Skip to content
2000
image of Messenger RNA Nanomedicine: Innovations and Future Directions

Abstract

With its high potential, mRNA nanomedicine has become one of the transformative frontiers of modern therapeutic strategies for treating and preventing a wide array of diseases. This review article covers recent developments in mRNA nanomedicine and its prospects in terms of innovations in drug delivery systems, stability improvements, and targeted therapeutic applications. The versatility of mRNA means that almost any protein can potentially be encoded into it, making it a powerhouse for vaccines, gene editing, and protein replacement therapies. Recent breakthroughs in nanoparticle technology have significantly enhanced mRNA molecules' delivery efficiency and stability, surmounting previous barriers concerning rapid degradation and immune system activation. It has been developed innovations such as LNPs, polymer-based carriers, and hybrid nanocarriers have been central to the success of targeted delivery and the sustained release of mRNA. This review further underlines the potential of mRNA nanomedicine for oncological, infectious, and genetic diseases by highlighting ongoing clinical trials, emerging therapeutic paradigms, and future directions that lay much emphasis on delivery platform optimization, mRNA stability, and broadening the scope of mRNA nanomedicine therapy. With the power of emerging technologies and solving present challenges, mRNA nanomedicine has a vast potential to revolutionize the future landscape of personalized medicine and targeted therapies.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037357900250401020207
2025-04-23
2025-09-16
Loading full text...

Full text loading...

References

  1. Bourke A.M. Schwarz A. Schuman E.M. De-centralizing the Central Dogma: mRNA translation in space and time. Mol. Cell 2023 83 3 452 468 10.1016/j.molcel.2022.12.030 36669490
    [Google Scholar]
  2. Hsieh M.-L. Borger J. Biochemistry, RNA Polymerase StatPearls Publishing Treasure Island (FL) 2020
    [Google Scholar]
  3. Alberts B. From RNA to protein. Molecular Biology of the Cell Garland Science New York 2002
    [Google Scholar]
  4. Chaudhary N. Weissman D. Whitehead K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021 20 11 817 838 10.1038/s41573‑021‑00283‑5 34433919
    [Google Scholar]
  5. Agirrezabala X. Valle M. Structural insights into tRNA dynamics on the ribosome. Int. J. Mol. Sci. 2015 16 5 9866 9895 10.3390/ijms16059866 25941930
    [Google Scholar]
  6. Sebastian-delaCruz M. Gonzalez-Moro I. Olazagoitia-Garmendia A. Castellanos-Rubio A. Santin I. The role of lncrnas in gene expression regulation through mRNA stabilization. Noncoding RNA 2021 7 1 3 10.3390/ncrna7010003 33466464
    [Google Scholar]
  7. Rossnerova A. Izzotti A. Pulliero A. Bast A. Rattan S.I.S. Rossner P. The molecular mechanisms of adaptive response related to environmental stress. Int. J. Mol. Sci. 2020 21 19 7053 10.3390/ijms21197053 32992730
    [Google Scholar]
  8. Saleh R.O. Al-Ouqaili M.T.S. Ali E. Alhajlah S. Kareem A.H. Shakir M.N. Alasheqi M.Q. Mustafa Y.F. Alawadi A. Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: Particular focus on signaling pathways. Med. Oncol. 2024 41 2 52 10.1007/s12032‑023‑02263‑8 38195957
    [Google Scholar]
  9. Baptista B. Carapito R. Laroui N. Pichon C. Sousa F. mRNA, a revolution in biomedicine. Pharmaceutics 2021 13 12 2090 10.3390/pharmaceutics13122090 34959371
    [Google Scholar]
  10. Chavda V. Soni S. Vora L. Soni S. Khadela A. Ajabiya J. mRNA-based vaccines and therapeutics for COVID-19 and future pandemics. Vaccines 2022 10 12 2150 10.3390/vaccines10122150 36560560
    [Google Scholar]
  11. Rahman M.M. Zhou N. Huang J. An overview on the development of mrna-based vaccines and their formulation strategies for improved antigen expression in vivo. Vaccines 2021 9 3 244 10.3390/vaccines9030244 33799516
    [Google Scholar]
  12. Kim Y.K. RNA therapy: Rich history, various applications and unlimited future prospects. Exp. Mol. Med. 2022 54 4 455 465 10.1038/s12276‑022‑00757‑5 35440755
    [Google Scholar]
  13. Dolgin E. The tangled history of mRNA vaccines. Nature 2021 597 7876 318 324 10.1038/d41586‑021‑02483‑w 34522017
    [Google Scholar]
  14. Dheyab M.A. Oladzadabbasabadi N. Aziz A.A. Khaniabadi P.M. Al-ouqaili M.T.S. Jameel M.S. Braim F.S. Mehrdel B. Ghasemlou M. Recent advances of plant-mediated metal nanoparticles: Synthesis, properties, and emerging applications for wastewater treatment. J. Environ. Chem. Eng. 2024 12 2 112345 10.1016/j.jece.2024.112345
    [Google Scholar]
  15. Gote V. Bolla P.K. Kommineni N. Butreddy A. Nukala P.K. Palakurthi S.S. Khan W. A comprehensive review of mRNA vaccines. Int. J. Mol. Sci. 2023 24 3 2700 10.3390/ijms24032700 36769023
    [Google Scholar]
  16. Rauch S. Roth N. Schwendt K. Fotin-Mleczek M. Mueller S.O. Petsch B. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. NPJ Vaccines 2021 6 1 57 10.1038/s41541‑021‑00311‑w 33863911
    [Google Scholar]
  17. Karam M. Daoud G. mRNA vaccines: Past, present, future. Asian J. Pharm. Sci. 2022 17 4 491 522 10.1016/j.ajps.2022.05.003 36105317
    [Google Scholar]
  18. Szabó G.T. Mahiny A.J. Vlatkovic I. COVID-19 mRNA vaccines: Platforms and current developments. Mol. Ther. 2022 30 5 1850 1868 10.1016/j.ymthe.2022.02.016 35189345
    [Google Scholar]
  19. Xu X. Xia T. Recent advances in site-specific lipid nanoparticles for mRNA delivery. ACS Nanosci. Au 2023 3 3 192 203 10.1021/acsnanoscienceau.2c00062 37360845
    [Google Scholar]
  20. Wei H.H. Zheng L. Wang Z. mRNA therapeutics: New vaccination and beyond. Fundam Res 2023 3 5 749 759 10.1016/j.fmre.2023.02.022 38933291
    [Google Scholar]
  21. Chirico F. Silva J.A.T. Tsigaris P. Sharun K. Safety & effectiveness of COVID-19 vaccines. Indian J. Med. Res. 2022 155 1 91 104 10.4103/ijmr.IJMR_474_21 35859436
    [Google Scholar]
  22. Damase T.R. Sukhovershin R. Boada C. Taraballi F. Pettigrew R.I. Cooke J.P. The limitless future of RNA therapeutics. Front. Bioeng. Biotechnol. 2021 9 628137 10.3389/fbioe.2021.628137 33816449
    [Google Scholar]
  23. Vavilis T. Stamoula E. Ainatzoglou A. Sachinidis A. Lamprinou M. Dardalas I. Vizirianakis I.S. mRNA in the context of protein replacement therapy. Pharmaceutics 2023 15 1 166 10.3390/pharmaceutics15010166 36678793
    [Google Scholar]
  24. Karikó K. Whitehead K. van der Meel R. What does the success of mRNA vaccines tell us about the future of biological therapeutics? Cell Syst. 2021 12 8 757 758 10.1016/j.cels.2021.07.005 34411542
    [Google Scholar]
  25. Khurana A. Allawadhi P. Khurana I. Allwadhi S. Weiskirchen R. Banothu A.K. Chhabra D. Joshi K. Bharani K.K. Role of nanotechnology behind the success of mRNA vaccines for COVID-19. Nano Today 2021 38 101142 10.1016/j.nantod.2021.101142 33815564
    [Google Scholar]
  26. Cheng F. Wang Y. Bai Y. Liang Z. Mao Q. Liu D. Wu X. Xu M. Research advances on the stability of mRNA vaccines. Viruses 2023 15 3 668 10.3390/v15030668 36992377
    [Google Scholar]
  27. Demongeot J. Fougère C. mRNA COVID-19 vaccines—facts and hypotheses on fragmentation and encapsulation. Vaccines 2023 10.3390/vaccines11010040 36679885
    [Google Scholar]
  28. Oğuz F. Atmaca H. mRNA as a Therapeutics: Understanding mRNA vaccines. Adv. Pharm. Bull. 2021 12 2 274 282 10.34172/apb.2022.028 35620336
    [Google Scholar]
  29. Delehedde C. Even L. Midoux P. Pichon C. Perche F. Intracellular routing and recognition of lipid-based mRNA nanoparticles. Pharmaceutics 2021 13 7 945 10.3390/pharmaceutics13070945 34202584
    [Google Scholar]
  30. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  31. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted drug delivery — From magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  32. Bai X. Smith Z. Wang Y. Butterworth S. Tirella A. Sustained drug release from smart nanoparticles in cancer therapy: A comprehensive review. Micromachines 2022 13 10 1623 10.3390/mi13101623 36295976
    [Google Scholar]
  33. Elumalai K. Srinivasan S. Shanmugam A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed Tech. 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  34. Sanità G. Carrese B. Lamberti A. Nanoparticle surface functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci. 2020 7 587012 10.3389/fmolb.2020.587012 33324678
    [Google Scholar]
  35. Bahar N.A. Al-Ouqaili M.T. Talib N.M. Molecular, cytogenetic, and hematological monitoring and response to treatment for chronic myeloid leukemia patients. Al-Anbar Med J. 2024 20 2 218 223
    [Google Scholar]
  36. Blanco E. Shen H. Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 2015 33 9 941 951 10.1038/nbt.3330 26348965
    [Google Scholar]
  37. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  38. Waheed S. Li Z. Zhang F. Chiarini A. Armato U. Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J. Nanobiotechnology 2022 20 1 395 10.1186/s12951‑022‑01605‑4 36045386
    [Google Scholar]
  39. Yang L. Gong L. Wang P. Zhao X. Zhao F. Zhang Z. Li Y. Huang W. Recent advances in lipid nanoparticles for delivery of mRNA. Pharmaceutics 2022 14 12 2682 10.3390/pharmaceutics14122682 36559175
    [Google Scholar]
  40. Ye Z. Harmon J. Ni W. Li Y. Wich D. Xu Q. The mRNA vaccine revolution: COVID-19 Has launched the future of vaccinology. ACS Nano 2023 17 16 15231 15253 10.1021/acsnano.2c12584 37535899
    [Google Scholar]
  41. Chen J. Liu S. Nie Q. Du Y. Lv Y. He L. Chen G. Exosome-derived long noncoding RNAs: Mediators of host Plasmodium parasite communication. Wiley Interdiscip. Rev. RNA 2024 15 1 e1808 10.1002/wrna.1808
    [Google Scholar]
  42. Li B. Jiang A.Y. Raji I. Atyeo C. Raimondo T.M. Gordon A.G.R. Rhym L.H. Samad T. MacIsaac C. Witten J. Mughal H. Chicz T.M. Xu Y. McNamara R.P. Bhatia S. Alter G. Langer R. Anderson D.G. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. 2023 10.1038/s41551‑023‑01082‑6 37679571
    [Google Scholar]
  43. Minchin S. Lodge J. Understanding biochemistry: Structure and function of nucleic acids. Essays Biochem. 2019 63 4 433 456 10.1042/EBC20180038 31652314
    [Google Scholar]
  44. Lemonnier J. Lemonnier N. From DNA to RNA. The Marathon of the Messenger Springer Cham 2023 10.1007/978‑3‑031‑39300‑6_2
    [Google Scholar]
  45. Licatalosi D.D. Darnell R.B. RNA processing and its regulation: Global insights into biological networks. Nat. Rev. Genet. 2010 11 1 75 87 10.1038/nrg2673 20019688
    [Google Scholar]
  46. Han J. Xiong J. Wang D. Fu X.D. Pre-mRNA splicing: Where and when in the nucleus. Trends Cell Biol. 2011 21 6 336 343 10.1016/j.tcb.2011.03.003 21514162
    [Google Scholar]
  47. De Magistris P. The great escape: mRNA export through the nuclear pore complex. Int. J. Mol. Sci. 2021 22 21 11767 10.3390/ijms222111767 34769195
    [Google Scholar]
  48. Brito Querido J. Díaz-López I. Ramakrishnan V. The molecular basis of translation initiation and its regulation in eukaryotes. Nat. Rev. Mol. Cell Biol. 2024 25 3 168 186 10.1038/s41580‑023‑00624‑9 38052923
    [Google Scholar]
  49. Lareau L.F. Hite D.H. Hogan G.J. Brown P.O. Distinct stages of the translation elongation cycle revealed by sequencing ribosome-protected mRNA fragments. eLife 2014 3 e01257 10.7554/eLife.01257 24842990
    [Google Scholar]
  50. Sherlock M.E. Baquero Galvis L. Vicens Q. Kieft J.S. Jagannathan S. Principles, mechanisms, and biological implications of translation termination–reinitiation. RNA 2023 29 7 865 884 10.1261/rna.079375.122 37024263
    [Google Scholar]
  51. Hardy E.C. Balcerowicz M. Untranslated yet indispensable—UTRs act as key regulators in the environmental control of gene expression. J. Exp. Bot. 2024 75 14 4314 4331 10.1093/jxb/erae073 38394144
    [Google Scholar]
  52. Sajjanar B. Deb R. Raina S.K. Pawar S. Brahmane M.P. Nirmale A.V. Kurade N.P. Manjunathareddy G.B. Bal S.K. Singh N.P. Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses. J. Therm. Biol. 2017 65 69 75 10.1016/j.jtherbio.2017.02.006 28343578
    [Google Scholar]
  53. Passmore L.A. Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat. Rev. Mol. Cell Biol. 2022 23 2 93 106 10.1038/s41580‑021‑00417‑y 34594027
    [Google Scholar]
  54. Millevoi S. Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res. 2009 10.1093/nar/gkp1176 20044349
    [Google Scholar]
  55. Gómez-Aguado I. Rodríguez-Castejón J. Vicente-Pascual M. Rodríguez-Gascón A. Solinís M.Á. del Pozo-Rodríguez A. Nanomedicines to deliver mRNA: State of the art and future perspectives. Nanomaterials 2020 10 2 364 10.3390/nano10020364 32093140
    [Google Scholar]
  56. Zhang H. Zhang L. Lin A. Xu C. Li Z. Liu K. Liu B. Ma X. Zhao F. Jiang H. Chen C. Shen H. Li H. Mathews D.H. Zhang Y. Huang L. Algorithm for optimized mRNA design improves stability and immunogenicity. Nature 2023 621 7978 396 403 10.1038/s41586‑023‑06127‑z 37130545
    [Google Scholar]
  57. Leppek K. Byeon G.W. Kladwang W. Wayment-Steele H.K. Kerr C.H. Xu A.F. Kim D.S. Topkar V.V. Choe C. Rothschild D. Tiu G.C. Wellington-Oguri R. Fujii K. Sharma E. Watkins A.M. Nicol J.J. Romano J. Tunguz B. Diaz F. Cai H. Guo P. Wu J. Meng F. Shi S. Participants E. Dormitzer P.R. Solórzano A. Barna M. Das R. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Nat. Commun. 2022 13 1 1536 10.1038/s41467‑022‑28776‑w 35318324
    [Google Scholar]
  58. Kang D.D. Li H. Dong Y. Advancements of in vitro transcribed mRNA (IVT mRNA) to enable translation into the clinics. Adv. Drug Deliv. Rev. 2023 199 114961 10.1016/j.addr.2023.114961 37321375
    [Google Scholar]
  59. Linares-Fernández S. Moreno J. Lambert E. Mercier-Gouy P. Vachez L. Verrier B. Exposito J.Y. Combining an optimized mRNA template with a double purification process allows strong expression of in vitro transcribed mRNA. Mol. Ther. Nucleic Acids 2021 26 945 956 10.1016/j.omtn.2021.10.007 34692232
    [Google Scholar]
  60. Zhang J. Liu Y. Li C. Xiao Q. Zhang D. Chen Y. Rosenecker J. Ding X. Guan S. Recent advances and innovations in the preparation and purification of in vitro-transcribed-mRNA-based molecules. Pharmaceutics 2023 15 9 2182 10.3390/pharmaceutics15092182 37765153
    [Google Scholar]
  61. Puri S. Mazza M. Roy G. England R.M. Zhou L. Nourian S. Anand Subramony J. Evolution of nanomedicine formulations for targeted delivery and controlled release. Adv. Drug Deliv. Rev. 2023 200 114962 10.1016/j.addr.2023.114962 37321376
    [Google Scholar]
  62. Huang X. Kong N. Zhang X. Cao Y. Langer R. Tao W. The landscape of mRNA nanomedicine. Nat. Med. 2022 28 11 2273 2287 10.1038/s41591‑022‑02061‑1 36357682
    [Google Scholar]
  63. Brader M.L. Williams S.J. Banks J.M. Hui W.H. Zhou Z.H. Jin L. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. 2021 120 14 2766 2770 10.1016/j.bpj.2021.03.012 33773963
    [Google Scholar]
  64. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  65. Marques A.C. Costa P.J. Velho S. Amaral M.H. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J. Control. Release 2020 320 180 200 10.1016/j.jconrel.2020.01.035 31978444
    [Google Scholar]
  66. Rasmussen M.K. Pedersen J.N. Marie R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat. Commun. 2020 11 1 2337 10.1038/s41467‑020‑15889‑3 32393750
    [Google Scholar]
  67. Malburet C. Leclercq L. Cotte J.F. Thiebaud J. Bazin E. Garinot M. Cottet H. Taylor Dispersion Analysis to support lipid-nanoparticle formulations for mRNA vaccines. Gene Ther. 2023 30 5 421 428 10.1038/s41434‑022‑00370‑1 36316446
    [Google Scholar]
  68. Ai L. Li Y. Zhou L. Yao W. Zhang H. Hu Z. Han J. Wang W. Wu J. Xu P. Wang R. Li Z. Li Z. Wei C. Liang J. Chen H. Yang Z. Guo M. Huang Z. Wang X. Zhang Z. Xiang W. Sun D. Xu L. Huang M. Lv B. Peng P. Zhang S. Ji X. Luo H. Chen N. Chen J. Lan K. Hu Y. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2. Cell Discov. 2023 9 1 9 10.1038/s41421‑022‑00517‑9 36683074
    [Google Scholar]
  69. Badr-Eldin S.M. Aldawsari H.M. Kotta S. Deb P.K. Venugopala K.N. Three-dimensional in vitro cell culture models for efficient drug discovery: Progress so far and future prospects. Pharmaceuticals 2022 15 8 926 10.3390/ph15080926 36015074
    [Google Scholar]
  70. Vervaeke P. Borgos S.E. Sanders N.N. Combes F. Regulatory guidelines and preclinical tools to study the biodistribution of RNA therapeutics. Adv. Drug Deliv. Rev. 2022 184 114236 10.1016/j.addr.2022.114236 35351470
    [Google Scholar]
  71. Huang W. Percie du Sert N. Vollert J. Rice A.S.C. General principles of preclinical study design. Handb. Exp. Pharmacol 2020 257 55 69 10.1007/164_2019_277
    [Google Scholar]
  72. Byun J. Wu Y. Park J. Kim J.S. Li Q. Choi J. Shin N. Lan M. Cai Y. Lee J. Oh Y.K. Nanomedicine R.N.A. RNA nanomedicine: Delivery strategies and applications. AAPS J. 2023 25 6 95 10.1208/s12248‑023‑00860‑z 37784005
    [Google Scholar]
  73. Prakash S. mRNA-based nanomedicine: A new strategy for treating infectious diseases and beyond. Eur. J. Drug Metab. Pharmacokinet. 2023 48 5 515 529 10.1007/s13318‑023‑00849‑1 37656402
    [Google Scholar]
  74. Bae K.H. Shunmuganathan B. Zhang L. Lim A. Gupta R. Wang Y. Chua B.L. Wang Y. Gu Y. Qian X. Tan I.S.L. Purushotorman K. MacAry P.A. White K.P. Yang Y.Y. Durable cross-protective neutralizing antibody responses elicited by lipid nanoparticle-formulated SARS-CoV-2 mRNA vaccines. NPJ Vaccines 2024 9 1 43 10.1038/s41541‑024‑00835‑x 38396073
    [Google Scholar]
  75. Fiolet T. Kherabi Y. MacDonald C.J. Ghosn J. Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: A narrative review. Clin. Microbiol. Infect. 2022 28 2 202 221 10.1016/j.cmi.2021.10.005 34715347
    [Google Scholar]
  76. Pardi N. Carreño J.M. O’Dell G. Tan J. Bajusz C. Muramatsu H. Rijnink W. Strohmeier S. Loganathan M. Bielak D. Sung M.M.H. Tam Y.K. Krammer F. McMahon M. Development of a pentavalent broadly protective nucleoside-modified mRNA vaccine against influenza B viruses. Nat. Commun. 2022 13 1 4677 10.1038/s41467‑022‑32149‑8 35945226
    [Google Scholar]
  77. Uno N. Ross T.M. Multivalent next generation influenza virus vaccines protect against seasonal and pre-pandemic viruses. Sci. Rep. 2024 14 1 1440 10.1038/s41598‑023‑51024‑0 38228649
    [Google Scholar]
  78. Liu C. Shi Q. Huang X. Koo S. Kong N. Tao W. mRNA-based cancer therapeutics. Nat. Rev. Cancer 2023 23 8 526 543 10.1038/s41568‑023‑00586‑2 37311817
    [Google Scholar]
  79. Xie N. Shen G. Gao W. Huang Z. Huang C. Fu L. Neoantigens: Promising targets for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 9 10.1038/s41392‑022‑01270‑x 36604431
    [Google Scholar]
  80. Shin M. Kang H. Shin K. Lee R. Kim K. Min K. Cho K.N. Sohn E.J. Kim K.S. Kim S.H. Cho Y.J. Park J. Hahn T.W. Plant-expressed Zika virus envelope protein elicited protective immunity against the Zika virus in immunocompetent mice. Sci. Rep. 2023 13 1 22955 10.1038/s41598‑023‑47428‑7 38151523
    [Google Scholar]
  81. Bollman B. Nunna N. Bahl K. Hsiao C.J. Bennett H. Butler S. Foreman B. Burgomaster K.E. Aleshnick M. Kong W.P. Fisher B.E. Ruckwardt T.J. Morabito K.M. Graham B.S. Dowd K.A. Pierson T.C. Carfi A. An optimized messenger RNA vaccine candidate protects non-human primates from Zika virus infection. NPJ Vaccines 2023 8 1 58 10.1038/s41541‑023‑00656‑4 37080988
    [Google Scholar]
  82. Li J. Liu Q. Liu J. Wu X. Lei Y. Li S. Zhao D. Li Z. Luo L. Peng S. Ou Y. Yang H. Jin J. Li Y. Peng Y. An mRNA-based rabies vaccine induces strong protective immune responses in mice and dogs. Virol. J. 2022 19 1 184 10.1186/s12985‑022‑01919‑7 36371169
    [Google Scholar]
  83. Cao H. Li H. Luan N. Zhang H. Lin K. Hu J. Song J. Liu C. A rabies mRNA vaccine with H270P mutation in its glycoprotein induces strong cellular and humoral immunity. Vaccine 2024 42 5 1116 1121 10.1016/j.vaccine.2024.01.057 38262810
    [Google Scholar]
  84. Kim J. Vasan S. Kim J.H. Ake J.A. Current approaches to HIV vaccine development: A narrative review. J. Int. AIDS Soc. 2021 24 S7 Suppl. 7 e25793 10.1002/jia2.25793 34806296
    [Google Scholar]
  85. Esposito S. Chiopris G. Messina G. D’Alvano T. Perrone S. Principi N. Prevention of congenital cytomegalovirus infection with vaccines: State of the art. Vaccines 2021 9 5 523 10.3390/vaccines9050523 34069321
    [Google Scholar]
  86. Scaria P.V. Roth N. Schwendt K. Muratova O.V. Alani N. Lambert L.E. Barnafo E.K. Rowe C.G. Zaidi I.U. Rausch K.M. Narum D.L. Petsch B. Duffy P.E. mRNA vaccines expressing malaria transmission-blocking antigens Pfs25 and Pfs230D1 induce a functional immune response. NPJ Vaccines 2024 9 1 9 10.1038/s41541‑023‑00783‑y 38184666
    [Google Scholar]
  87. Makoni M. mRNA vaccine against malaria effective in preclinical model. Lancet Microbe 2023 4 12 e970 10.1016/S2666‑5247(23)00332‑4 37865114
    [Google Scholar]
  88. Li M. Li Y. Li S. Jia L. Wang H. Li M. Deng J. Zhu A. Ma L. Li W. Yu P. Zhu T. The nano delivery systems and applications of mRNA. Eur. J. Med. Chem. 2022 227 113910 10.1016/j.ejmech.2021.113910 34689071
    [Google Scholar]
  89. Gane E. Yarchoan M. Marron T. Rochestie S. Perales R. Cooch N. Yan J. Peters J. Weiner D. Csiki I. Perales-Puchalt A. Sardesai N. 693 Personalized DNA neoantigen vaccine (GNOS-PV02) in combination with plasmid IL-12 and pembrolizumab as second-line (2L) treatment for advanced hepatocellular carcinoma (HCC). J Immunother Cancer 2022 10 Suppl 2 A724 A724 10.1136/jitc‑2022‑SITC2022.0693
    [Google Scholar]
  90. Biswas N. Chakrabarti S. Padul V. Jones L.D. Ashili S. Designing neoantigen cancer vaccines, trials, and outcomes. Front. Immunol. 2023 14 1105420 10.3389/fimmu.2023.1105420 36845151
    [Google Scholar]
  91. Wang B. Pei J. Xu S. Liu J. Yu J. Recent advances in mRNA cancer vaccines: Meeting challenges and embracing opportunities. Front. Immunol. 2023 14 1246682 10.3389/fimmu.2023.1246682 37744371
    [Google Scholar]
  92. Abdulrazaq Z.A. Al-Ouqaili M.T.S. Talib N.M. The impact of circulating 25-hydroxyvitamin D and vitamin D receptor variation on leukemia-lymphoma outcome: Molecular and cytogenetic study. Saudi J. Biol. Sci. 2024 31 1 103882 10.1016/j.sjbs.2023.103882 38125732
    [Google Scholar]
  93. Meng L. Wu H. Wu J. Ding P. He J. Sang M. Liu L. Mechanisms of immune checkpoint inhibitors: Insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death Dis. 2024 15 1 3 10.1038/s41419‑023‑06389‑5 38177102
    [Google Scholar]
  94. Seidel J.A. Otsuka A. Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: Mechanisms of action, efficacy, and limitations. Front. Oncol. 2018 8 86 10.3389/fonc.2018.00086 29644214
    [Google Scholar]
  95. Rohner E. Yang R. Foo K.S. Goedel A. Chien K.R. Unlocking the promise of mRNA therapeutics. Nat. Biotechnol. 2022 40 11 1586 1600 10.1038/s41587‑022‑01491‑z 36329321
    [Google Scholar]
  96. Bangel-Ruland N. Tomczak K. Fernández Fernández E. Leier G. Leciejewski B. Rudolph C. Rosenecker J. Weber W.M. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: A novel alternative for cystic fibrosis gene therapy. J. Gene Med. 2013 15 11-12 414 426 10.1002/jgm.2748 24123772
    [Google Scholar]
  97. Dwivedi J Sachan P Wal P Dwivedi S Sharma MC Rao SP Detailed review on phytosomal formulation attenuating new pharmacological therapies. ADV TRADIT MED (ADTM) 2023 24 659 684
    [Google Scholar]
  98. Saiding Q. Zhang Z. Chen S. Xiao F. Chen Y. Li Y. Zhen X. Khan M.M. Chen W. Koo S. Kong N. Tao W. Nano-bio interactions in mRNA nanomedicine: Challenges and opportunities for targeted mRNA delivery. Adv. Drug Deliv. Rev. 2023 203 115116 10.1016/j.addr.2023.115116 37871748
    [Google Scholar]
  99. Zhang N.N. Zhang R.R. Zhang Y.F. Ji K. Xiong X.C. Qin Q.S. Gao P. Lu X.S. Zhou H.Y. Song H.F. Ying B. Qin C.F. Rapid development of an updated mRNA vaccine against the SARS-CoV-2 Omicron variant. Cell Res. 2022 32 4 401 403 10.1038/s41422‑022‑00626‑w 35165421
    [Google Scholar]
  100. Tsai S.J. Atai N.A. Cacciottolo M. Nice J. Salehi A. Guo C. Sedgwick A. Kanagavelu S. Gould S.J. Exosome-mediated mRNA delivery in vivo is safe and can be used to induce SARS- CoV-2 immunity. J. Biol. Chem. 2021 297 5 101266 10.1016/j.jbc.2021.101266 34600888
    [Google Scholar]
  101. Pelletier J. Schmeing T.M. Sonenberg N. The multifaceted eukaryotic cap structure. Wiley Interdiscip. Rev. RNA 2021 12 2 e1636 10.1002/wrna.1636 33300197
    [Google Scholar]
  102. Byszewska M. Śmietański M. Purta E. Bujnicki J.M. RNA methyltransferases involved in 5′ cap biosynthesis. RNA Biol. 2014 11 12 1597 1607 10.1080/15476286.2015.1004955 25626080
    [Google Scholar]
  103. Cenik C. Derti A. Mellor J.C. Berriz G.F. Roth F.P. Genome-wide functional analysis of human 5′ untranslated region introns. Genome Biol. 2010 11 3 R29 10.1186/gb‑2010‑11‑3‑r29 20222956
    [Google Scholar]
  104. Gu W. Xu Y. Xie X. Wang T. Ko J.H. Zhou T. The role of RNA structure at 5′ untranslated region in microRNA-mediated gene regulation. RNA 2014 20 9 1369 1375 10.1261/rna.044792.114 25002673
    [Google Scholar]
  105. Couso J.P. Patraquim P. Classification and function of small open reading frames. Nat. Rev. Mol. Cell Biol. 2017 18 9 575 589 10.1038/nrm.2017.58 28698598
    [Google Scholar]
  106. Kute P.M. Soukarieh O. Tjeldnes H. Trégouët D.A. Valen E. Small open reading frames, how to find them and determine their function. Front. Genet. 2022 12 796060 10.3389/fgene.2021.796060 35154250
    [Google Scholar]
  107. Mayr C. Regulation by 3′-Untranslated regions. Annu. Rev. Genet. 2017 51 1 171 194 10.1146/annurev‑genet‑120116‑024704 28853924
    [Google Scholar]
  108. Lee D.Y. Shatseva T. Jeyapalan Z. Du W.W. Deng Z. Yang B.B. A 3′-untranslated region (3'UTR) induces organ adhesion by regulating miR-199a* functions. PLoS One 2009 4 2 e4527 10.1371/journal.pone.0004527 19223980
    [Google Scholar]
  109. Kühn U. Wahle E. Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta Gene Struct. Expr. 2004 1678 2-3 67 84 10.1016/j.bbaexp.2004.03.008 15157733
    [Google Scholar]
  110. Kozlov G. Trempe J.F. Khaleghpour K. Kahvejian A. Ekiel I. Gehring K. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein. Proc. Natl. Acad. Sci. USA 2001 98 8 4409 4413 10.1073/pnas.071024998 11287632
    [Google Scholar]
  111. Eygeris Y. Gupta M. Kim J. Sahay G. Chemistry of lipid nanoparticles for RNA delivery. Acc. Chem. Res. 2022 55 1 2 12 10.1021/acs.accounts.1c00544 34850635
    [Google Scholar]
  112. Álvarez-Benedicto E. Farbiak L. Márquez Ramírez M. Wang X. Johnson L.T. Mian O. Guerrero E.D. Siegwart D.J. Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA). Biomater. Sci. 2022 10 2 549 559 10.1039/D1BM01454D 34904974
    [Google Scholar]
  113. Ali S. Amin M.U. Tariq I. Sohail M.F. Ali M.Y. Preis E. Ambreen G. Pinnapireddy S.R. Jedelská J. Schäfer J. Bakowsky U. Lipoparticles for synergistic chemo-photodynamic therapy to ovarian carcinoma cells: In vitro and in vivo assessments. Int. J. Nanomedicine 2021 16 951 976 10.2147/IJN.S285950 33603362
    [Google Scholar]
  114. Li M. Du C. Guo N. Teng Y. Meng X. Sun H. Li S. Yu P. Galons H. Composition design and medical application of liposomes. Eur. J. Med. Chem. 2019 164 640 653 10.1016/j.ejmech.2019.01.007 30640028
    [Google Scholar]
  115. Morachis J.M. Mahmoud E.A. Almutairi A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev. 2012 64 3 505 519 10.1124/pr.111.005363 22544864
    [Google Scholar]
  116. Elsabahy M. Wooley K.L. Design of polymeric nanoparticles for biomedical delivery applications. Chem. Soc. Rev. 2012 41 7 2545 2561 10.1039/c2cs15327k 22334259
    [Google Scholar]
  117. El-Say K.M. El-Sawy H.S. Polymeric nanoparticles: Promising platform for drug delivery. Int. J. Pharm. 2017 528 1-2 675 691 10.1016/j.ijpharm.2017.06.052 28629982
    [Google Scholar]
  118. Tros de Ilarduya C. Sun Y. Düzgüneş N. Gene delivery by lipoplexes and polyplexes. Eur. J. Pharm. Sci. 2010 40 3 159 170 10.1016/j.ejps.2010.03.019 20359532
    [Google Scholar]
  119. Lächelt U. Wagner E. Nucleic acid therapeutics using Polyplexes: A journey of 50 years (and beyond). Chem. Rev. 2015 115 19 11043 11078 10.1021/cr5006793 25872804
    [Google Scholar]
  120. Costa B. Boueri B. Oliveira C. Silveira I. Ribeiro A.J. Lipoplexes and polyplexes as nucleic acids delivery nanosystems: The current state and future considerations. Expert Opin. Drug Deliv. 2022 19 5 577 594 10.1080/17425247.2022.2075846 35531670
    [Google Scholar]
  121. Du Z. Munye M.M. Tagalakis A.D. Manunta M.D.I. Hart S.L. The role of the helper lipid on the DNA transfection efficiency of lipopolyplex formulations. Sci. Rep. 2014 4 1 7107 10.1038/srep07107 25407686
    [Google Scholar]
  122. Rezaee M. Oskuee R.K. Nassirli H. Malaekeh-Nikouei B. Progress in the development of lipopolyplexes as efficient non-viral gene delivery systems. J. Control. Release 2016 236 1 14 10.1016/j.jconrel.2016.06.023 27317365
    [Google Scholar]
  123. Reissmann S. Cell penetration: Scope and limitations by the application of cell-penetrating peptides. J. Pept. Sci. 2014 20 10 760 784 10.1002/psc.2672 25112216
    [Google Scholar]
  124. Reissmann S. Filatova M.P. New generation of cell-penetrating peptides: Functionality and potential clinical application. J. Pept. Sci. 2021 27 5 e3300 10.1002/psc.3300 33615648
    [Google Scholar]
  125. Fuenmayor J. Gòdia F. Cervera L. Production of virus-like particles for vaccines. N. Biotechnol. 2017 39 Pt B 174 180 10.1016/j.nbt.2017.07.010 28778817
    [Google Scholar]
  126. Dwivedi J. Sachan P. Wal P. Wal A. Rai A.K. Current state and future perspective of diabetic wound healing treatment: Present evidence from clinical trials. Curr. Diabetes Rev. 2024 20 5 e280823220405 10.2174/1573399820666230828091708 37641999
    [Google Scholar]
  127. Turturici G. Tinnirello R. Sconzo G. Geraci F. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: Advantages and disadvantages. Am. J. Physiol. Cell Physiol. 2014 306 7 C621 C633 10.1152/ajpcell.00228.2013 24452373
    [Google Scholar]
  128. Di Bella M.A. Overview and update on extracellular vesicles: Considerations on exosomes and their application in modern medicine. Biology 2022 11 6 804 10.3390/biology11060804 35741325
    [Google Scholar]
  129. Hammami I. Alabdallah N.M. jomaa A.A. kamoun M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021 33 7 101560 10.1016/j.jksus.2021.101560
    [Google Scholar]
  130. Ramalingam V. Multifunctionality of gold nanoparticles: Plausible and convincing properties. Adv. Colloid Interface Sci. 2019 271 101989 10.1016/j.cis.2019.101989 31330396
    [Google Scholar]
  131. Kankala R.K. Han Y.H. Na J. Lee C.H. Sun Z. Wang S.B. Kimura T. Ok Y.S. Yamauchi Y. Chen A.Z. Wu K.C.W. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Adv. Mater. 2020 32 23 1907035 10.1002/adma.201907035 32319133
    [Google Scholar]
  132. Li H. Chen X. Shen D. Wu F. Pleixats R. Pan J. Functionalized silica nanoparticles: Classification, synthetic approaches and recent advances in adsorption applications. Nanoscale 2021 13 38 15998 16016 10.1039/D1NR04048K 34546275
    [Google Scholar]
  133. Mandal B. Bhattacharjee H. Mittal N. Sah H. Balabathula P. Thoma L.A. Wood G.C. Core–shell-type lipid–polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine 2013 9 4 474 491 10.1016/j.nano.2012.11.010 23261500
    [Google Scholar]
  134. Tan S. Li X. Guo Y. Zhang Z. Lipid-enveloped hybrid nanoparticles for drug delivery. Nanoscale 2013 5 3 860 872 10.1039/c2nr32880a 23292080
    [Google Scholar]
  135. Wal P. Dwivedi J. Wal A. Vig H. Singh Y. Detailed insight into the pathophysiology and the behavioral complications associated with the Parkinson’s disease and its medications. Future J. Pharm. Sci. 2022 8 1 33 10.1186/s43094‑022‑00425‑5
    [Google Scholar]
  136. Uchida S. Perche F. Pichon C. Cabral H. Nanomedicine-based approaches for mRNA delivery. Mol. Pharm. 2020 17 10 3654 3684 10.1021/acs.molpharmaceut.0c00618 32845639
    [Google Scholar]
  137. DeRosa F. Guild B. Karve S. Smith L. Love K. Dorkin J.R. Kauffman K.J. Zhang J. Yahalom B. Anderson D.G. Heartlein M.W. Therapeutic efficacy in a hemophilia B model using a biosynthetic mRNA liver depot system. Gene Ther. 2016 23 10 699 707 10.1038/gt.2016.46 27356951
    [Google Scholar]
  138. Andreana I. Repellin M. Carton F. Kryza D. Briançon S. Chazaud B. Mounier R. Arpicco S. Malatesta M. Stella B. Lollo G. Nanomedicine for gene delivery and drug repurposing in the treatment of muscular dystrophies. Pharmaceutics 2021 13 2 278 10.3390/pharmaceutics13020278 33669654
    [Google Scholar]
  139. Nance M.E. Hakim C.H. Yang N.N. Duan D. Nanotherapy for Duchenne muscular dystrophy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2018 10 2 e1472 10.1002/wnan.1472 28398005
    [Google Scholar]
  140. Muthuraman A. Mehdi S. Rishitha N. Current trends in site and target specific delivery of nanomedicine for gene therapy. Nanoparticles in Pharmacotherapy William Andrew 2019 10.1016/B978‑0‑12‑816504‑1.00010‑7
    [Google Scholar]
  141. Popovitz J. Sharma R. Hoshyar R. Soo Kim B. Murthy N. Lee K. Gene editing therapeutics based on mRNA delivery. Adv. Drug Deliv. Rev. 2023 200 115026 10.1016/j.addr.2023.115026 37516409
    [Google Scholar]
  142. Li D. Liu Q. Yang M. Xu H. Zhu M. Zhang Y. Xu J. Tian C. Yao J. Wang L. Liang Y. Nanomaterials for mRNA -based therapeutics: Challenges and opportunities. Bioeng. Transl. Med. 2023 8 3 e10492 10.1002/btm2.10492
    [Google Scholar]
  143. Bakrania A. Mo Y. Zheng G. Bhat M. RNA nanomedicine in liver diseases. Hepatology 2023 10.1097/HEP.0000000000000606 37725757
    [Google Scholar]
  144. Taina-González L. de la Fuente M. The potential of nanomedicine to unlock the limitless applications of mRNA. Pharmaceutics 2022 14 2 460 10.3390/pharmaceutics14020460 35214191
    [Google Scholar]
  145. Luo X.M. Yan C. Feng Y.M. Nanomedicine for the treatment of diabetes-associated cardiovascular diseases and fibrosis. Adv. Drug Deliv. Rev. 2021 172 234 248 10.1016/j.addr.2021.01.004 33417981
    [Google Scholar]
  146. Atteia H.H. Arafa M.H. Prabahar K. Selenium nanoparticles prevents lead acetate-induced hypothyroidism and oxidative damage of thyroid tissues in male rats through modulation of selenoenzymes and suppression of miR-224. Biomed. Pharmacother. 2018 99 486 491 10.1016/j.biopha.2018.01.083 29665650
    [Google Scholar]
  147. Nilubol N. Yuan Z. Paciotti G.F. Tamarkin L. Sanchez C. Gaskins K. Freedman E.M. Cao S. Zhao J. Kingston D.G.I. Libutti S.K. Kebebew E. Novel dual-action targeted nanomedicine in mice with metastatic thyroid cancer and pancreatic neuroendocrine tumors. J. Natl. Cancer Inst. 2018 110 9 1019 1029 10.1093/jnci/djy003 29481652
    [Google Scholar]
  148. Cortes H. Alcala-Alcala S. Avalos-Fuentes A. Mendoza-Munoz N. Quintanar-Guerrero D. Leyva-Gomez G. Floran B. Nanotechnology as potential tool for siRNA delivery in Parkinson’s disease. Curr. Drug Targets 2017 18 16 1866 1879 10.2174/1389450118666170321130003 28325145
    [Google Scholar]
  149. Jagaran K. Singh M. Nanomedicine for neurodegenerative disorders: Focus on alzheimer’s and parkinson’s diseases. Int. J. Mol. Sci. 2021 22 16 9082 10.3390/ijms22169082 34445784
    [Google Scholar]
  150. Ahmed Z. Qaisar R. Nanomedicine for treating muscle dystrophies: Opportunities, challenges, and future perspectives. Int. J. Mol. Sci. 2022 23 19 12039 10.3390/ijms231912039 36233338
    [Google Scholar]
  151. Colapicchioni V. Millozzi F. Parolini O. Palacios D. Nanomedicine, a valuable tool for skeletal muscle disorders: Challenges, promises, and limitations. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 3 e1777 10.1002/wnan.1777 35092179
    [Google Scholar]
  152. Wang X. Wu D.H. Senyo S.E. mRNA therapy for myocardial infarction: A review of targets and delivery vehicles. Front. Bioeng. Biotechnol. 2022 10 1037051 10.3389/fbioe.2022.1037051 36507276
    [Google Scholar]
  153. Smith B.R. Edelman E.R. Nanomedicines for cardiovascular disease. Nat. Cardiovasc. Res. 2023 2 4 351 367 10.1038/s44161‑023‑00232‑y 39195953
    [Google Scholar]
  154. Ferreira M. P. A. Balasubramanian V. Hirvonen J. Ruskoaho H. Santos H. A. Advanced nanomedicines for the treatment and diagnosis of myocardial infarction and heart failure. Curr Drug Targets 2015 16 14 1682 1697 10.2174/1389450115999141030143923
    [Google Scholar]
  155. Tai Y. Midgley A.C. Nanoparticles for cardiovascular medicine: Trends in myocardial infarction therapy. Nanopharmaceuticals in Regenerative Medicine CRC Press Boca Raton, FL 2022 10.1201/9781003153504‑17
    [Google Scholar]
  156. Chung S. Lee C.M. Zhang M. Advances in nanoparticle-based mRNA delivery for liver cancer and liver-associated infectious diseases. Nanoscale Horiz. 2022 8 1 10 28 10.1039/D2NH00289B 36260016
    [Google Scholar]
  157. Witzigmann D. Kulkarni J.A. Leung J. Chen S. Cullis P.R. van der Meel R. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 2020 159 344 363 10.1016/j.addr.2020.06.026 32622021
    [Google Scholar]
  158. Kubiatowicz L.J. Mohapatra A. Krishnan N. Fang R.H. Zhang L. mRNA nanomedicine: Design and recent applications. Exploration 2022 2 6 20210217 10.1002/EXP.20210217 36249890
    [Google Scholar]
  159. Strnad P. San Martin J. RNAi therapeutics for diseases involving protein aggregation: Fazirsiran for alpha-1 antitrypsin deficiency-associated liver disease. Expert Opin. Investig. Drugs 2023 32 7 571 581 10.1080/13543784.2023.2239707 37470509
    [Google Scholar]
  160. Ling K. Dou Y. Yang N. Deng L. Wang Y. Li Y. Yang L. Chen C. Jiang L. Deng Q. Li C. Liang Z. Zhang J. Genome editing mRNA nanotherapies inhibit cervical cancer progression and regulate the immunosuppressive microenvironment for adoptive T-cell therapy. J. Control. Release 2023 360 496 513 10.1016/j.jconrel.2023.07.007 37423524
    [Google Scholar]
  161. Boettcher A.N. Loving C.L. Cunnick J.E. Tuggle C.K. Development of severe combined immunodeficient (SCID) pig models for translational cancer modeling: Future insights on how humanized SCID pigs can improve preclinical cancer research. Front. Oncol. 2018 8 559 10.3389/fonc.2018.00559 30560086
    [Google Scholar]
  162. Jafarian A. Shokri G. Shokrollahi Barough M. Moin M. Pourpak Z. Soleimani M. Recent advances in gene therapy and modeling of chronic granulomatous disease. Iran. J. Allergy Asthma Immunol. 2019 18 2 131 142 10.18502/ijaai.v18i2.916 31066249
    [Google Scholar]
  163. Chen L. Wang Y. Sun L. Yan J. Mao H.Q. Nanomedicine strategies for anti-inflammatory treatment of noninfectious arthritis. Adv. Healthc. Mater. 2021 10 11 2001732 10.1002/adhm.202001732 33870656
    [Google Scholar]
  164. Duan L. Ouyang K. Xu X. Xu L. Wen C. Zhou X. Qin Z. Xu Z. Sun W. Liang Y. Nanoparticle delivery of CRISPR/Cas9 for genome editing. Front. Genet. 2021 12 673286 10.3389/fgene.2021.673286 34054927
    [Google Scholar]
  165. Cheng H. Zhang F. Ding Y. Crispr/cas9 delivery system engineering for genome editing in therapeutic applications. Pharmaceutics 2021 13 10 1649 10.3390/pharmaceutics13101649 34683943
    [Google Scholar]
  166. Lino C.A. Harper J.C. Carney J.P. Timlin J.A. Delivering CRISPR: A review of the challenges and approaches. Drug Deliv. 2018 25 1 1234 1257 10.1080/10717544.2018.1474964 29801422
    [Google Scholar]
  167. Zhang D. Zhang Z. Unver T. Zhang B. CRISPR/Cas: A powerful tool for gene function study and crop improvement. J. Adv. Res. 2021 29 207 221 10.1016/j.jare.2020.10.003 33842017
    [Google Scholar]
  168. Wei T. Cheng Q. Min Y.L. Olson E.N. Siegwart D.J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 2020 11 1 3232 10.1038/s41467‑020‑17029‑3 32591530
    [Google Scholar]
  169. Jiang T. Henderson J.M. Coote K. Cheng Y. Valley H.C. Zhang X.O. Wang Q. Rhym L.H. Cao Y. Newby G.A. Bihler H. Mense M. Weng Z. Anderson D.G. McCaffrey A.P. Liu D.R. Xue W. Chemical modifications of adenine base editor mRNA and guide RNA expand its application scope. Nat. Commun. 2020 11 1 1979 10.1038/s41467‑020‑15892‑8 32332735
    [Google Scholar]
  170. Zheng Y. Li Y. Zhou K. Li T. VanDusen N.J. Hua Y. Precise genome-editing in human diseases: Mechanisms, strategies and applications. Signal Transduct. Target. Ther. 2024 9 1 47 10.1038/s41392‑024‑01750‑2 38409199
    [Google Scholar]
  171. Sansbury B.M. Hewes A.M. Tharp O.M. Masciarelli S.B. Kaouser S. Kmiec E.B. Homology directed correction, a new pathway model for point mutation repair catalyzed by CRISPR-Cas. Sci. Rep. 2022 12 1 8132 10.1038/s41598‑022‑11808‑2 35581233
    [Google Scholar]
  172. Scholefield J. Harrison P.T. Prime editing – An update on the field. Gene Ther. 2021 28 7-8 396 401 10.1038/s41434‑021‑00263‑9 34031549
    [Google Scholar]
  173. Nelson J.W. Randolph P.B. Shen S.P. Everette K.A. Chen P.J. Anzalone A.V. An M. Newby G.A. Chen J.C. Hsu A. Liu D.R. Engineered pegRNAs improve prime editing efficiency. Nat. Biotechnol. 2022 40 3 402 410 10.1038/s41587‑021‑01039‑7 34608327
    [Google Scholar]
  174. Chen P.J. Liu D.R. Prime editing for precise and highly versatile genome manipulation. Nat. Rev. Genet. 2023 24 3 161 177 10.1038/s41576‑022‑00541‑1 36344749
    [Google Scholar]
  175. He H. Yang M. Li S. Zhang G. Ding Z. Zhang L. Shi G. Li Y. Mechanisms and biotechnological applications of transcription factors. Synth. Syst. Biotechnol. 2023 8 4 565 577 10.1016/j.synbio.2023.08.006 37691767
    [Google Scholar]
  176. Wang C. Qu Y. Cheng J.K.W. Hughes N.W. Zhang Q. Wang M. Cong L. dCas9-based gene editing for cleavage-free genomic knock-in of long sequences. Nat. Cell Biol. 2022 24 2 268 278 10.1038/s41556‑021‑00836‑1 35145221
    [Google Scholar]
  177. Armando Casas-Mollano J. Zinselmeier M.H. Erickson S.E. Smanski M.J. CRISPR-Cas Activators for Engineering Gene Expression in Higher Eukaryotes. Cris. J. 2020 3 5 350 364 10.1089/crispr.2020.0064
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037357900250401020207
Loading
/content/journals/cpps/10.2174/0113892037357900250401020207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test