Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

A special kind of posttranslational process known as proteolytic cleavage controls the half-lives and functions of several extracellular and intracellular proteins. The metalloproteinase ADAM10 has attracted attention because it cleaves a growing amount of protein substrates close to the extracellular membrane leaflet. The process known as “ectodomain shedding” controls the turnover of certain transmembrane proteins that are essential for receptor signaling and cell adhesion. It may trigger nuclear transport, intramembrane proteolysis, and cytoplasmic domain signaling. Additional human illnesses linked to ADAM10 include cancer, immune system malfunction, and neurodegeneration. The difficulty in targeting proteases for medicinal reasons stems from the many substrates that these enzymes, particularly ADAM10, have. It is usually necessary to precisely identify the therapeutic beneficial window of use since blocking or accelerating a particular protease activity is linked with undesirable side effects. More knowledge of the regulatory pathways governing ADAM10 expression, subcellular localization, and activity will probably lead to the identification of viable therapeutic targets, enabling more targeted and precise manipulation of the enzyme's proteolytic activity.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037348066250117070824
2025-02-10
2025-12-17
Loading full text...

Full text loading...

References

  1. Wetzel, S.; Seipold, L.; Saftig, P. The metalloproteinase ADAM10: A useful therapeutic target? Biochim. Biophys. Acta. Mol. Cell. Res.,2017, 1864(11 Pt B), 2071-2081.10.1016/j.bbamcr.2017.06.005 28624438
    [Google Scholar]
  2. TurkB. Targeting proteases: Successes, failures and future prospects.Nat. Rev. Drug Discov.20065978579910.1038/nrd209216955069
    [Google Scholar]
  3. DrummondA.H. BeckettP. BrownP.D. BoneE.A. DavidsonA.H. GallowayW.A. GearingA.J.H. HuxleyP. LaberD. McCourtM. WhittakerM. WoodL.M. WrightA. Preclinical and clinical studies of MMP inhibitors in cancer.Ann. N. Y. Acad. Sci.1999878122823510.1111/j.1749‑6632.1999.tb07688.x10415734
    [Google Scholar]
  4. BramhallS.R. HallisseyM.T. WhitingJ. ScholefieldJ. TierneyG. StuartR.C. HawkinsR.E. McCullochP. MaughanT. BrownP.D. BailletM. FieldingJ.W.L. Marimastat as maintenance therapy for patients with advanced gastric cancer: A randomised trial.Br. J. Cancer200286121864187010.1038/sj.bjc.660031012085177
    [Google Scholar]
  5. MacaulayV.M. O’ByrneK.J. SaundersM.P. BraybrookeJ.P. LongL. GleesonF. MasonC.S. HarrisA.L. BrownP. TalbotD.C. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions.Clin. Cancer Res.19995351352010100701
    [Google Scholar]
  6. VincentB. Regulation of the α-secretase ADAM10 at transcriptional, translational and post-translational levels.Brain Res. Bull.2016126Pt 215416910.1016/j.brainresbull.2016.03.02027060611
    [Google Scholar]
  7. EndresK. DellerT. Regulation of alpha-secretase ADAM10 in vitro and in vivo: Genetic, epigenetic, and protein-based mechanisms.Front. Mol. Neurosci.2017105610.3389/fnmol.2017.0005628367112
    [Google Scholar]
  8. GiebelerN. ZigrinoP. A disintegrin and metalloprotease (ADAM): Historical overview of their functions.Toxins20168412210.3390/toxins804012227120619
    [Google Scholar]
  9. SonbolH. Extracellular matrix remodeling in human disease.J. Microsc. Ultrastruct.20186312312810.4103/JMAU.JMAU_4_1830221137
    [Google Scholar]
  10. PrenzelN. FischerO.M. StreitS. HartS. UllrichA. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification.Endocr. Relat. Cancer200181113110.1677/erc.0.008001111350724
    [Google Scholar]
  11. EvansJ.P. Sperm-egg interaction.Annu. Rev. Physiol.201274147750210.1146/annurev‑physiol‑020911‑15333922054237
    [Google Scholar]
  12. StoneA.L. KroegerM. SangQ.X.A. Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review).J. Protein Chem.199918444746510.1023/A:102069271002910449042
    [Google Scholar]
  13. Reiss, K. The “a disintegrin and metalloprotease” (ADAM) family of sheddases: Physiological and cellular functions. Sem. Cell & Devel. Biol., 2009, 20(2), 126–137. https://doi.org/10.1016/j.semcdb.2008.11.002
  14. KaramanosN.K. PiperigkouZ. TheocharisA.D. WatanabeH. FranchiM. BaudS. BrézillonS. GötteM. PassiA. VigettiD. BlumR.S. SandersonR.D. NeillT. IozzoR.V. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics.Chem. Rev.2018118189152923210.1021/acs.chemrev.8b0035430204432
    [Google Scholar]
  15. EdwardsD. HandsleyM. PenningtonC. The ADAM metalloproteinases.Mol. Aspects Med.200829525828910.1016/j.mam.2008.08.00118762209
    [Google Scholar]
  16. WeberS. SaftigP. Ectodomain shedding and ADAMs in development.Development2012139203693370910.1242/dev.07639822991436
    [Google Scholar]
  17. AtapattuL. LackmannM. JanesP.W. The role of proteases in regulating Eph/ephrin signaling.Cell Adhes. Migr.20148429430710.4161/19336918.2014.97002625482632
    [Google Scholar]
  18. WhiteJ.M. ADAMs: Modulators of cell–cell and cell–matrix interactions.Curr. Opin. Cell Biol.200315559860610.1016/j.ceb.2003.08.00114519395
    [Google Scholar]
  19. RosenbaumD. SaftigP. New insights into the function and pathophysiology of the ectodomain sheddase a disintegrin and metalloproteinase 10 (ADAM10).FEBS J.2024291132733276610.1111/febs.1687037218105
    [Google Scholar]
  20. CuffaroD. ScilabraS.D. SpanòD.P. CalligarisM. NutiE. RosselloA. A disintegrin and metalloproteinases (ADAMs) and tumor necrosis factor-alpha-converting enzyme (TACE).Metalloenzymes.Elsevier202420723710.1016/B978‑0‑12‑823974‑2.00016‑4
    [Google Scholar]
  21. SaftigP. ReissK. The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: Novel drug targets with therapeutic potential?Eur. J. Cell Biol.2011906-752753510.1016/j.ejcb.2010.11.00521194787
    [Google Scholar]
  22. KumarV. VashishtaM. KongL. WuX. LuJ.J. GuhaC. DwarakanathB.S. The role of Notch, Hedgehog, and Wnt signaling pathways in the resistance of tumors to anticancer therapies.Front. Cell Dev. Biol.2021965077210.3389/fcell.2021.65077233968932
    [Google Scholar]
  23. BozkulakE.C. WeinmasterG. Selective use of ADAM10 and ADAM17 in activation of Notch1 signaling.Mol. Cell. Biol.200929215679569510.1128/MCB.00406‑0919704010
    [Google Scholar]
  24. YuanX.Z. SunS. TanC.C. YuJ.T. TanL. The role of ADAM10 in Alzheimer’s disease.J. Alzheimers Dis.201758230332210.3233/JAD‑17006128409746
    [Google Scholar]
  25. TosettiF. AlessioM. PoggiA. ZocchiM.R. Adam10 site-dependent biology: Keeping control of a pervasive protease.Int. J. Mol. Sci.2021229496910.3390/ijms2209496934067041
    [Google Scholar]
  26. Queirozd.T.M. LakkappaN. LazartiguesE. ADAM17-mediated shedding of inflammatory cytokines in hypertension.Front. Pharmacol.202011115410.3389/fphar.2020.0115432848763
    [Google Scholar]
  27. YangH. KhalilR.A. ADAM and ADAMTS disintegrin and metalloproteinases as major factors and molecular targets in vascular malfunction and disease.Advances in Pharmacology.Elsevier202294255363
    [Google Scholar]
  28. LinkermannA. GelhausC. LettauM. QianJ. KabelitzD. JanssenO. Identification of interaction partners for individual SH3 domains of Fas ligand associated members of the PCH protein family in T lymphocytes.Biochim. Biophys. Acta. Prot. Proteomics20091794216817610.1016/j.bbapap.2008.10.01319041431
    [Google Scholar]
  29. ChantryA. GregsonN.A. GlynnP. A novel metalloproteinase associated with brain myelin membranes. Isolation and characterization.J. Biol. Chem.198926436216032160710.1016/S0021‑9258(20)88226‑X2600084
    [Google Scholar]
  30. HowardL. LuX. MitchellS. GriffithsS. GlynnP. Molecular cloning of MADM: A catalytically active mammalian disintegrin-metalloprotease expressed in various cell types.Biochem. J.19963171455010.1042/bj3170045
    [Google Scholar]
  31. VingtdeuxV. MarambaudP. Identification and biology of α-secretase.J. Neurochem.2012120S1344510.1111/j.1471‑4159.2011.07477.x22121879
    [Google Scholar]
  32. MossM.L. BomarM. LiuQ. SageH. DempseyP. LenhartP.M. GillispieP.A. StoeckA. WildeboerD. BartschJ.W. PalmisanoR. ZhouP. The ADAM10 prodomain is a specific inhibitor of ADAM10 proteolytic activity and inhibits cellular shedding events.J. Biol. Chem.200728249357123572110.1074/jbc.M70323120017895248
    [Google Scholar]
  33. FahrenholzF. GilbertS. KojroE. LammichS. PostinaR. Alpha-secretase activity of the disintegrin metalloprotease ADAM 10. Influences of domain structure.Ann. N. Y. Acad. Sci.2000920121522210.1111/j.1749‑6632.2000.tb06925.x11193153
    [Google Scholar]
  34. LichtenthalerS.F. α-Secretase in Alzheimer’s disease: Molecular identity, regulation and therapeutic potential.J. Neurochem.20111161102110.1111/j.1471‑4159.2010.07081.x21044078
    [Google Scholar]
  35. WongE. MaretzkyT. PelegY. BlobelC.P. SagiI. The functional maturation of a disintegrin and metalloproteinase (ADAM) 9, 10, and 17 requires processing at a newly identified proprotein convertase (PC) cleavage site.J. Biol. Chem.201529019121351214610.1074/jbc.M114.62407225795784
    [Google Scholar]
  36. SuhJ. ChoiS.H. RomanoD.M. GannonM.A. LesinskiA.N. KimD.Y. TanziR.E. ADAM10 missense mutations potentiate β-amyloid accumulation by impairing prodomain chaperone function.Neuron201380238540110.1016/j.neuron.2013.08.03524055016
    [Google Scholar]
  37. JanesP.W. SahaN. BartonW.A. KolevM.V. KleikampW.S.H. NievergallE. BlobelC.P. HimanenJ.P. LackmannM. NikolovD.B. Adam meets Eph: An ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans.Cell2005123229130410.1016/j.cell.2005.08.01416239146
    [Google Scholar]
  38. MaretzkyT. EversA. GallL.S. AlabiR.O. SpeckN. ReissK. BlobelC.P. The cytoplasmic domain of a disintegrin and metalloproteinase 10 (ADAM10) regulates its constitutive activity but is dispensable for stimulated ADAM10-dependent shedding.J. Biol. Chem.2015290127416742510.1074/jbc.M114.60375325605720
    [Google Scholar]
  39. BodeW.C. FellererK. KuglerJ. HaassC. CapellA. A basolateral sorting signal directs ADAM10 to adherens junctions and is required for its function in cell migration.J. Biol. Chem.200628133238242382910.1074/jbc.M60154220016777847
    [Google Scholar]
  40. EbsenH. LettauM. KabelitzD. JanssenO. Identification of SH3 domain proteins interacting with the cytoplasmic tail of the a disintegrin and metalloprotease 10 (ADAM10).PLoS One201497e10289910.1371/journal.pone.010289925036101
    [Google Scholar]
  41. KopanR. IlaganM.X.G. The canonical Notch signaling pathway: Unfolding the activation mechanism.Cell2009137221623310.1016/j.cell.2009.03.04519379690
    [Google Scholar]
  42. WeberS. NiessenM.T. ProxJ. RauchL.R. SchmitzA. SchwanbeckR. BlobelC.P. JorissenE. Strooperd.B. NiessenC.M. SaftigP. The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling.Development2011138349550510.1242/dev.05521021205794
    [Google Scholar]
  43. KuhnP.H. ColomboA.V. SchusserB. DreymuellerD. WetzelS. SchepersU. HerberJ. LudwigA. KremmerE. MontagD. MüllerU. SchweizerM. SaftigP. BräseS. LichtenthalerS.F. Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function.eLife20165e1274810.7554/eLife.1274826802628
    [Google Scholar]
  44. BlundellJ. BlaissC.A. EthertonM.R. EspinosaF. TabuchiK. WalzC. BolligerM.F. SüdhofT.C. PowellC.M. Neuroligin-1 deletion results in impaired spatial memory and increased repetitive behavior.J. Neurosci.20103062115212910.1523/JNEUROSCI.4517‑09.201020147539
    [Google Scholar]
  45. HinkleC.L. DiestelS. LiebermanJ. ManessP.F. Metalloprotease-induced ectodomain shedding of neural cell adhesion molecule (NCAM).J. Neurobiol.200666121378139510.1002/neu.2025716967505
    [Google Scholar]
  46. KlingenerM. ChavaliM. SinghJ. McMillanN. CoomesA. DempseyP.J. ChenE.I. AguirreA. N-cadherin promotes recruitment and migration of neural progenitor cells from the SVZ neural stem cell niche into demyelinated lesions.J. Neurosci.201434299590960610.1523/JNEUROSCI.3699‑13.201425031401
    [Google Scholar]
  47. ProxJ. BernreutherC. AltmeppenH. GrendelJ. GlatzelM. D'HoogeR. StroobantsS. AhmedT. BalschunD. WillemM. LammichS. IsbrandtD. SchweizerM. HorréK. StrooperD.B. SaftigP. Postnatal disruption of the disintegrin/metalloproteinase ADAM10 in brain causes epileptic seizures, learning deficits, altered spine morphology, and defective synaptic functions.J. Neur.201333321291512928
    [Google Scholar]
  48. TousseynT. ThathiahA. JorissenE. RaemaekersT. KonietzkoU. ReissK. MaesE. SnellinxA. SerneelsL. NyabiO. AnnaertW. SaftigP. HartmannD. StrooperD.B. ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase.J. Biol. Chem.200928417117381174710.1074/jbc.M80589420019213735
    [Google Scholar]
  49. ParkinE. HarrisB. A disintegrin and metalloproteinase (ADAM)-mediated ectodomain shedding of ADAM10.J. Neurochem.200910861464147910.1111/j.1471‑4159.2009.05907.x19183255
    [Google Scholar]
  50. SaftigP. LichtenthalerS.F. The alpha secretase ADAM10: A metalloprotease with multiple functions in the brain.Prog. Neurobiol.201513512010.1016/j.pneurobio.2015.10.00326522965
    [Google Scholar]
  51. YamazakiK. MizuiY. SaganeK. TanakaI. Assignment of a disintegrin and metalloproteinase domain 10 (Adam10) gene to mouse chromosome 9.Genomics199746352852910.1006/geno.1997.50439441766
    [Google Scholar]
  52. YamazakiK. MizuiY. TanakaI. Radiation hybrid mapping of human ADAM10 gene to chromosome 15.Genomics199745245745910.1006/geno.1997.49109344679
    [Google Scholar]
  53. LammichS. BuellD. ZilowS. LudwigA.K. NuscherB. LichtenthalerS.F. PrinzenC. FahrenholzF. HaassC. Expression of the anti-amyloidogenic secretase ADAM10 is suppressed by its 5′-untranslated region.J. Biol. Chem.201028521157531576010.1074/jbc.M110.11074220348102
    [Google Scholar]
  54. LammichS. KampF. WagnerJ. NuscherB. ZilowS. LudwigA.K. WillemM. HaassC. Translational repression of the disintegrin and metalloprotease ADAM10 by a stable G-quadruplex secondary structure in its 5′-untranslated region.J. Biol. Chem.201128652450634507210.1074/jbc.M111.29692122065584
    [Google Scholar]
  55. ChengC. LiW. ZhangZ. YoshimuraS. HaoQ. ZhangC. WangZ. MicroRNA-144 is regulated by activator protein-1 (AP-1) and decreases expression of Alzheimer disease-related a disintegrin and metalloprotease 10 (ADAM10).J. Biol. Chem.201328819137481376110.1074/jbc.M112.38139223546882
    [Google Scholar]
  56. AugustinR. EndresK. ReinhardtS. KuhnP.H. LichtenthalerS.F. HansenJ. WurstW. TrümbachD. Computational identification and experimental validation of microRNAs binding to the Alzheimer-related gene ADAM10.BMC Med. Genet.20121313510.1186/1471‑2350‑13‑3522594617
    [Google Scholar]
  57. ReinhardtS. SchuckF. GrösgenS. RiemenschneiderM. HartmannT. PostinaR. GrimmM. EndresK. Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease.FASEB J.201428297899710.1096/fj.13‑23486424165480
    [Google Scholar]
  58. TheendakaraV. PatentA. LibeuP.C.A. PhilpotB. FloresS. DescampsO. PoksayK.S. ZhangQ. CailingG. HartM. JohnV. RaoR.V. BredesenD.E. Neuroprotective sirtuin ratio reversed by ApoE4.Proc. Natl. Acad. Sci.201311045183031830810.1073/pnas.131414511024145446
    [Google Scholar]
  59. DonmezG. WangD. CohenD.E. GuarenteL. SIRT1 suppresses beta-amyloid production by activating the alpha-secretase gene ADAM10.Cell2010142232033210.1016/j.cell.2010.06.02020655472
    [Google Scholar]
  60. EndresK. PostinaR. SchroederA. MuellerU. FahrenholzF. Shedding of the amyloid precursor protein-like protein APLP2 by disintegrin-metalloproteinases.FEBS J.2005272225808582010.1111/j.1742‑4658.2005.04976.x16279945
    [Google Scholar]
  61. HolbackS. AdlerzL. IverfeldtK. Increased processing of APLP2 and APP with concomitant formation of APP intracellular domains in BDNF and retinoic acid-differentiated human neuroblastoma cells.J. Neurochem.20059541059106810.1111/j.1471‑4159.2005.03440.x16150056
    [Google Scholar]
  62. TippmannF. HundtJ. SchneiderA. EndresK. FahrenholzF. Up-regulation of the α-secretase ADAM10 by retinoic acid receptors and acitretin.FASEB J.20092361643165410.1096/fj.08‑12139219144697
    [Google Scholar]
  63. LarsenF.G. KudskN.F. JakobsenP. WeismannK. KragballeK. Pharmacokinetics and therapeutic efficacy of retinoids in skin diseases.Clin. Pharmacokinet.1992231426110.2165/00003088‑199223010‑000041617858
    [Google Scholar]
  64. ShuklaM. HtooH.H. WintachaiP. HernandezJ.F. DuboisC. PostinaR. XuH. CheclerF. SmithD.R. GovitrapongP. VincentB. Melatonin stimulates the nonamyloidogenic processing of β APP through the positive transcriptional regulation of ADAM10 and ADAM17.J. Pineal Res.201558215116510.1111/jpi.1220025491598
    [Google Scholar]
  65. PrinzenC. MüllerU. EndresK. FahrenholzF. PostinaR. Genomic structure and functional characterization of the human ADAM10 promoter.FASEB J.200519111522152410.1096/fj.04‑3619fje15972296
    [Google Scholar]
  66. KärkkäinenI. RybnikovaE. HuikkoP.M. HuovilaA.P.J. Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS.Mol. Cell. Neurosci.200015654756010.1006/mcne.2000.084810860581
    [Google Scholar]
  67. MarcinkiewiczM. SeidahN.G. Coordinated expression of beta-amyloid precursor protein and the putative beta-secretase BACE and alpha-secretase ADAM10 in mouse and human brain.J. Neurochem.20007552133214310.1046/j.1471‑4159.2000.0752133.x11032903
    [Google Scholar]
  68. LinJ. LuoJ. RediesC. Differential expression of five members of the ADAM family in the developing chicken brain.Neuroscience2008157236037510.1016/j.neuroscience.2008.08.05318832016
    [Google Scholar]
  69. AndersA. GilbertS. GartenW. PostinaR. FahrenholzF. Regulation of the α-secretase ADAM10 by its prodomain and proprotein convertases.FASEB J.200115101837183910.1096/fj.01‑0007fje11481247
    [Google Scholar]
  70. PruessmeyerJ. The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Seminars in cell & developmental biology.Elsevier2009164174
    [Google Scholar]
  71. Teteringv.G. Diestv.P. VerlaanI. Walld.v.E. KopanR. VooijsM. Metalloprotease ADAM10 is required for Notch1 site 2 cleavage.J. Biol. Chem.200928445310183102710.1074/jbc.M109.00677519726682
    [Google Scholar]
  72. HartmannD. Strooperd.B. SerneelsL. CraessaertsK. HerremanA. AnnaertW. UmansL. LübkeT. IllertL.A. Figurav.K. SaftigP. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α-secretase activity in fibroblasts.Hum. Mol. Genet.200211212615262410.1093/hmg/11.21.261512354787
    [Google Scholar]
  73. MarcelloE. GardoniF. LucaD.M. OtañoP.I. An arginine stretch limits ADAM10 exit from the endoplasmic reticulum.J. Biol. Chem.201028514103761038410.1074/jbc.M109.05594720100836
    [Google Scholar]
  74. HwangE.M. KimS.K. SohnJ.H. LeeJ.Y. KimY. KimY.S. JungM.I. Furin is an endogenous regulator of α-secretase associated APP processing.Biochem. Biophys. Res. Commun.2006349265465910.1016/j.bbrc.2006.08.07716942750
    [Google Scholar]
  75. MarcelloE. GardoniF. MauceriD. RomoriniS. JerominA. EpisR. BorroniB. CattabeniF. SalaC. PadovaniA. LucaD.M. Synapse-associated protein-97 mediates α-secretase ADAM10 trafficking and promotes its activity.J. Neurosci.20072771682169110.1523/JNEUROSCI.3439‑06.200717301176
    [Google Scholar]
  76. MarcelloE. SaracenoC. MusardoS. VaraH. Fuentel.d.A.G. PelucchiS. MarinoD.D. BorroniB. TramontanoA. OtañoP.I. PadovaniA. GiustettoM. GardoniF. LucaD.M. Endocytosis of synaptic ADAM10 in neuronal plasticity and Alzheimer’s disease.J. Clin. Invest.201312362523253810.1172/JCI6540123676497
    [Google Scholar]
  77. ProxJ. WillenbrockM. WeberS. LehmannT. ArrasS.D. SchwanbeckR. SaftigP. SchwakeM. Tetraspanin15 regulates cellular trafficking and activity of the ectodomain sheddase ADAM10.Cell. Mol. Life Sci.201269172919293210.1007/s00018‑012‑0960‑222446748
    [Google Scholar]
  78. HainingE.J. YangJ. BaileyR.L. KhanK. CollierR. TsaiS. WatsonS.P. FramptonJ. GarciaP. TomlinsonM.G. The TspanC8 subgroup of tetraspanins interacts with A disintegrin and metalloprotease 10 (ADAM10) and regulates its maturation and cell surface expression.J. Biol. Chem.201228747397533976510.1074/jbc.M112.41650323035126
    [Google Scholar]
  79. DornierE. CoumailleauF. OttaviJ.F. MorettiJ. BoucheixC. MauduitP. SchweisguthF. RubinsteinE. TspanC8 tetraspanins regulate ADAM10/Kuzbanian trafficking and promote Notch activation in flies and mammals.J. Cell Biol.2012199348149610.1083/jcb.20120113323091066
    [Google Scholar]
  80. HardyJ. SelkoeD. J. The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics.Science20022975580353356
    [Google Scholar]
  81. LammichS. KojroE. PostinaR. GilbertS. PfeifferR. JasionowskiM. HaassC. FahrenholzF. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease.Proc. Natl. Acad. Sci.19999673922392710.1073/pnas.96.7.392210097139
    [Google Scholar]
  82. PostinaR. SchroederA. DewachterI. BohlJ. SchmittU. KojroE. PrinzenC. EndresK. HiemkeC. BlessingM. FlamezP. DequenneA. GodauxE. Leuvenv.F. FahrenholzF. A disintegrin-metalloproteinase prevents amyloid plaque formation and hippocampal defects in an Alzheimer disease mouse model.J. Clin. Invest.2004113101456146410.1172/JCI2086415146243
    [Google Scholar]
  83. RübU. SeidelK. HeinsenH. VonsattelJ.P. Dunnend.W.F. KorfH.W. Huntington’s disease (HD): The neuropathology of a multisystem neurodegenerative disorder of the human brain.Brain Pathol.201626672674010.1111/bpa.1242627529157
    [Google Scholar]
  84. SardoL.V. ZuccatoC. GaudenziG. VitaliB. RamosC. TartariM. MyreM.A. WalkerJ.A. PistocchiA. ContiL. ValenzaM. DrungB. SchmidtB. GusellaJ. ZeitlinS. CotelliF. CattaneoE. An evolutionary recent neuroepithelial cell adhesion function of huntingtin implicates ADAM10-Ncadherin.Nat. Neurosci.201215571372110.1038/nn.308022466506
    [Google Scholar]
  85. AltmeppenH.C. ProxJ. KrasemannS. PuigB. KruszewskiK. DohlerF. BernreutherC. HoxhaA. LinsenmeierL. SikorskaB. LiberskiP.P. BartschU. SaftigP. GlatzelM. The sheddase ADAM10 is a potent modulator of prion disease.eLife20154e0426010.7554/eLife.0426025654651
    [Google Scholar]
  86. UmJ.W. NygaardH.B. HeissJ.K. KostylevM.A. StagiM. VortmeyerA. WisniewskiT. GuntherE.C. StrittmatterS.M. Alzheimer amyloid-β oligomer bound to postsynaptic prion protein activates Fyn to impair neurons.Nat. Neurosci.20121591227123510.1038/nn.317822820466
    [Google Scholar]
  87. EndresK. MittereggerG. KojroE. KretzschmarH. FahrenholzF. Influence of ADAM10 on prion protein processing and scrapie infectiosity in vivo.Neurobiol. Dis.200936223324110.1016/j.nbd.2009.07.01519632330
    [Google Scholar]
  88. NapoliI. MercaldoV. BoylP.P. EleuteriB. ZalfaF. RubeisD.S. MarinoD.D. MohrE. MassimiM. FalconiM. WitkeW. MattioliC.M. SonenbergN. AchselT. BagniC. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP.Cell200813461042105410.1016/j.cell.2008.07.03118805096
    [Google Scholar]
  89. WestmarkC.J. MalterJ.S. FMRP mediates mGluR5-dependent translation of amyloid precursor protein.PLoS Biol.200753e5210.1371/journal.pbio.005005217298186
    [Google Scholar]
  90. PasciutoE. AhmedT. WahleT. GardoniF. D’AndreaL. PaciniL. JacquemontS. TassoneF. BalschunD. DottiC.G. VeghC.Z. D’HoogeR. MüllerU.C. LucaD.M. StrooperD.B. BagniC. Dysregulated ADAM10-mediated processing of app during a critical time window leads to synaptic deficits in fragile X syndrome.Neuron201587238239810.1016/j.neuron.2015.06.03226182420
    [Google Scholar]
  91. SimoneR. FrattaP. NeidleS. ParkinsonG.N. IsaacsA.M. G-quadruplexes: Emerging roles in neurodegenerative diseases and the non-coding transcriptome.FEBS Lett.2015589141653166810.1016/j.febslet.2015.05.00325979174
    [Google Scholar]
  92. SokoloveJ. JohnsonD.S. LaheyL.J. WagnerC.A. ChengD. ThieleG.M. MichaudK. SaylesH. ReimoldA.M. CaplanL. CannonG.W. KerrG. MikulsT.R. RobinsonW.H. Rheumatoid factor as a potentiator of anti-citrullinated protein antibody-mediated inflammation in Rheumatoid arthritis.Arthritis Rheumatol.201466481382110.1002/art.3830724757134
    [Google Scholar]
  93. SmolenJ.S. AletahaD. McInnesI.B. Rheumatoid arthritis.Lancet2016388100552023203810.1016/S0140‑6736(16)30173‑827156434
    [Google Scholar]
  94. WeskampG. FordJ.W. SturgillJ. MartinS. DochertyA.J.P. SwendemanS. BroadwayN. HartmannD. SaftigP. UmlandS. FujisawaS.A. BlackR.A. LudwigA. BechererJ.D. ConradD.H. BlobelC.P. ADAM10 is a principal ‘sheddase’ of the low-affinity immunoglobulin E receptor CD23.Nat. Immunol.20067121293129810.1038/ni139917072319
    [Google Scholar]
  95. HenchozL.S. GauchatJ.F. AubryJ.P. GraberP. LifeP. EugeneP.N. FerruaB. CorbiA.L. DugasB. ZyberkP.C. BonnefoyJ-Y. CD23 Regulates monocyte activation through a novel interaction with the adhesion molecules CD11b-CD18 and CD11c-CD18.Immunity19953111912510.1016/1074‑7613(95)90164‑77621072
    [Google Scholar]
  96. IsozakiT. RabquerB.J. RuthJ.H. HainesG.K.III KochA.E. ADAM-10 is overexpressed in Rheumatoid arthritis synovial tissue and mediates angiogenesis.Arthritis Rheum.20136519810810.1002/art.3775523124962
    [Google Scholar]
  97. RabquerB.J. AminM.A. TeegalaN. ShaheenM.K. TsouP.S. RuthJ.H. LeschC.A. ImhofB.A. KochA.E. Junctional adhesion molecule-C is a soluble mediator of angiogenesis.J. Immunol.201018531777178510.4049/jimmunol.100055620592283
    [Google Scholar]
  98. LiD. XiaoZ. WangG. SongX. Knockdown of ADAM10 inhibits migration and invasion of fibroblast-like synoviocytes in Rheumatoid arthritis.Mol. Med. Rep.201512455175523
    [Google Scholar]
  99. VoortD.V.R. LieshoutV.A.W.T. ToonenL.W.J. SlöetjesA.W. BergD.V.W.B. FigdorC.G. RadstakeT.R.D.J. AdemaG.J. Elevated CXCL16 expression by synovial macrophages recruits memory T cells into Rheumatoid joints.Arthritis Rheum.20055251381139110.1002/art.2100415880344
    [Google Scholar]
  100. FriedmanS.L. Mechanisms of hepatic fibrogenesis.Gastroenterology200813461655166910.1053/j.gastro.2008.03.00318471545
    [Google Scholar]
  101. MüllerM. WetzelS. GaoneK.J. ChalupskyK. RauchL.R. BarikbinR. BergmannJ. WöhnerB. ZbodakovaO. LeuschnerI. MartinG. TiegsG. JohnR.S. SedlacekR. ParkerT.J.E.E. SaftigP. ArrasS.D. A disintegrin and metalloprotease 10 (ADAM10) is a central regulator of murine liver tissue homeostasis.Oncotarget2016714174311744110.18632/oncotarget.783626942887
    [Google Scholar]
  102. ChalupskýK. KanchevI. ŽbodákováO. BuryováH. JirouškováM. KořínekV. GregorM. SedláčekR. ADAM10/17-dependent release of soluble c-Met correlates with hepatocellular damage.Folia Biol.2013592768610.14712/fb201305902007623746173
    [Google Scholar]
  103. BoittinB.K. BassetL. BonnierD. L’Helgoualc’hA. SamsonM. ThéretN. CX3CL1/fractalkine shedding by human hepatic stellate cells: Contribution to chronic inflammation in the liver.J. Cell. Mol. Med.2009138a1526153510.1111/j.1582‑4934.2009.00787.x19432809
    [Google Scholar]
  104. CloustonA.D. PowellE.E. WalshM.J. RichardsonM.M. DemetrisA.J. JonssonJ.R. Fibrosis correlates with a ductular reaction in hepatitis C.Hepatology200541480981810.1002/hep.2065015793848
    [Google Scholar]
  105. HundhausenC. MisztelaD. BerkhoutT.A. BroadwayN. SaftigP. ReissK. HartmannD. FahrenholzF. PostinaR. MatthewsV. KallenK.J. JohnR.S. LudwigA. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion.Blood200310241186119510.1182/blood‑2002‑12‑377512714508
    [Google Scholar]
  106. FriedmanS.L. Hepatic stellate cells: Protean, multifunctional, and enigmatic cells of the liver.Physiol. Rev.200888112517210.1152/physrev.00013.200718195085
    [Google Scholar]
  107. ImaiT. HieshimaK. HaskellC. BabaM. NagiraM. NishimuraM. KakizakiM. TakagiS. NomiyamaH. SchallT.J. YoshieO. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion.Cell199791452153010.1016/S0092‑8674(00)80438‑99390561
    [Google Scholar]
  108. GriffithsC.E.M. Kerkhofd.v.P. OperaczC.M. Psoriasis and atopic dermatitis.Dermatol. Ther.20177S1314110.1007/s13555‑016‑0167‑928150106
    [Google Scholar]
  109. GaspariA.A. Innate and adaptive immunity and the pathophysiology of psoriasis.J. Am. Acad. Dermatol.2006543S67S8010.1016/j.jaad.2005.10.05716488332
    [Google Scholar]
  110. HigashiyamaS. NanbaD. ADAM-mediated ectodomain shedding of HB-EGF in receptor cross-talk.Biochim. Biophys. Acta. Proteins Proteomics20051751111011710.1016/j.bbapap.2004.11.009
    [Google Scholar]
  111. GudjonssonJ.E. JohnstonA. StollS.W. RiblettM.B. XingX. KochkodanJ.J. DingJ. NairR.P. AphaleA. VoorheesJ.J. ElderJ.T. Evidence for altered Wnt signaling in psoriatic skin.J. Invest. Dermatol.201013071849185910.1038/jid.2010.6720376066
    [Google Scholar]
  112. ThéluJ. RossioP. FavierB. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing.BMC Dermatol.200221710.1186/1471‑5945‑2‑711978185
    [Google Scholar]
  113. NicolasM. WolferA. RajK. KummerJ.A. MillP. Noortv.M. HuiC. CleversH. DottoG.P. RadtkeF. Notch1 functions as a tumor suppressor in mouse skin.Nat. Genet.200333341642110.1038/ng109912590261
    [Google Scholar]
  114. PiepkornM. Overexpression of amphiregulin, a major autocrine growth factor for cultured human keratinocytes, in hyperproliferative skin diseases.Am. J. Dermatopathol.199618216517110.1097/00000372‑199604000‑000108739992
    [Google Scholar]
  115. ElderJ.T. FisherG.J. LindquistP.B. BennettG.L. PittelkowM.R. CoffeyR.J.Jr EllingsworthL. DerynckR. VoorheesJ.J. Overexpression of transforming growth factor α in psoriatic epidermis.Science1989243489281181410.1126/science.29161282916128
    [Google Scholar]
  116. OhS.T. SchrammeA. StarkA. TilgenW. GutweinP. ReichrathJ. Overexpression of ADAM 10 and ADAM 12 in lesional psoriatic skin.Br. J. Dermatol.200815861371137310.1111/j.1365‑2133.2008.08513.x18363768
    [Google Scholar]
  117. PangM.L. MuraseE.J. KooJ. An updated review of acitretin – A systemic retinoid for the treatment of psoriasis.Expert Opin. Drug Metab. Toxicol.20084795396410.1517/17425255.4.7.95318624682
    [Google Scholar]
  118. FahrenholzF. PostinaR. α-Secretase activation-An approach to Alzheimer’s disease therapy.Neurodegener. Dis.200634-525526110.1159/00009526417047365
    [Google Scholar]
  119. FukasawaH. NakagomiM. YamagataN. KatsukiH. KawaharaK. KitaokaK. MikiT. ShudoK. Tamibarotene: A candidate retinoid drug for Alzheimer’s disease.Biol. Pharm. Bull.20123581206121210.1248/bpb.b12‑0031422863914
    [Google Scholar]
  120. KitaokaK. ShimizuN. OnoK. ChikahisaS. NakagomiM. ShudoK. IshimuraK. SéiH. YoshizakiK. The retinoic acid receptor agonist Am80 increases hippocampal ADAM10 in aged SAMP8 mice.Neuropharmacology201372586510.1016/j.neuropharm.2013.04.00923624141
    [Google Scholar]
  121. PostinaR. Activation of α-secretase cleavage.J. Neurochem.2012120S1465410.1111/j.1471‑4159.2011.07459.x21883223
    [Google Scholar]
  122. HolthoewerD. EndresK. SchuckF. HiemkeC. SchmittU. FahrenholzF. Acitretin, an enhancer of alpha-secretase expression, crosses the blood-brain barrier and is not eliminated by P-glycoprotein.Neurodegener. Dis.2012101-422422810.1159/00033430022301853
    [Google Scholar]
  123. LeeH.R. ShinH.K. ParkS.Y. KimH.Y. LeeW.S. RhimB.Y. HongK.W. KimC.D. Cilostazol suppresses β-amyloid production by activating a disintegrin and metalloproteinase 10 via the upregulation of SIRT1-coupled retinoic acid receptor-β.J. Neurosci. Res.201492111581159010.1002/jnr.2342124903973
    [Google Scholar]
  124. KaruppagounderS.S. PintoJ.T. XuH. ChenH.L. BealM.F. GibsonG.E. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease.Neurochem. Int.200954211111810.1016/j.neuint.2008.10.00819041676
    [Google Scholar]
  125. YuS. ReddyJ. K. Transcription coactivators for peroxisome proliferator-activated receptors.Biochim Biophys Acta200717718936951
    [Google Scholar]
  126. HenekaM.T. IrisarriR.E. HüllM. KummerM.P. Impact and therapeutic potential of PPARs in Alzheimer’s disease.Curr. Neuropharmacol.20119464365010.2174/15701591179837632522654722
    [Google Scholar]
  127. CorbettG.T. GonzalezF.J. PahanK. Activation of peroxisome proliferator-activated receptor α stimulates ADAM10-mediated proteolysis of APP.Proc. Natl. Acad. Sci.2015112278445845010.1073/pnas.150489011226080426
    [Google Scholar]
  128. MeineckM. SchuckF. AbdelfatahS. EfferthT. EndresK. Identification of phlogacantholide C as a novel ADAM10 enhancer from traditional Chinese medicinal plants.Medicines2016343010.3390/medicines304003028930140
    [Google Scholar]
  129. ObregonD.F. ZadehR.K. BaiY. SunN. HouH. EhrhartJ. ZengJ. MoriT. ArendashG.W. ShytleD. TownT. TanJ. ADAM10 activation is required for green tea (-)-epigallocatechin-3-gallate-induced α-secretase cleavage of amyloid precursor protein.J. Biol. Chem.200628124164191642710.1074/jbc.M60061720016624814
    [Google Scholar]
  130. MarcadeM. BourdinJ. LoiseauN. PeillonH. RayerA. DrouinD. SchweighofferF. DésiréL. Etazolate, a neuroprotective drug linking GABA A receptor pharmacology to amyloid precursor protein processing.J. Neurochem.2008106139240410.1111/j.1471‑4159.2008.05396.x18397369
    [Google Scholar]
  131. HungA.Y. HaassC. NitschR.M. QiuW.Q. CitronM. WurtmanR.J. GrowdonJ.H. SelkoeD.J. Activation of protein kinase C inhibits cellular production of the amyloid beta-protein.J. Biol. Chem.199326831229592296210.1016/S0021‑9258(19)49409‑X8226807
    [Google Scholar]
  132. EtcheberrigarayR. TanM. DewachterI. KuipériC. Auwerad.V.I. WeraS. QiaoL. BankB. NelsonT.J. KozikowskiA.P. LeuvenV.F. AlkonD.L. Therapeutic effects of PKC activators in Alzheimer’s disease transgenic mice.Proc. Natl. Acad. Sci.200410130111411114610.1073/pnas.040392110115263077
    [Google Scholar]
  133. KojroE. PostinaR. BuroC. MeiringerC. BurgerG.K. FahrenholzF. The neuropeptide PACAP promotes? -secretase pathway for processing Alzheimer amyloid precursor protein.FASEB J.200620351251410.1096/fj.05‑4812fje16401644
    [Google Scholar]
  134. DreymuellerD. UhligS. LudwigA. ADAM-family metalloproteinases in lung inflammation: Potential therapeutic targets.Am. J. Physiol. Lung Cell. Mol. Physiol.20153084L325L34310.1152/ajplung.00294.201425480335
    [Google Scholar]
  135. LudwigA. HundhausenC. LambertM. BroadwayN. AndrewsR. BickettD. LeesnitzerM. BechererJ. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester-inducible shedding of cell surface molecules.Comb. Chem. High Throughput Screen.20058216117110.2174/138620705325848815777180
    [Google Scholar]
  136. ZocchiM.R. CamodecaC. NutiE. RosselloA. VenèR. TosettiF. DapinoI. CostaD. MussoA. PoggiA. ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing.OncoImmunology201655e112336710.1080/2162402X.2015.112336727467923
    [Google Scholar]
  137. DuffyM.J. MulloolyM. O’DonovanN. SukorS. CrownJ. PierceA. McGowanP.M. The ADAMs family of proteases: New biomarkers and therapeutic targets for cancer?Clin. Proteomics201181910.1186/1559‑0275‑8‑921906355
    [Google Scholar]
  138. FridmanJ.S. CaulderE. HansburyM. LiuX. YangG. WangQ. LoY. ZhouB.B. PanM. ThomasS.M. GrandisJ.R. ZhuoJ. YaoW. NewtonR.C. FriedmanS.M. ScherleP.A. VaddiK. Selective inhibition of ADAM metalloproteases as a novel approach for modulating ErbB pathways in cancer.Clin. Cancer Res.20071361892190210.1158/1078‑0432.CCR‑06‑211617363546
    [Google Scholar]
  139. ZhouB.B.S. PeytonM. HeB. LiuC. GirardL. CaudlerE. LoY. BaribaudF. MikamiI. ReguartN. YangG. LiY. YaoW. VaddiK. GazdarA.F. FriedmanS.M. JablonsD.M. NewtonR.C. FridmanJ.S. MinnaJ.D. ScherleP.A. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer.Cancer Cell2006101395010.1016/j.ccr.2006.05.02416843264
    [Google Scholar]
  140. GrabowskaM.M. SandhuB. DayM.L. EGF promotes the shedding of soluble E-cadherin in an ADAM10-dependent manner in prostate epithelial cells.Cell. Signal.201224253253810.1016/j.cellsig.2011.10.00422024284
    [Google Scholar]
  141. MathewsJ.A. FordJ. NortonS. KangD. DellingerA. GibbD.R. FordA.Q. MassayH. KepleyC.L. ScherleP. KeeganA.D. ConradD.H. A potential new target for asthma therapy: A disintegrin and metalloprotease 10 (ADAM10) involvement in murine experimental asthma.Allergy20116691193120010.1111/j.1398‑9995.2011.02614.x21557750
    [Google Scholar]
  142. AtapattuL. SahaN. LlerenaC. VailM.E. ScottA.M. NikolovD.B. LackmannM. JanesP.W. Antibodies binding the ADAM10 substrate recognition domain inhibit Eph function.J. Cell Sci.2012125246084609310.1242/jcs.11263123108669
    [Google Scholar]
  143. ZhangS. SalemiJ. HouH. ZhuY. MoriT. GiuntaB. ObregonD. TanJ. Rapamycin promotes β-amyloid production via ADAM-10 inhibition.Biochem. Biophys. Res. Commun.2010398333734110.1016/j.bbrc.2010.06.01720542014
    [Google Scholar]
  144. SoundararajanR. SayatR. RobertsonG.S. MarignaniP.A. Triptolide: An inhibitor of a disintegrin and metalloproteinase 10 (ADAM10) in cancer cells.Cancer Biol. Ther.20098212054206210.4161/cbt.8.21.980319783906
    [Google Scholar]
  145. WangT. WangJ. XuX. JiangF. LvH. QiQ. ZhangC. LvQ. DengX. Discovery of kaempferol, a novel ADAM10 inhibitor, as a potential treatment for Staphylococcus aureus infection.Engineering20232820622110.1016/j.eng.2023.03.006
    [Google Scholar]
  146. AppelD. HummelR. WeidemeierM. EndresK. GölzC. SchäferM.K.E. Pharmacologic inhibition of ADAM10 attenuates brain tissue loss, axonal injury and pro-inflammatory gene expression following traumatic brain injury in mice.Front. Cell Dev. Biol.2021966146210.3389/fcell.2021.66146233791311
    [Google Scholar]
  147. MahasenanK.V. DingD. GaoM. NguyenT.T. SuckowM.A. SchroederV.A. WolterW.R. ChangM. MobasheryS. In search of selectivity in inhibition of ADAM10.ACS Med. Chem. Lett.20189770871310.1021/acsmedchemlett.8b0016330034605
    [Google Scholar]
  148. AlabiR.O. FarberG. BlobelC.P. Intriguing roles for endothelial ADAM10/Notch signaling in the development of organ-specific vascular beds.Physiol. Rev.20189842025206110.1152/physrev.00029.201730067156
    [Google Scholar]
  149. MillerM.A. MeyerA.S. BesteM.T. LasisiZ. ReddyS. JengK.W. ChenC.H. HanJ. IsaacsonK. GriffithL.G. LauffenburgerD.A. ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling.Proc. Natl. Acad. Sci.201311022E2074E208310.1073/pnas.122238711023674691
    [Google Scholar]
  150. PrinzenC. TrümbachD. WurstW. EndresK. PostinaR. FahrenholzF. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice.BMC Genomics20091016610.1186/1471‑2164‑10‑6619196476
    [Google Scholar]
  151. GoozM. ADAM-17: The enzyme that does it all.Crit. Rev. Biochem. Mol. Biol.201045214616910.3109/1040923100362801520184396
    [Google Scholar]
  152. ChalarisA. AdamN. SinaC. RosenstielP. KochL.J. SchirmacherP. HartmannD. CichyJ. GavrilovaO. SchreiberS. JostockT. MatthewsV. HäslerR. BeckerC. NeurathM.F. ReißK. SaftigP. SchellerJ. JohnR.S. Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice.J. Exp. Med.201020781617162410.1084/jem.2009236620603312
    [Google Scholar]
  153. MossM.L. PowellG. MillerM.A. EdwardsL. QiB. SangQ.X.A. StrooperD.B. TesseurI. LichtenthalerS.F. TavernaM. ZhongJ.L. DingwallC. FerdousT. SchlomannU. ZhouP. GriffithL.G. LauffenburgerD.A. PetrovichR. BartschJ.W. ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein.J. Biol. Chem.201128647404434045110.1074/jbc.M111.28049521956108
    [Google Scholar]
  154. JouannetS. PolS.J. FernandezL. NguyenV. CharrinS. BoucheixC. BrouC. MilhietP.E. RubinsteinE. TspanC8 tetraspanins differentially regulate the cleavage of ADAM10 substrates, Notch activation and ADAM10 membrane compartmentalization.Cell. Mol. Life Sci.20167391895191510.1007/s00018‑015‑2111‑z26686862
    [Google Scholar]
  155. PettaI. LievensS. LibertC. TavernierJ. BosscherD.K. Modulation of protein–protein interactions for the development of novel therapeutics.Mol. Ther.201624470771810.1038/mt.2015.21426675501
    [Google Scholar]
  156. FischerG. RossmannM. HyvönenM. Alternative modulation of protein–protein interactions by small molecules.Curr. Opin. Biotechnol.201535788510.1016/j.copbio.2015.04.00625935873
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037348066250117070824
Loading
/content/journals/cpps/10.2174/0113892037348066250117070824
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ADAM10; ectodomain; regulation disease; shedding; therapy drugs; transmembrane proteins
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test