorg. Chem.202414510723910.1016/j.bioorg.2024.10723938428282
    [Google Scholar]
  41. Joshi, S.; Dewangan, R.P.; Yadav, S.; Rawat, D.S.; Pasha, S. Synthesis, antibacterial activity and mode of action of novel linoleic acid-dipeptide-spermidine conjugates. Org. Biomol. Chem., 2012, 10 (41), 8326-35. Available from:10.1039/C2OB26393A
  42. Performance standards for antimicrobial susceptibility testing.2024Available from: https://clsi.org/standards/products/microbiology/documents/m100/
  43. DalalV. DhankharP. SinghV. SinghV. RakhaminovG. Golemi-KotraD. KumarP. Structure-based identification of potential drugs against FmtA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM.Protein J.202140214816510.1007/s10930‑020‑09953‑633421024
    [Google Scholar]
  44. GoddardT.D. HuangC.C. FerrinT.E. Visualizing density maps with UCSF Chimera.J. Struct. Biol.2007157128128710.1016/j.jsb.2006.06.01016963278
    [Google Scholar]
  45. JoshiS. DewanganR.P. YarM.S. RawatD.S. PashaS. N-terminal aromatic tag induced self assembly of tryptophan–arginine rich ultra short sequences and their potent antibacterial activity.RSC Advances2015584686106862010.1039/C5RA12095K
    [Google Scholar]
  46. DewanganR.P. BishtG.S. SinghV.P. YarM.S. PashaS. Design and synthesis of cell selective α/β-diastereomeric peptidomimetic with potent in vivo antibacterial activity against methicillin resistant S. Aureus. Bioorg. Chem.201876538547
    [Google Scholar]
  47. DewanganR.P. VermaD.P. VermaN.K. GuptaA. PantG. MitraK. HabibS. GhoshJ.K. Spermine-conjugated short proline-rich lipopeptides as broad-spectrum intracellular targeting antibacterial agents.J. Med. Chem.20226575433544810.1021/acs.jmedchem.1c0180935297625
    [Google Scholar]
  48. ParohaS. VermaJ. Singh ChandelA.K. KumariS. RaniL. DubeyR.D. MahtoA.K. PandaA.K. SahooP.K. DewanganR.P. Augmented therapeutic efficacy of Gemcitabine conjugated self-assembled nanoparticles for cancer chemotherapy.J. Drug Deliv. Sci. Technol.20227610379610.1016/j.jddst.2022.103796
    [Google Scholar]
  49. SinghN. PatelK. NavalkarA. KaduP. DattaD. ChatterjeeD. MukherjeeS. ShawR. GahlotN. ShawA. JadhavS. MajiS.K. Amyloid fibril-based thixotropic hydrogels for modeling of tumor spheroids in vitro.Biomaterials202329512203210.1016/j.biomaterials.2023.12203236791521
    [Google Scholar]
  50. HamleyI.W. Self-assembly, bioactivity, and nanomaterials applications of peptide conjugates with bulky aromatic terminal groups.ACS Appl. Bio Mater.20236238440910.1021/acsabm.2c0104136735801
    [Google Scholar]
  51. VassE. HollósiM. BessonF. BuchetR. Vibrational spectroscopic detection of beta- and gamma-turns in synthetic and natural peptides and proteins.Chem. Rev.200310351917195410.1021/cr000100n12744696
    [Google Scholar]
  52. TossiA. SandriL. GiangasperoA. Amphipathic, α-helical antimicrobial peptides.Biopolymers200055143010.1002/1097‑0282(2000)55:1<4::AID‑BIP30>3.0.CO;2‑M10931439
    [Google Scholar]
  53. ZasloffM. HarderJ. SchröderJ.M. Antimicrobial Peptides: Do They Have a Future as Therapeutics?Antimicrobial Peptides: Role in Human Health and Disease.Springer International PublishingCham201614715410.1007/978‑3‑319‑24199‑9_10
    [Google Scholar]
  54. SinghV. DhankharP. DalalV. TomarS. Golemi-KotraD. KumarP. Drug-repurposing approach to combat Staphylococcus aureus : Biomolecular and binding interaction study.ACS Omega2022743384483845810.1021/acsomega.2c0367136340146
    [Google Scholar]
  55. DalalV. KumarP. RakhaminovG. QamarA. FanX. HunterH. TomarS. Golemi-KotraD. KumarP. Repurposing an ancient protein core structure: Structural studies on FmtA, a novel esterase of Staphylococcus aureus.J. Mol. Biol.2019431173107312310.1016/j.jmb.2019.06.01931260692
    [Google Scholar]
  56. RahmanM.M. HunterH.N. ProvaS. VermaV. QamarA. Golemi-KotraD. The Staphylococcus aureus methicillin resistance factor FmtA is a D-amino esterase that acts on teichoiccids.MBio201671e02070-1510.1128/mBio.02070‑1526861022
    [Google Scholar]
  57. BrownS. XiaG. LuhachackL.G. CampbellJ. MeredithT.C. ChenC. WinstelV. GekelerC. IrazoquiJ.E. PeschelA. WalkerS. Methicillin resistance in Staphylococcus aureus requires glycosylated wall teichoic acids.Proc. Natl. Acad. Sci. USA201210946189091891410.1073/pnas.120912610923027967
    [Google Scholar]
  58. NeuhausF.C. BaddileyJ. C. NF A continuum of anionic charge: Structures and functions of D-alanyl-teichoic acids in gram-positive bacteria.Microbiol. Mol. Biol. Rev.200367468672310.1128/MMBR.67.4.686‑723.200314665680
    [Google Scholar]
  59. LipskyB.A. DrydenM. GottrupF. NathwaniD. SeatonR.A. StryjaJ. Antimicrobial stewardship in wound care: A position paper from the British society for antimicrobial chemotherapy and european wound management association.J. Antimicrob. Chemother.201671113026303510.1093/jac/dkw28727494918
    [Google Scholar]
  60. LiangY. LiangY. ZhangH. GuoB. Antibacterial biomaterials for skin wound dressing.Asian J Pharm Sci202217335338410.1016/j.ajps.2022.01.001
    [Google Scholar]
  61. AneesA.S. SachiD.S. KhatoonA. TahirA.M. AfzalM. SaquibH.M. KumarN.A. Bactericidal activity of silver nanoparticles: A mechanistic review.Mater. Sci. Energy Technol.2020375676910.1016/j.mset.2020.09.002
    [Google Scholar]
  62. PintoV.V. FerreiraM.J. SilvaR. SantosH.A. SilvaF. PereiraC.M. Long time effect on the stability of silver nanoparticles in aqueous medium: Effect of the synthesis and storage conditions.Colloids Surf. A Physicochem. Eng. Asp.20103641-3192510.1016/j.colsurfa.2010.04.015
    [Google Scholar]
  63. Abass SofiM. SunithaS. Ashaq SofiM. Khadheer PashaS.K. ChoiD. An overview of antimicrobial and anticancer potential of silver nanoparticles.J. King Saud Univ. Sci.202234210179110.1016/j.jksus.2021.101791
    [Google Scholar]
  64. FuK. WuH. SuZ. Self-assembling peptide-based hydrogels: Fabrication, properties, and applications.Biotechnol. Adv.20214910775210.1016/j.biotechadv.2021.10775233838284
    [Google Scholar]
  65. GuptaS. SinghI. SharmaA.K. KumarP. Ultrashort peptide self-assembly: Front-runners to transport drug and gene cargos.Front. Bioeng. Biotechnol.2020850410.3389/fbioe.2020.0050432548101
    [Google Scholar]
  66. GuanT. LiJ. ChenC. LiuY. Self-assembling peptide-based hydrogels for wound tissue repair.Adv. Sci.2022910210416510.1002/advs.20210416535142093
    [Google Scholar]
  67. ZhangW. LiuL. ChengH. ZhuJ. LiX. YeS. LiX. Hydrogel-based dressings designed to facilitate wound healing.Materials Adv.2024541364139410.1039/D3MA00682D
    [Google Scholar]
  68. MartR.J. OsborneR.D. StevensM.M. UlijnR.V. Peptide-based stimuli-responsive biomaterials.Soft Matter200621082283510.1039/b607706d32680274
    [Google Scholar]
  69. OrbachR. Adler-AbramovichL. ZigersonS. Mironi-HarpazI. SeliktarD. GazitE. Self-assembled Fmoc-peptides as a platform for the formation of nanostructures and hydrogels.Biomacromolecules20091092646265110.1021/bm900584m19705843
    [Google Scholar]
  70. RyanD.M. AndersonS.B. SenguenF.T. YoungmanR.E. NilssonB.L. Self-assembly and hydrogelation promoted by F 5-phenylalanine.Soft Matter20106347547910.1039/B916738B
    [Google Scholar]
  71. NieP. ZhaoY. XuH. Synthesis, applications, toxicity and toxicity mechanisms of silver nanoparticles: A review.Ecotoxicol. Environ. Saf.202325311463610.1016/j.ecoenv.2023.11463636806822
    [Google Scholar]
  72. KędzioraA. WieczorekR. SperudaM. MatolínováI. GoszczyńskiT.M. LitwinI. MatolínV. Bugla-PłoskońskaG. Comparison of antibacterial mode of action of silver ions and silver nanoformulations with different physico-chemical properties: Experimental and computational studies.Front. Microbiol.20211265961410.3389/fmicb.2021.65961434276595
    [Google Scholar]
  73. KędzioraA. SperudaM. KrzyżewskaE. RybkaJ. ŁukowiakA. Bugla-PłoskońskaG. Similarities and differences between Silver Ions and Silver in nanoforms as antibacterial agents.Int. J. Mol. Sci.201819244410.3390/ijms1902044429393866
    [Google Scholar]
  74. AliakbarA.Z. EsmaeiliZ. EftekhariB.S. KhosravimelalS. AlehosseiniM. OriveG. Dolatshahi-PirouzA. Pal Singh ChauhanN. JanmeyP.A. HashemiA. KunduS.C. GholipourmalekabadiM. Antibacterial smart hydrogels: New hope for infectious wound management.Mater. Today Bio20221710049910.1016/j.mtbio.2022.10049936466959
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037367553250327084808
Loading
/content/journals/cpps/10.2174/0113892037367553250327084808
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test