Skip to content
2000
image of A Valuable Target for Therapy: The Metalloproteinase ADAM10

Abstract

A special kind of posttranslational process known as proteolytic cleavage controls the half-lives and functions of several extracellular and intracellular proteins. The metalloproteinase ADAM10 has attracted attention because it cleaves a growing amount of protein substrates close to the extracellular membrane leaflet. The process known as “ectodomain shedding” controls the turnover of certain transmembrane proteins that are essential for receptor signaling and cell adhesion. It may trigger nuclear transport, intramembrane proteolysis, and cytoplasmic domain signaling. Additional human illnesses linked to ADAM10 include cancer, immune system malfunction, and neurodegeneration. The difficulty in targeting proteases for medicinal reasons stems from the many substrates that these enzymes, particularly ADAM10, have. It is usually necessary to precisely identify the therapeutic beneficial window of use since blocking or accelerating a particular protease activity is linked with undesirable side effects. More knowledge of the regulatory pathways governing ADAM10 expression, subcellular localization, and activity will probably lead to the identification of viable therapeutic targets, enabling more targeted and precise manipulation of the enzyme's proteolytic activity.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037348066250117070824
2025-02-10
2025-09-26
Loading full text...

Full text loading...

References

  1. Wetzel S. Seipold L. Saftig P. The metalloproteinase ADAM10: A useful therapeutic target? Biochim. Biophys. Acta. Mol. Cell. Res. 2017 1864 11 Pt B 2071 2081 10.1016/j.bbamcr.2017.06.005 28624438
    [Google Scholar]
  2. Turk B. Targeting proteases: Successes, failures and future prospects. Nat. Rev. Drug Discov. 2006 5 9 785 799 10.1038/nrd2092 16955069
    [Google Scholar]
  3. Drummond A.H. Beckett P. Brown P.D. Bone E.A. Davidson A.H. Galloway W.A. Gearing A.J.H. Huxley P. Laber D. McCourt M. Whittaker M. Wood L.M. Wright A. Preclinical and clinical studies of MMP inhibitors in cancer. Ann. N. Y. Acad. Sci. 1999 878 1 228 235 10.1111/j.1749‑6632.1999.tb07688.x 10415734
    [Google Scholar]
  4. Bramhall S.R. Hallissey M.T. Whiting J. Scholefield J. Tierney G. Stuart R.C. Hawkins R.E. McCulloch P. Maughan T. Brown P.D. Baillet M. Fielding J.W.L. Marimastat as maintenance therapy for patients with advanced gastric cancer: A randomised trial. Br. J. Cancer 2002 86 12 1864 1870 10.1038/sj.bjc.6600310 12085177
    [Google Scholar]
  5. Macaulay V.M. O’Byrne K.J. Saunders M.P. Braybrooke J.P. Long L. Gleeson F. Mason C.S. Harris A.L. Brown P. Talbot D.C. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. Clin. Cancer Res. 1999 5 3 513 520 10100701
    [Google Scholar]
  6. Vincent B. Regulation of the α-secretase ADAM10 at transcriptional, translational and post-translational levels. Brain Res. Bull. 2016 126 Pt 2 154 169 10.1016/j.brainresbull.2016.03.020 27060611
    [Google Scholar]
  7. Endres K. Deller T. Regulation of alpha-secretase ADAM10 in vitro and in vivo: Genetic, epigenetic, and protein-based mechanisms. Front. Mol. Neurosci. 2017 10 56 10.3389/fnmol.2017.00056 28367112
    [Google Scholar]
  8. Giebeler N. Zigrino P. A disintegrin and metalloprotease (ADAM): Historical overview of their functions. Toxins 2016 8 4 122 10.3390/toxins8040122 27120619
    [Google Scholar]
  9. Sonbol H. Extracellular matrix remodeling in human disease. J. Microsc. Ultrastruct. 2018 6 3 123 128 10.4103/JMAU.JMAU_4_18 30221137
    [Google Scholar]
  10. Prenzel N. Fischer O.M. Streit S. Hart S. Ullrich A. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 2001 8 1 11 31 10.1677/erc.0.0080011 11350724
    [Google Scholar]
  11. Evans J.P. Sperm-egg interaction. Annu. Rev. Physiol. 2012 74 1 477 502 10.1146/annurev‑physiol‑020911‑153339 22054237
    [Google Scholar]
  12. Stone A.L. Kroeger M. Sang Q.X.A. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). J. Protein Chem. 1999 18 4 447 465 10.1023/A:1020692710029 10449042
    [Google Scholar]
  13. Reiss K. The “a disintegrin and metalloprotease”(ADAM) family of sheddases: Physiological and cellular functions. Sem. Cell & Devel. Biol. 2009 20 2 126 137 10.1016/j.semcdb.2008.11.002
    [Google Scholar]
  14. Karamanos N.K. Piperigkou Z. Theocharis A.D. Watanabe H. Franchi M. Baud S. Brézillon S. Götte M. Passi A. Vigetti D. Blum R.S. Sanderson R.D. Neill T. Iozzo R.V. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem. Rev. 2018 118 18 9152 9232 10.1021/acs.chemrev.8b00354 30204432
    [Google Scholar]
  15. Edwards D. Handsley M. Pennington C. The ADAM metalloproteinases. Mol. Aspects Med. 2008 29 5 258 289 10.1016/j.mam.2008.08.001 18762209
    [Google Scholar]
  16. Weber S. Saftig P. Ectodomain shedding and ADAMs in development. Development 2012 139 20 3693 3709 10.1242/dev.076398 22991436
    [Google Scholar]
  17. Atapattu L. Lackmann M. Janes P.W. The role of proteases in regulating Eph/ephrin signaling. Cell Adhes. Migr. 2014 8 4 294 307 10.4161/19336918.2014.970026 25482632
    [Google Scholar]
  18. White J.M. ADAMs: Modulators of cell–cell and cell–matrix interactions. Curr. Opin. Cell Biol. 2003 15 5 598 606 10.1016/j.ceb.2003.08.001 14519395
    [Google Scholar]
  19. Rosenbaum D. Saftig P. New insights into the function and pathophysiology of the ectodomain sheddase a disintegrin and metalloproteinase 10 (ADAM10). FEBS J. 2024 291 13 2733 2766 10.1111/febs.16870 37218105
    [Google Scholar]
  20. Cuffaro D. Scilabra S.D. Spanò D.P. Calligaris M. Nuti E. Rossello A. A disintegrin and metalloproteinases (ADAMs) and tumor necrosis factor-alpha-converting enzyme (TACE). Metalloenzymes. Elsevier 2024 207 237 10.1016/B978‑0‑12‑823974‑2.00016‑4
    [Google Scholar]
  21. Saftig P. Reiss K. The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: Novel drug targets with therapeutic potential? Eur. J. Cell Biol. 2011 90 6-7 527 535 10.1016/j.ejcb.2010.11.005 21194787
    [Google Scholar]
  22. Kumar V. Vashishta M. Kong L. Wu X. Lu J.J. Guha C. Dwarakanath B.S. The role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies. Front. Cell Dev. Biol. 2021 9 650772 10.3389/fcell.2021.650772 33968932
    [Google Scholar]
  23. Bozkulak E.C. Weinmaster G. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling. Mol. Cell. Biol. 2009 29 21 5679 5695 10.1128/MCB.00406‑09 19704010
    [Google Scholar]
  24. Yuan X.Z. Sun S. Tan C.C. Yu J.T. Tan L. The role of ADAM10 in Alzheimer’s disease. J. Alzheimers Dis. 2017 58 2 303 322 10.3233/JAD‑170061 28409746
    [Google Scholar]
  25. Tosetti F. Alessio M. Poggi A. Zocchi M.R. Adam10 site-dependent biology: Keeping control of a pervasive protease. Int. J. Mol. Sci. 2021 22 9 4969 10.3390/ijms22094969 34067041
    [Google Scholar]
  26. Queiroz d.T.M. Lakkappa N. Lazartigues E. ADAM17-mediated shedding of inflammatory cytokines in hypertension. Front. Pharmacol. 2020 11 1154 10.3389/fphar.2020.01154 32848763
    [Google Scholar]
  27. Yang H. Khalil R.A. ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease. Advances in Pharmacology. Elsevier 2022 94 255 363
    [Google Scholar]
  28. Linkermann A. Gelhaus C. Lettau M. Qian J. Kabelitz D. Janssen O. Identification of interaction partners for individual SH3 domains of Fas ligand associated members of the PCH protein family in T lymphocytes. Biochim. Biophys. Acta. Prot. Proteomics 2009 1794 2 168 176 10.1016/j.bbapap.2008.10.013 19041431
    [Google Scholar]
  29. Chantry A. Gregson N.A. Glynn P. A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization. J. Biol. Chem. 1989 264 36 21603 21607 10.1016/S0021‑9258(20)88226‑X 2600084
    [Google Scholar]
  30. Howard L. Lu X. Mitchell S. Griffiths S. Glynn P. Molecular cloning of MADM: A catalytically active mammalian disintegrin-metalloprotease expressed in various cell types. Biochem. J. 1996 317 1 45 50 10.1042/bj3170045
    [Google Scholar]
  31. Vingtdeux V. Marambaud P. Identification and biology of α‐secretase. J. Neurochem. 2012 120 S1 34 45 10.1111/j.1471‑4159.2011.07477.x 22121879
    [Google Scholar]
  32. Moss M.L. Bomar M. Liu Q. Sage H. Dempsey P. Lenhart P.M. Gillispie P.A. Stoeck A. Wildeboer D. Bartsch J.W. Palmisano R. Zhou P. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events. J. Biol. Chem. 2007 282 49 35712 35721 10.1074/jbc.M703231200 17895248
    [Google Scholar]
  33. Fahrenholz F. Gilbert S. Kojro E. Lammich S. Postina R. Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure. Ann. N. Y. Acad. Sci. 2000 920 1 215 222 10.1111/j.1749‑6632.2000.tb06925.x 11193153
    [Google Scholar]
  34. Lichtenthaler S.F. α-Secretase in Alzheimer’s disease: Molecular identity, regulation and therapeutic potential. J. Neurochem. 2011 116 1 10 21 10.1111/j.1471‑4159.2010.07081.x 21044078
    [Google Scholar]
  35. Wong E. Maretzky T. Peleg Y. Blobel C.P. Sagi I. The functional maturation of a disintegrin and metalloproteinase (ADAM) 9, 10, and 17 requires processing at a newly identified proprotein convertase (PC) cleavage site. J. Biol. Chem. 2015 290 19 12135 12146 10.1074/jbc.M114.624072 25795784
    [Google Scholar]
  36. Suh J. Choi S.H. Romano D.M. Gannon M.A. Lesinski A.N. Kim D.Y. Tanzi R.E. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function. Neuron 2013 80 2 385 401 10.1016/j.neuron.2013.08.035 24055016
    [Google Scholar]
  37. Janes P.W. Saha N. Barton W.A. Kolev M.V. Kleikamp W.S.H. Nievergall E. Blobel C.P. Himanen J.P. Lackmann M. Nikolov D.B. Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005 123 2 291 304 10.1016/j.cell.2005.08.014 16239146
    [Google Scholar]
  38. Maretzky T. Evers A. Gall L.S. Alabi R.O. Speck N. Reiss K. Blobel C.P. The cytoplasmic domain of a disintegrin and metalloproteinase 10 (ADAM10) regulates its constitutive activity but is dispensable for stimulated ADAM10-dependent shedding. J. Biol. Chem. 2015 290 12 7416 7425 10.1074/jbc.M114.603753 25605720
    [Google Scholar]
  39. Bode W.C. Fellerer K. Kugler J. Haass C. Capell A. A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration. J. Biol. Chem. 2006 281 33 23824 23829 10.1074/jbc.M601542200 16777847
    [Google Scholar]
  40. Ebsen H. Lettau M. Kabelitz D. Janssen O. Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a disintegrin and metalloprotease 10 (ADAM10). PLoS One 2014 9 7 e102899 10.1371/journal.pone.0102899 25036101
    [Google Scholar]
  41. Kopan R. Ilagan M.X.G. The canonical Notch signaling pathway: Unfolding the activation mechanism. Cell 2009 137 2 216 233 10.1016/j.cell.2009.03.045 19379690
    [Google Scholar]
  42. Weber S. Niessen M.T. Prox J. Rauch L.R. Schmitz A. Schwanbeck R. Blobel C.P. Jorissen E. Strooper d.B. Niessen C.M. Saftig P. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 2011 138 3 495 505 10.1242/dev.055210 21205794
    [Google Scholar]
  43. Kuhn P.H. Colombo A.V. Schusser B. Dreymueller D. Wetzel S. Schepers U. Herber J. Ludwig A. Kremmer E. Montag D. Müller U. Schweizer M. Saftig P. Bräse S. Lichtenthaler S.F. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. eLife 2016 5 e12748 10.7554/eLife.12748 26802628
    [Google Scholar]
  44. Blundell J. Blaiss C.A. Etherton M.R. Espinosa F. Tabuchi K. Walz C. Bolliger M.F. Südhof T.C. Powell C.M. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior. J. Neurosci. 2010 30 6 2115 2129 10.1523/JNEUROSCI.4517‑09.2010 20147539
    [Google Scholar]
  45. Hinkle C.L. Diestel S. Lieberman J. Maness P.F. Metalloprotease‐induced ectodomain shedding of neural cell adhesion molecule (NCAM). J. Neurobiol. 2006 66 12 1378 1395 10.1002/neu.20257 16967505
    [Google Scholar]
  46. Klingener M. Chavali M. Singh J. McMillan N. Coomes A. Dempsey P.J. Chen E.I. Aguirre A. N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions. J. Neurosci. 2014 34 29 9590 9606 10.1523/JNEUROSCI.3699‑13.2014 25031401
    [Google Scholar]
  47. Prox J. Bernreuther C. Altmeppen H. Grendel J. Glatzel M. D'Hooge R. Stroobants S. Ahmed T. Balschun D. Willem M. Lammich S. Isbrandt D. Schweizer M. Horré K. Strooper D.B. Saftig P. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions. J. Neur. 2013 33 32 12915 12928
    [Google Scholar]
  48. Tousseyn T. Thathiah A. Jorissen E. Raemaekers T. Konietzko U. Reiss K. Maes E. Snellinx A. Serneels L. Nyabi O. Annaert W. Saftig P. Hartmann D. Strooper D.B. ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J. Biol. Chem. 2009 284 17 11738 11747 10.1074/jbc.M805894200 19213735
    [Google Scholar]
  49. Parkin E. Harris B. A disintegrin and metalloproteinase (ADAM)‐mediated ectodomain shedding of ADAM10. J. Neurochem. 2009 108 6 1464 1479 10.1111/j.1471‑4159.2009.05907.x 19183255
    [Google Scholar]
  50. Saftig P. Lichtenthaler S.F. The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain. Prog. Neurobiol. 2015 135 1 20 10.1016/j.pneurobio.2015.10.003 26522965
    [Google Scholar]
  51. Yamazaki K. Mizui Y. Sagane K. Tanaka I. Assignment of a disintegrin and metalloproteinase domain 10 (Adam10) gene to mouse chromosome 9. Genomics 1997 46 3 528 529 10.1006/geno.1997.5043 9441766
    [Google Scholar]
  52. Yamazaki K. Mizui Y. Tanaka I. Radiation hybrid mapping of human ADAM10 gene to chromosome 15. Genomics 1997 45 2 457 459 10.1006/geno.1997.4910 9344679
    [Google Scholar]
  53. Lammich S. Buell D. Zilow S. Ludwig A.K. Nuscher B. Lichtenthaler S.F. Prinzen C. Fahrenholz F. Haass C. Expression of the anti-amyloidogenic secretase ADAM10 is suppressed by its 5′-untranslated region. J. Biol. Chem. 2010 285 21 15753 15760 10.1074/jbc.M110.110742 20348102
    [Google Scholar]
  54. Lammich S. Kamp F. Wagner J. Nuscher B. Zilow S. Ludwig A.K. Willem M. Haass C. Translational repression of the disintegrin and metalloprotease ADAM10 by a stable G-quadruplex secondary structure in its 5′-untranslated region. J. Biol. Chem. 2011 286 52 45063 45072 10.1074/jbc.M111.296921 22065584
    [Google Scholar]
  55. Cheng C. Li W. Zhang Z. Yoshimura S. Hao Q. Zhang C. Wang Z. MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10). J. Biol. Chem. 2013 288 19 13748 13761 10.1074/jbc.M112.381392 23546882
    [Google Scholar]
  56. Augustin R. Endres K. Reinhardt S. Kuhn P.H. Lichtenthaler S.F. Hansen J. Wurst W. Trümbach D. Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10. BMC Med. Genet. 2012 13 1 35 10.1186/1471‑2350‑13‑35 22594617
    [Google Scholar]
  57. Reinhardt S. Schuck F. Grösgen S. Riemenschneider M. Hartmann T. Postina R. Grimm M. Endres K. Unfolded protein response signaling by transcription factor XBP‐1 regulates ADAM10 and is affected in Alzheimer’s disease. FASEB J. 2014 28 2 978 997 10.1096/fj.13‑234864 24165480
    [Google Scholar]
  58. Theendakara V. Patent A. Libeu P.C.A. Philpot B. Flores S. Descamps O. Poksay K.S. Zhang Q. Cailing G. Hart M. John V. Rao R.V. Bredesen D.E. Neuroprotective sirtuin ratio reversed by ApoE4. Proc. Natl. Acad. Sci. 2013 110 45 18303 18308 10.1073/pnas.1314145110 24145446
    [Google Scholar]
  59. Donmez G. Wang D. Cohen D.E. Guarente L. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10. Cell 2010 142 2 320 332 10.1016/j.cell.2010.06.020 20655472
    [Google Scholar]
  60. Endres K. Postina R. Schroeder A. Mueller U. Fahrenholz F. Shedding of the amyloid precursor protein‐like protein APLP2 by disintegrin‐metalloproteinases. FEBS J. 2005 272 22 5808 5820 10.1111/j.1742‑4658.2005.04976.x 16279945
    [Google Scholar]
  61. Holback S. Adlerz L. Iverfeldt K. Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid‐differentiated human neuroblastoma cells. J. Neurochem. 2005 95 4 1059 1068 10.1111/j.1471‑4159.2005.03440.x 16150056
    [Google Scholar]
  62. Tippmann F. Hundt J. Schneider A. Endres K. Fahrenholz F. Up‐regulation of the α‐secretase ADAM10 by retinoic acid receptors and acitretin. FASEB J. 2009 23 6 1643 1654 10.1096/fj.08‑121392 19144697
    [Google Scholar]
  63. Larsen F.G. Kudsk N.F. Jakobsen P. Weismann K. Kragballe K. Pharmacokinetics and therapeutic efficacy of retinoids in skin diseases. Clin. Pharmacokinet. 1992 23 1 42 61 10.2165/00003088‑199223010‑00004 1617858
    [Google Scholar]
  64. Shukla M. Htoo H.H. Wintachai P. Hernandez J.F. Dubois C. Postina R. Xu H. Checler F. Smith D.R. Govitrapong P. Vincent B. Melatonin stimulates the nonamyloidogenic processing of β APP through the positive transcriptional regulation of ADAM10 and ADAM17. J. Pineal Res. 2015 58 2 151 165 10.1111/jpi.12200 25491598
    [Google Scholar]
  65. Prinzen C. Müller U. Endres K. Fahrenholz F. Postina R. Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J. 2005 19 11 1522 1524 10.1096/fj.04‑3619fje 15972296
    [Google Scholar]
  66. Kärkkäinen I. Rybnikova E. Huikko P.M. Huovila A.P.J. Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol. Cell. Neurosci. 2000 15 6 547 560 10.1006/mcne.2000.0848 10860581
    [Google Scholar]
  67. Marcinkiewicz M. Seidah N.G. Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain. J. Neurochem. 2000 75 5 2133 2143 10.1046/j.1471‑4159.2000.0752133.x 11032903
    [Google Scholar]
  68. Lin J. Luo J. Redies C. Differential expression of five members of the ADAM family in the developing chicken brain. Neuroscience 2008 157 2 360 375 10.1016/j.neuroscience.2008.08.053 18832016
    [Google Scholar]
  69. Anders A. Gilbert S. Garten W. Postina R. Fahrenholz F. Regulation of the α‐secretase ADAM10 by its prodomain and proprotein convertases. FASEB J. 2001 15 10 1837 1839 10.1096/fj.01‑0007fje 11481247
    [Google Scholar]
  70. Pruessmeyer J. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Seminars in cell & developmental biology. Elsevier 2009 164 174
    [Google Scholar]
  71. Tetering v.G. Diest v.P. Verlaan I. Wall d.v.E. Kopan R. Vooijs M. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage. J. Biol. Chem. 2009 284 45 31018 31027 10.1074/jbc.M109.006775 19726682
    [Google Scholar]
  72. Hartmann D. Strooper d.B. Serneels L. Craessaerts K. Herreman A. Annaert W. Umans L. Lübke T. Illert L.A. Figura v.K. Saftig P. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts. Hum. Mol. Genet. 2002 11 21 2615 2624 10.1093/hmg/11.21.2615 12354787
    [Google Scholar]
  73. Marcello E. Gardoni F. Luca D.M. Otaño P.I. An arginine stretch limits ADAM10 exit from the endoplasmic reticulum. J. Biol. Chem. 2010 285 14 10376 10384 10.1074/jbc.M109.055947 20100836
    [Google Scholar]
  74. Hwang E.M. Kim S.K. Sohn J.H. Lee J.Y. Kim Y. Kim Y.S. Jung M.I. Furin is an endogenous regulator of α-secretase associated APP processing. Biochem. Biophys. Res. Commun. 2006 349 2 654 659 10.1016/j.bbrc.2006.08.077 16942750
    [Google Scholar]
  75. Marcello E. Gardoni F. Mauceri D. Romorini S. Jeromin A. Epis R. Borroni B. Cattabeni F. Sala C. Padovani A. Luca D.M. Synapse-associated protein-97 mediates α-secretase ADAM10 trafficking and promotes its activity. J. Neurosci. 2007 27 7 1682 1691 10.1523/JNEUROSCI.3439‑06.2007 17301176
    [Google Scholar]
  76. Marcello E. Saraceno C. Musardo S. Vara H. Fuente l.d.A.G. Pelucchi S. Marino D.D. Borroni B. Tramontano A. Otaño P.I. Padovani A. Giustetto M. Gardoni F. Luca D.M. Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease. J. Clin. Invest. 2013 123 6 2523 2538 10.1172/JCI65401 23676497
    [Google Scholar]
  77. Prox J. Willenbrock M. Weber S. Lehmann T. Arras S.D. Schwanbeck R. Saftig P. Schwake M. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10. Cell. Mol. Life Sci. 2012 69 17 2919 2932 10.1007/s00018‑012‑0960‑2 22446748
    [Google Scholar]
  78. Haining E.J. Yang J. Bailey R.L. Khan K. Collier R. Tsai S. Watson S.P. Frampton J. Garcia P. Tomlinson M.G. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression. J. Biol. Chem. 2012 287 47 39753 39765 10.1074/jbc.M112.416503 23035126
    [Google Scholar]
  79. Dornier E. Coumailleau F. Ottavi J.F. Moretti J. Boucheix C. Mauduit P. Schweisguth F. Rubinstein E. TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals. J. Cell Biol. 2012 199 3 481 496 10.1083/jcb.201201133 23091066
    [Google Scholar]
  80. Hardy J. Selkoe D. J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics. Science 2002 297 5580 353 356
    [Google Scholar]
  81. Lammich S. Kojro E. Postina R. Gilbert S. Pfeiffer R. Jasionowski M. Haass C. Fahrenholz F. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. 1999 96 7 3922 3927 10.1073/pnas.96.7.3922 10097139
    [Google Scholar]
  82. Postina R. Schroeder A. Dewachter I. Bohl J. Schmitt U. Kojro E. Prinzen C. Endres K. Hiemke C. Blessing M. Flamez P. Dequenne A. Godaux E. Leuven v.F. Fahrenholz F. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model. J. Clin. Invest. 2004 113 10 1456 1464 10.1172/JCI20864 15146243
    [Google Scholar]
  83. Rüb U. Seidel K. Heinsen H. Vonsattel J.P. Dunnen d.W.F. Korf H.W. H untington’s disease ( HD ): The neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016 26 6 726 740 10.1111/bpa.12426 27529157
    [Google Scholar]
  84. Sardo L.V. Zuccato C. Gaudenzi G. Vitali B. Ramos C. Tartari M. Myre M.A. Walker J.A. Pistocchi A. Conti L. Valenza M. Drung B. Schmidt B. Gusella J. Zeitlin S. Cotelli F. Cattaneo E. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin. Nat. Neurosci. 2012 15 5 713 721 10.1038/nn.3080 22466506
    [Google Scholar]
  85. Altmeppen H.C. Prox J. Krasemann S. Puig B. Kruszewski K. Dohler F. Bernreuther C. Hoxha A. Linsenmeier L. Sikorska B. Liberski P.P. Bartsch U. Saftig P. Glatzel M. The sheddase ADAM10 is a potent modulator of prion disease. eLife 2015 4 e04260 10.7554/eLife.04260 25654651
    [Google Scholar]
  86. Um J.W. Nygaard H.B. Heiss J.K. Kostylev M.A. Stagi M. Vortmeyer A. Wisniewski T. Gunther E.C. Strittmatter S.M. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons. Nat. Neurosci. 2012 15 9 1227 1235 10.1038/nn.3178 22820466
    [Google Scholar]
  87. Endres K. Mitteregger G. Kojro E. Kretzschmar H. Fahrenholz F. Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo. Neurobiol. Dis. 2009 36 2 233 241 10.1016/j.nbd.2009.07.015 19632330
    [Google Scholar]
  88. Napoli I. Mercaldo V. Boyl P.P. Eleuteri B. Zalfa F. Rubeis D.S. Marino D.D. Mohr E. Massimi M. Falconi M. Witke W. Mattioli C.M. Sonenberg N. Achsel T. Bagni C. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 2008 134 6 1042 1054 10.1016/j.cell.2008.07.031 18805096
    [Google Scholar]
  89. Westmark C.J. Malter J.S. FMRP mediates mGluR5-dependent translation of amyloid precursor protein. PLoS Biol. 2007 5 3 e52 10.1371/journal.pbio.0050052 17298186
    [Google Scholar]
  90. Pasciuto E. Ahmed T. Wahle T. Gardoni F. D’Andrea L. Pacini L. Jacquemont S. Tassone F. Balschun D. Dotti C.G. Vegh C.Z. D’Hooge R. Müller U.C. Luca D.M. Strooper D.B. Bagni C. Dysregulated ADAM10-mediated processing of app during a critical time window leads to synaptic deficits in fragile X syndrome. Neuron 2015 87 2 382 398 10.1016/j.neuron.2015.06.032 26182420
    [Google Scholar]
  91. Simone R. Fratta P. Neidle S. Parkinson G.N. Isaacs A.M. G‐quadruplexes: Emerging roles in neurodegenerative diseases and the non‐coding transcriptome. FEBS Lett. 2015 589 14 1653 1668 10.1016/j.febslet.2015.05.003 25979174
    [Google Scholar]
  92. Sokolove J. Johnson D.S. Lahey L.J. Wagner C.A. Cheng D. Thiele G.M. Michaud K. Sayles H. Reimold A.M. Caplan L. Cannon G.W. Kerr G. Mikuls T.R. Robinson W.H. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in rheumatoid arthritis. Arthritis Rheumatol. 2014 66 4 813 821 10.1002/art.38307 24757134
    [Google Scholar]
  93. Smolen J.S. Aletaha D. McInnes I.B. Rheumatoid arthritis. Lancet 2016 388 10055 2023 2038 10.1016/S0140‑6736(16)30173‑8 27156434
    [Google Scholar]
  94. Weskamp G. Ford J.W. Sturgill J. Martin S. Docherty A.J.P. Swendeman S. Broadway N. Hartmann D. Saftig P. Umland S. Fujisawa S.A. Black R.A. Ludwig A. Becherer J.D. Conrad D.H. Blobel C.P. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23. Nat. Immunol. 2006 7 12 1293 1298 10.1038/ni1399 17072319
    [Google Scholar]
  95. Henchoz L.S. Gauchat J.F. Aubry J.P. Graber P. Life P. Eugene P.N. Ferrua B. Corbi A.L. Dugas B. Zyberk P.C. Bonnefoy J-Y. CD23 Regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18. Immunity 1995 3 1 119 125 10.1016/1074‑7613(95)90164‑7 7621072
    [Google Scholar]
  96. Isozaki T. Rabquer B.J. Ruth J.H. Haines G.K. III Koch A.E. ADAM‐10 is overexpressed in rheumatoid arthritis synovial tissue and mediates angiogenesis. Arthritis Rheum. 2013 65 1 98 108 10.1002/art.37755 23124962
    [Google Scholar]
  97. Rabquer B.J. Amin M.A. Teegala N. Shaheen M.K. Tsou P.S. Ruth J.H. Lesch C.A. Imhof B.A. Koch A.E. Junctional adhesion molecule-C is a soluble mediator of angiogenesis. J. Immunol. 2010 185 3 1777 1785 10.4049/jimmunol.1000556 20592283
    [Google Scholar]
  98. Li D. Xiao Z. Wang G. Song X. Knockdown of ADAM10 inhibits migration and invasion of fibroblast-like synoviocytes in rheumatoid arthritis. Mol. Med. Rep. 2015 12 4 5517 5523
    [Google Scholar]
  99. Voort D.V.R. Lieshout V.A.W.T. Toonen L.W.J. Slöetjes A.W. Berg D.V.W.B. Figdor C.G. Radstake T.R.D.J. Adema G.J. Elevated CXCL16 expression by synovial macrophages recruits memory T cells into rheumatoid joints. Arthritis Rheum. 2005 52 5 1381 1391 10.1002/art.21004 15880344
    [Google Scholar]
  100. Friedman S.L. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008 134 6 1655 1669 10.1053/j.gastro.2008.03.003 18471545
    [Google Scholar]
  101. Müller M. Wetzel S. Gaone K.J. Chalupsky K. Rauch L.R. Barikbin R. Bergmann J. Wöhner B. Zbodakova O. Leuschner I. Martin G. Tiegs G. John R.S. Sedlacek R. Parker T.J.E.E. Saftig P. Arras S.D. A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis. Oncotarget 2016 7 14 17431 17441 10.18632/oncotarget.7836 26942887
    [Google Scholar]
  102. Chalupský K. Kanchev I. Žbodáková O. Buryová H. Jiroušková M. Kořínek V. Gregor M. Sedláček R. ADAM10/17-dependent release of soluble c-Met correlates with hepatocellular damage. Folia Biol. 2013 59 2 76 86 10.14712/fb2013059020076 23746173
    [Google Scholar]
  103. Boittin B.K. Basset L. Bonnier D. L’Helgoualc’h A. Samson M. Théret N. CX3CL1/fractalkine shedding by human hepatic stellate cells: Contribution to chronic inflammation in the liver. J. Cell. Mol. Med. 2009 13 8a 1526 1535 10.1111/j.1582‑4934.2009.00787.x 19432809
    [Google Scholar]
  104. Clouston A.D. Powell E.E. Walsh M.J. Richardson M.M. Demetris A.J. Jonsson J.R. Fibrosis correlates with a ductular reaction in hepatitis C. Hepatology 2005 41 4 809 818 10.1002/hep.20650 15793848
    [Google Scholar]
  105. Hundhausen C. Misztela D. Berkhout T.A. Broadway N. Saftig P. Reiss K. Hartmann D. Fahrenholz F. Postina R. Matthews V. Kallen K.J. John R.S. Ludwig A. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003 102 4 1186 1195 10.1182/blood‑2002‑12‑3775 12714508
    [Google Scholar]
  106. Friedman S.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 2008 88 1 125 172 10.1152/physrev.00013.2007 18195085
    [Google Scholar]
  107. Imai T. Hieshima K. Haskell C. Baba M. Nagira M. Nishimura M. Kakizaki M. Takagi S. Nomiyama H. Schall T.J. Yoshie O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell 1997 91 4 521 530 10.1016/S0092‑8674(00)80438‑9 9390561
    [Google Scholar]
  108. Griffiths C.E.M. Kerkhof d.v.P. Operacz C.M. Psoriasis and atopic dermatitis. Dermatol. Ther. 2017 7 S1 31 41 10.1007/s13555‑016‑0167‑9 28150106
    [Google Scholar]
  109. Gaspari A.A. Innate and adaptive immunity and the pathophysiology of psoriasis. J. Am. Acad. Dermatol. 2006 54 3 S67 S80 10.1016/j.jaad.2005.10.057 16488332
    [Google Scholar]
  110. Higashiyama S. Nanba D. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk. Biochim. Biophys. Acta. Proteins Proteomics 2005 1751 1 110 117 10.1016/j.bbapap.2004.11.009
    [Google Scholar]
  111. Gudjonsson J.E. Johnston A. Stoll S.W. Riblett M.B. Xing X. Kochkodan J.J. Ding J. Nair R.P. Aphale A. Voorhees J.J. Elder J.T. Evidence for altered Wnt signaling in psoriatic skin. J. Invest. Dermatol. 2010 130 7 1849 1859 10.1038/jid.2010.67 20376066
    [Google Scholar]
  112. Thélu J. Rossio P. Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2002 2 1 7 10.1186/1471‑5945‑2‑7 11978185
    [Google Scholar]
  113. Nicolas M. Wolfer A. Raj K. Kummer J.A. Mill P. Noort v.M. Hui C. Clevers H. Dotto G.P. Radtke F. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 2003 33 3 416 421 10.1038/ng1099 12590261
    [Google Scholar]
  114. Piepkorn M. Overexpression of amphiregulin, a major autocrine growth factor for cultured human keratinocytes, in hyperproliferative skin diseases. Am. J. Dermatopathol. 1996 18 2 165 171 10.1097/00000372‑199604000‑00010 8739992
    [Google Scholar]
  115. Elder J.T. Fisher G.J. Lindquist P.B. Bennett G.L. Pittelkow M.R. Coffey R.J. Jr Ellingsworth L. Derynck R. Voorhees J.J. Overexpression of transforming growth factor α in psoriatic epidermis. Science 1989 243 4892 811 814 10.1126/science.2916128 2916128
    [Google Scholar]
  116. Oh S.T. Schramme A. Stark A. Tilgen W. Gutwein P. Reichrath J. Overexpression of ADAM 10 and ADAM 12 in lesional psoriatic skin. Br. J. Dermatol. 2008 158 6 1371 1373 10.1111/j.1365‑2133.2008.08513.x 18363768
    [Google Scholar]
  117. Pang M.L. Murase E.J. Koo J. An updated review of acitretin – A systemic retinoid for the treatment of psoriasis. Expert Opin. Drug Metab. Toxicol. 2008 4 7 953 964 10.1517/17425255.4.7.953 18624682
    [Google Scholar]
  118. Fahrenholz F. Postina R. α-Secretase activation--An approach to Alzheimer’s disease therapy. Neurodegener. Dis. 2006 3 4-5 255 261 10.1159/000095264 17047365
    [Google Scholar]
  119. Fukasawa H. Nakagomi M. Yamagata N. Katsuki H. Kawahara K. Kitaoka K. Miki T. Shudo K. Tamibarotene: A candidate retinoid drug for Alzheimer’s disease. Biol. Pharm. Bull. 2012 35 8 1206 1212 10.1248/bpb.b12‑00314 22863914
    [Google Scholar]
  120. Kitaoka K. Shimizu N. Ono K. Chikahisa S. Nakagomi M. Shudo K. Ishimura K. Séi H. Yoshizaki K. The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice. Neuropharmacology 2013 72 58 65 10.1016/j.neuropharm.2013.04.009 23624141
    [Google Scholar]
  121. Postina R. Activation of α‐secretase cleavage. J. Neurochem. 2012 120 S1 46 54 10.1111/j.1471‑4159.2011.07459.x 21883223
    [Google Scholar]
  122. Holthoewer D. Endres K. Schuck F. Hiemke C. Schmitt U. Fahrenholz F. Acitretin, an enhancer of alpha-secretase expression, crosses the blood-brain barrier and is not eliminated by P-glycoprotein. Neurodegener. Dis. 2012 10 1-4 224 228 10.1159/000334300 22301853
    [Google Scholar]
  123. Lee H.R. Shin H.K. Park S.Y. Kim H.Y. Lee W.S. Rhim B.Y. Hong K.W. Kim C.D. Cilostazol suppresses β‐amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1‐coupled retinoic acid receptor‐β. J. Neurosci. Res. 2014 92 11 1581 1590 10.1002/jnr.23421 24903973
    [Google Scholar]
  124. Karuppagounder S.S. Pinto J.T. Xu H. Chen H.L. Beal M.F. Gibson G.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem. Int. 2009 54 2 111 118 10.1016/j.neuint.2008.10.008 19041676
    [Google Scholar]
  125. Yu S. Reddy J. K. Transcription coactivators for peroxisome proliferator-activated receptors. Biochim Biophys Acta 2007 1771 8 936 951
    [Google Scholar]
  126. Heneka M.T. Irisarri R.E. Hüll M. Kummer M.P. Impact and therapeutic potential of PPARs in Alzheimer’s disease. Curr. Neuropharmacol. 2011 9 4 643 650 10.2174/157015911798376325 22654722
    [Google Scholar]
  127. Corbett G.T. Gonzalez F.J. Pahan K. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP. Proc. Natl. Acad. Sci. 2015 112 27 8445 8450 10.1073/pnas.1504890112 26080426
    [Google Scholar]
  128. Meineck M. Schuck F. Abdelfatah S. Efferth T. Endres K. Identification of phlogacantholide C as a novel ADAM10 enhancer from traditional Chinese medicinal plants. Medicines 2016 3 4 30 10.3390/medicines3040030 28930140
    [Google Scholar]
  129. Obregon D.F. Zadeh R.K. Bai Y. Sun N. Hou H. Ehrhart J. Zeng J. Mori T. Arendash G.W. Shytle D. Town T. Tan J. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein. J. Biol. Chem. 2006 281 24 16419 16427 10.1074/jbc.M600617200 16624814
    [Google Scholar]
  130. Marcade M. Bourdin J. Loiseau N. Peillon H. Rayer A. Drouin D. Schweighoffer F. Désiré L. Etazolate, a neuroprotective drug linking GABA A receptor pharmacology to amyloid precursor protein processing. J. Neurochem. 2008 106 1 392 404 10.1111/j.1471‑4159.2008.05396.x 18397369
    [Google Scholar]
  131. Hung A.Y. Haass C. Nitsch R.M. Qiu W.Q. Citron M. Wurtman R.J. Growdon J.H. Selkoe D.J. Activation of protein kinase C inhibits cellular production of the amyloid beta-protein. J. Biol. Chem. 1993 268 31 22959 22962 10.1016/S0021‑9258(19)49409‑X 8226807
    [Google Scholar]
  132. Etcheberrigaray R. Tan M. Dewachter I. Kuipéri C. Auwera d.V.I. Wera S. Qiao L. Bank B. Nelson T.J. Kozikowski A.P. Leuven V.F. Alkon D.L. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice. Proc. Natl. Acad. Sci. 2004 101 30 11141 11146 10.1073/pnas.0403921101 15263077
    [Google Scholar]
  133. Kojro E. Postina R. Buro C. Meiringer C. Burger G.K. Fahrenholz F. The neuropeptide PACAP promotes? ‐secretase pathway for processing Alzheimer amyloid precursor protein. FASEB J. 2006 20 3 512 514 10.1096/fj.05‑4812fje 16401644
    [Google Scholar]
  134. Dreymueller D. Uhlig S. Ludwig A. ADAM-family metalloproteinases in lung inflammation: Potential therapeutic targets. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015 308 4 L325 L343 10.1152/ajplung.00294.2014 25480335
    [Google Scholar]
  135. Ludwig A. Hundhausen C. Lambert M. Broadway N. Andrews R. Bickett D. Leesnitzer M. Becherer J. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules. Comb. Chem. High Throughput Screen. 2005 8 2 161 171 10.2174/1386207053258488 15777180
    [Google Scholar]
  136. Zocchi M.R. Camodeca C. Nuti E. Rossello A. Venè R. Tosetti F. Dapino I. Costa D. Musso A. Poggi A. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing. OncoImmunology 2016 5 5 e1123367 10.1080/2162402X.2015.1123367 27467923
    [Google Scholar]
  137. Duffy M.J. Mullooly M. O’Donovan N. Sukor S. Crown J. Pierce A. McGowan P.M. The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer? Clin. Proteomics 2011 8 1 9 10.1186/1559‑0275‑8‑9 21906355
    [Google Scholar]
  138. Fridman J.S. Caulder E. Hansbury M. Liu X. Yang G. Wang Q. Lo Y. Zhou B.B. Pan M. Thomas S.M. Grandis J.R. Zhuo J. Yao W. Newton R.C. Friedman S.M. Scherle P.A. Vaddi K. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer. Clin. Cancer Res. 2007 13 6 1892 1902 10.1158/1078‑0432.CCR‑06‑2116 17363546
    [Google Scholar]
  139. Zhou B.B.S. Peyton M. He B. Liu C. Girard L. Caudler E. Lo Y. Baribaud F. Mikami I. Reguart N. Yang G. Li Y. Yao W. Vaddi K. Gazdar A.F. Friedman S.M. Jablons D.M. Newton R.C. Fridman J.S. Minna J.D. Scherle P.A. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006 10 1 39 50 10.1016/j.ccr.2006.05.024 16843264
    [Google Scholar]
  140. Grabowska M.M. Sandhu B. Day M.L. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells. Cell. Signal. 2012 24 2 532 538 10.1016/j.cellsig.2011.10.004 22024284
    [Google Scholar]
  141. Mathews J.A. Ford J. Norton S. Kang D. Dellinger A. Gibb D.R. Ford A.Q. Massay H. Kepley C.L. Scherle P. Keegan A.D. Conrad D.H. A potential new target for asthma therapy: A disintegrin and metalloprotease 10 (ADAM10) involvement in murine experimental asthma. Allergy 2011 66 9 1193 1200 10.1111/j.1398‑9995.2011.02614.x 21557750
    [Google Scholar]
  142. Atapattu L. Saha N. Llerena C. Vail M.E. Scott A.M. Nikolov D.B. Lackmann M. Janes P.W. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function. J. Cell Sci. 2012 125 24 6084 6093 10.1242/jcs.112631 23108669
    [Google Scholar]
  143. Zhang S. Salemi J. Hou H. Zhu Y. Mori T. Giunta B. Obregon D. Tan J. Rapamycin promotes β-amyloid production via ADAM-10 inhibition. Biochem. Biophys. Res. Commun. 2010 398 3 337 341 10.1016/j.bbrc.2010.06.017 20542014
    [Google Scholar]
  144. Soundararajan R. Sayat R. Robertson G.S. Marignani P.A. Triptolide: An inhibitor of a disintegrin and metalloproteinase 10 (ADAM10) in cancer cells. Cancer Biol. Ther. 2009 8 21 2054 2062 10.4161/cbt.8.21.9803 19783906
    [Google Scholar]
  145. Wang T. Wang J. Xu X. Jiang F. Lv H. Qi Q. Zhang C. Lv Q. Deng X. Discovery of kaempferol, a novel ADAM10 inhibitor, as a potential treatment for staphylococcus aureus infection. Engineering 2023 28 206 221 10.1016/j.eng.2023.03.006
    [Google Scholar]
  146. Appel D. Hummel R. Weidemeier M. Endres K. Gölz C. Schäfer M.K.E. Pharmacologic inhibition of ADAM10 attenuates brain tissue loss, axonal injury and pro-inflammatory gene expression following traumatic brain injury in mice. Front. Cell Dev. Biol. 2021 9 661462 10.3389/fcell.2021.661462 33791311
    [Google Scholar]
  147. Mahasenan K.V. Ding D. Gao M. Nguyen T.T. Suckow M.A. Schroeder V.A. Wolter W.R. Chang M. Mobashery S. In search of selectivity in inhibition of ADAM10. ACS Med. Chem. Lett. 2018 9 7 708 713 10.1021/acsmedchemlett.8b00163 30034605
    [Google Scholar]
  148. Alabi R.O. Farber G. Blobel C.P. Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds. Physiol. Rev. 2018 98 4 2025 2061 10.1152/physrev.00029.2017 30067156
    [Google Scholar]
  149. Miller M.A. Meyer A.S. Beste M.T. Lasisi Z. Reddy S. Jeng K.W. Chen C.H. Han J. Isaacson K. Griffith L.G. Lauffenburger D.A. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc. Natl. Acad. Sci. 2013 110 22 E2074 E2083 10.1073/pnas.1222387110 23674691
    [Google Scholar]
  150. Prinzen C. Trümbach D. Wurst W. Endres K. Postina R. Fahrenholz F. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice. BMC Genomics 2009 10 1 66 10.1186/1471‑2164‑10‑66 19196476
    [Google Scholar]
  151. Gooz M. ADAM-17: The enzyme that does it all. Crit. Rev. Biochem. Mol. Biol. 2010 45 2 146 169 10.3109/10409231003628015 20184396
    [Google Scholar]
  152. Chalaris A. Adam N. Sina C. Rosenstiel P. Koch L.J. Schirmacher P. Hartmann D. Cichy J. Gavrilova O. Schreiber S. Jostock T. Matthews V. Häsler R. Becker C. Neurath M.F. Reiß K. Saftig P. Scheller J. John R.S. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice. J. Exp. Med. 2010 207 8 1617 1624 10.1084/jem.20092366 20603312
    [Google Scholar]
  153. Moss M.L. Powell G. Miller M.A. Edwards L. Qi B. Sang Q.X.A. Strooper D.B. Tesseur I. Lichtenthaler S.F. Taverna M. Zhong J.L. Dingwall C. Ferdous T. Schlomann U. Zhou P. Griffith L.G. Lauffenburger D.A. Petrovich R. Bartsch J.W. ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein. J. Biol. Chem. 2011 286 47 40443 40451 10.1074/jbc.M111.280495 21956108
    [Google Scholar]
  154. Jouannet S. Pol S.J. Fernandez L. Nguyen V. Charrin S. Boucheix C. Brou C. Milhiet P.E. Rubinstein E. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization. Cell. Mol. Life Sci. 2016 73 9 1895 1915 10.1007/s00018‑015‑2111‑z 26686862
    [Google Scholar]
  155. Petta I. Lievens S. Libert C. Tavernier J. Bosscher D.K. Modulation of protein–protein interactions for the development of novel therapeutics. Mol. Ther. 2016 24 4 707 718 10.1038/mt.2015.214 26675501
    [Google Scholar]
  156. Fischer G. Rossmann M. Hyvönen M. Alternative modulation of protein–protein interactions by small molecules. Curr. Opin. Biotechnol. 2015 35 78 85 10.1016/j.copbio.2015.04.006 25935873
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037348066250117070824
Loading
/content/journals/cpps/10.2174/0113892037348066250117070824
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: shedding ; ectodomain ; therapy drugs ; ADAM10 ; regulation disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test