Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Schizophrenia is now diagnosed mostly based on symptoms and physical signs rather than the patient's pathological and physiological markers. While oncologists once felt satisfied when their patients experienced a long remission, today, they are leading research into innovative treatments with molecularly targeted drugs, as well as strategies to enhance diagnostic accuracy and alleviate symptoms as the disease advances. Because biomarkers reflect an organism's physiological, physical, and biochemical state, they are very beneficial and have a wide range of real-world uses. The identification of blood biomarkers may open up new avenues for studying schizophrenia. MicroRNAs (miRNAs) may serve as diagnostic indicators for schizophrenia as their abnormal expression has recently been linked to the disease's pathophysiology. The precise etiological process of schizophrenia remains largely unknown despite the general agreement that developmental and genetic factors play a critical role in the pathophysiology of the disorder. miRNAs have gained recognition as an essential post-transcriptional regulator in the regulation of gene expression in recent decades. The importance of miRNAs for brain development and neuroplasticity is well established.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037362309250319035758
2025-04-14
2025-11-05
Loading full text...

Full text loading...

References

  1. NadimW. SimionV. BenedettiH. PichonC. BarilP. Morisset-LopezS. MicroRNAs in neurocognitive dysfunctions: New molecular targets for pharmacological treatments?Curr. Neuropharmacol.201715226027510.2174/1570159X1466616070900144127396304
    [Google Scholar]
  2. WinterJ. JungS. KellerS. GregoryR.I. DiederichsS. Many roads to maturity: MicroRNA biogenesis pathways and their regulation.Nat. Cell Biol.200911322823410.1038/ncb0309‑22819255566
    [Google Scholar]
  3. PurcellS.M. WrayN.R. StoneJ.L. VisscherP.M. O’DonovanM.C. SullivanP.F. SklarP. International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.Nature2009460725674875210.1038/nature0818519571811
    [Google Scholar]
  4. American Psychiatric Association AP, American Psychiatric AssociationDiagnostic and statistical manual of mental disorders: DSM-IVAmerican psychiatric associationWashington, DC1994
    [Google Scholar]
  5. MuranteT. CohenC.I. Cognitive functioning in older adults with schizophrenia.Focus Am. Psychiatr. Publ.2017151263410.1176/appi.focus.2016003231975837
    [Google Scholar]
  6. ShafieA. AshourA.A. AnwarS. AnjumF. HassanM.I. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease.Arch. Pharm. Res.202447657159510.1007/s12272‑024‑01499‑w38764004
    [Google Scholar]
  7. RipkeS. O’DushlaineC. ChambertK. MoranJ.L. KählerA.K. AkterinS. BergenS.E. CollinsA.L. CrowleyJ.J. FromerM. KimY. LeeS.H. MagnussonP.K.E. SanchezN. StahlE.A. WilliamsS. WrayN.R. XiaK. BettellaF. BorglumA.D. Bulik-SullivanB.K. CormicanP. CraddockN. de LeeuwC. DurmishiN. GillM. GolimbetV. HamshereM.L. HolmansP. HougaardD.M. KendlerK.S. LinK. MorrisD.W. MorsO. MortensenP.B. NealeB.M. O’NeillF.A. OwenM.J. MilovancevicM.P. PosthumaD. PowellJ. RichardsA.L. RileyB.P. RuderferD. RujescuD. SigurdssonE. SilagadzeT. SmitA.B. StefanssonH. SteinbergS. SuvisaariJ. TosatoS. VerhageM. WaltersJ.T. BramonE. CorvinA.P. O’DonovanM.C. StefanssonK. ScolnickE. PurcellS. McCarrollS.A. SklarP. HultmanC.M. SullivanP.F. WildenauerD.B. DudbridgeF. HolmansP. ShiJ. AlbusM. AlexanderM. CampionD. CohenD. DikeosD. DuanJ. EichhammerP. GodardS. HansenM. LererF.B. LiangK.Y. MaierW. MalletJ. NertneyD.A. NestadtG. NortonN. O’NeillF.A. PapadimitriouG.N. RibbleR. SandersA.R. SilvermanJ.M. WalshD. WilliamsN.M. WormleyB. ArranzM.J. BakkerS. BenderS. BramonE. CollierD. Crespo-FacorroB. HallJ. IyegbeC. JablenskyA. KahnR.S. KalaydjievaL. LawrieS. LewisC.M. LinK. LinszenD.H. MataI. McIntoshA. MurrayR.M. OphoffR.A. PowellJ. RujescuD. Van OsJ. WalsheM. WeisbrodM. WiersmaD. DonnellyP. BarrosoI. BlackwellJ.M. BramonE. BrownM.A. CasasJ.P. CorvinA.P. DeloukasP. DuncansonA. JankowskiJ. MarkusH.S. MathewC.G. PalmerC.N. PlominR. RautanenA. SawcerS.J. TrembathR.C. ViswanathanA.C. WoodN.W. SpencerC.C. BandG. BellenguezC. FreemanC. HellenthalG. GiannoulatouE. PirinenM. PearsonR.D. StrangeA. SuZ. VukcevicD. DonnellyP. LangfordC. HuntS.E. EdkinsS. GwilliamR. BlackburnH. BumpsteadS.J. DronovS. GillmanM. GrayE. HammondN. JayakumarA. McCannO.T. LiddleJ. PotterS.C. RavindrarajahR. RickettsM. Tashakkori-GhanbariaA. WallerM.J. WestonP. WidaaS. WhittakerP. BarrosoI. DeloukasP. MathewC.G. BlackwellJ.M. BrownM.A. CorvinA.P. McCarthyM.I. SpencerC.C. BramonE. CorvinA.P. O’DonovanM.C. StefanssonK. ScolnickE. PurcellS. McCarrollS.A. SklarP. HultmanC.M. SullivanP.F. Multicenter Genetic Studies of Schizophrenia Consortium Psychosis Endophenotypes International Consortium Wellcome Trust Case Control Consortium 2 Genome-wide association analysis identifies 13 new risk loci for schizophrenia.Nat. Genet.201345101150115910.1038/ng.274223974872
    [Google Scholar]
  8. BeveridgeN.J. GardinerE. CarrollA.P. TooneyP.A. CairnsM.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis.Mol. Psychiatry201015121176118910.1038/mp.2009.8419721432
    [Google Scholar]
  9. BeveridgeN.J. TooneyP.A. CarrollA.P. GardinerE. BowdenN. ScottR.J. TranN. DedovaI. CairnsM.J. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia.Hum. Mol. Genet.20081781156116810.1093/hmg/ddn00518184693
    [Google Scholar]
  10. HeK. GuoC. HeL. ShiY. MiRNAs of peripheral blood as the biomarker of schizophrenia.Hereditas20181551910.1186/s41065‑017‑0044‑228860957
    [Google Scholar]
  11. GunasekaranS. JacobR.S. OmkumarR.V. Differential expression of miR-148b, miR-129-2 and miR-296 in animal models of schizophrenia-Relevance to NMDA receptor hypofunction.Neuropharmacology202221010902410.1016/j.neuropharm.2022.10902435276119
    [Google Scholar]
  12. JohnstoneA.L. O’ReillyJ.J. PatelA.J. GuoZ. AndradeN.S. MagistriM. NathansonL. EsanovR. MillerB.H. TureckiG. BrothersS.P. ZeierZ. WahlestedtC. EZH1 is an antipsychotic-sensitive epigenetic modulator of social and motivational behavior that is dysregulated in schizophrenia.Neurobiol. Dis.201811914915810.1016/j.nbd.2018.08.00530099093
    [Google Scholar]
  13. HuZ. GaoS. LindbergD. PanjaD. WakabayashiY. LiK. KleinmanJ.E. ZhuJ. LiZ. Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia.Transl. Psychiatry20199119610.1038/s41398‑019‑0538‑y31431609
    [Google Scholar]
  14. XuY. LiF. ZhangB. ZhangK. ZhangF. HuangX. SunN. RenY. SuiM. LiuP. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia.Schizophr. Res.20101191-321922710.1016/j.schres.2010.02.107020347265
    [Google Scholar]
  15. Tello-FloresV.A. Beltrán-AnayaF.O. Ramírez-VargasM.A. Esteban-CasalesB.E. Navarro-TitoN. Alarcón-RomeroL.C. Luciano-VillaC.A. RamírezM. del Moral-HernándezÓ. Flores-AlfaroE. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance.Int. J. Mol. Sci.20212214725610.3390/ijms2214725634298896
    [Google Scholar]
  16. TakayamaY. AkagiY. KidaY.S. Deciphering the molecular mechanisms of autonomic nervous system neuron induction through integrative bioinformatics analysis.Int. J. Mol. Sci.20232410905310.3390/ijms2410905337240399
    [Google Scholar]
  17. CaputoV. CiolfiA. MacriS. PizzutiA. The emerging role of MicroRNA in schizophrenia.CNS Neurol. Disord. Drug Targets201514220822110.2174/187152731466615011612425325613509
    [Google Scholar]
  18. ZhaoH. XuJ. PangL. ZhangY. FanH. LiuL. LiuT. YuF. ZhangG. LanY. BaiJ. LiX. XiaoY. Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis.BMC Med. Genomics2015816210.1186/s12920‑015‑0139‑426462620
    [Google Scholar]
  19. NguyenT.D. TrinhT.A. BaoS. NguyenT.A. Secondary structure RNA elements control the cleavage activity of DICER.Nat. Commun.2022131213810.1038/s41467‑022‑29822‑335440644
    [Google Scholar]
  20. HanJ. LeeY. YeomK.H. KimY.K. JinH. KimV.N. The Drosha-DGCR8 complex in primary microRNA processing.Genes Dev.200418243016302710.1101/gad.126250415574589
    [Google Scholar]
  21. YodaM. KawamataT. ParooZ. YeX. IwasakiS. LiuQ. TomariY. ATP-dependent human RISC assembly pathways.Nat. Struct. Mol. Biol.2010171172310.1038/nsmb.173319966796
    [Google Scholar]
  22. KangY.J. MbonyeU.R. DeLongC.J. WadaM. SmithW.L. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation.Prog. Lipid Res.200746210812510.1016/j.plipres.2007.01.00117316818
    [Google Scholar]
  23. FriedländerM.R. LizanoE. HoubenA.J.S. BezdanD. Báñez-CoronelM. KudlaG. Mateu-HuertasE. KagerbauerB. GonzálezJ. ChenK.C. LeProustE.M. MartíE. EstivillX. Evidence for the biogenesis of more than 1,000 novel human microRNAs.Genome Biol.2014154R5710.1186/gb‑2014‑15‑4‑r5724708865
    [Google Scholar]
  24. XieM. LiM. VilborgA. LeeN. ShuM.D. YartsevaV. ŠestanN. SteitzJ.A. Mammalian 5′-capped microRNA precursors that generate a single microRNA.Cell201315571568158010.1016/j.cell.2013.11.02724360278
    [Google Scholar]
  25. YangJ.S. MaurinT. RobineN. RasmussenK.D. JeffreyK.L. ChandwaniR. PapapetrouE.P. SadelainM. O’CarrollD. LaiE.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis.Proc. Natl. Acad. Sci. USA201010734151631516810.1073/pnas.100643210720699384
    [Google Scholar]
  26. CheloufiS. Dos SantosC.O. ChongM.M.W. HannonG.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis.Nature2010465729858458910.1038/nature0909220424607
    [Google Scholar]
  27. SharmaH. PathakR. SaxenaD. KumarN. Emerging role of non-coding RNA’s: Human health and diseases.GIS J.20229720222050
    [Google Scholar]
  28. GebertL.F.R. MacRaeI.J. Regulation of microRNA function in animals.Nat. Rev. Mol. Cell Biol.2019201213710.1038/s41580‑018‑0045‑730108335
    [Google Scholar]
  29. IpsaroJ.J. Joshua-TorL. From guide to target: Molecular insights into eukaryotic RNA-interference machinery.Nat. Struct. Mol. Biol.2015221202810.1038/nsmb.293125565029
    [Google Scholar]
  30. DharapA. PokrzywaC. MuraliS. PandiG. VemugantiR. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene.PLoS One2013811e7946710.1371/journal.pone.007946724265774
    [Google Scholar]
  31. JoM.H. ShinS. JungS.R. KimE. SongJ.J. HohngS. Human Argonaute 2 has diverse reaction pathways on target RNAs.Mol. Cell201559111712410.1016/j.molcel.2015.04.02726140367
    [Google Scholar]
  32. JonasS. IzaurraldeE. Towards a molecular understanding of microRNA-mediated gene silencing.Nat. Rev. Genet.201516742143310.1038/nrg396526077373
    [Google Scholar]
  33. VasudevanS. SteitzJ.A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2.Cell200712861105111810.1016/j.cell.2007.01.03817382880
    [Google Scholar]
  34. TruesdellS.S. MortensenR.D. SeoM. SchroederJ.C. LeeJ.H. LeTonquezeO. VasudevanS. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP.Sci. Rep.20122184210.1038/srep0084223150790
    [Google Scholar]
  35. NishiK. NishiA. NagasawaT. Ui-TeiK. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus.RNA2013191173510.1261/rna.034769.11223150874
    [Google Scholar]
  36. NamJ.W. RisslandO.S. KoppsteinD. Abreu-GoodgerC. JanC.H. AgarwalV. YildirimM.A. RodriguezA. BartelD.P. Global analyses of the effect of different cellular contexts on microRNA targeting.Mol. Cell20145361031104310.1016/j.molcel.2014.02.01324631284
    [Google Scholar]
  37. BlazieS.M. GeisselH.C. WilkyH. JoshiR. NewbernJ. MangoneM. Alternative polyadenylation directs tissue-specific miRNA targeting in Caenorhabditis elegans somatic tissues.Genetics2017206275777410.1534/genetics.116.19677428348061
    [Google Scholar]
  38. BarmanB. BhattacharyyaS.N. mRNA targeting to endoplasmic reticulum precedes ago protein interaction and microRNA (miRNA)-mediated translation repression in mammalian cells.J. Biol. Chem.201529041246502465610.1074/jbc.C115.66186826304123
    [Google Scholar]
  39. LaiX. WolkenhauerO. VeraJ. Understanding microRNA-mediated gene regulatory networks through mathematical modelling.Nucleic Acids Res.201644136019603510.1093/nar/gkw55027317695
    [Google Scholar]
  40. SchmiedelJ.M. KlemmS.L. ZhengY. SahayA. BlüthgenN. MarksD.S. van OudenaardenA. MicroRNA control of protein expression noise.Science2015348623012813210.1126/science.aaa173825838385
    [Google Scholar]
  41. DenzlerR. McGearyS.E. TitleA.C. AgarwalV. BartelD.P. StoffelM. Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression.Mol. Cell201664356557910.1016/j.molcel.2016.09.02727871486
    [Google Scholar]
  42. MolotskiN. SoenY. Differential association of microRNAs with polysomes reflects distinct strengths of interactions with their mRNA targets.RNA20121891612162310.1261/rna.033142.11222836355
    [Google Scholar]
  43. O’ConnorR.M. GururajanA. DinanT.G. KennyP.J. CryanJ.F. All roads lead to the miRNome: miRNAs have a central role in the molecular pathophysiology of psychiatric disorders.Trends Pharmacol. Sci.201637121029104410.1016/j.tips.2016.10.00427832923
    [Google Scholar]
  44. Pereira-da-SilvaT. CoutinhoC.M. CarruscaC. CruzF.R. NapoleãoP. MotaC.M. Circulating microRNA profiles in different arterial territories of stable atherosclerotic disease: A systematic review.Am. J. Cardiovasc. Dis.20188111329531852
    [Google Scholar]
  45. IftikharH. CarneyG.E. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing.BioEssays201638436737810.1002/bies.20150013026934338
    [Google Scholar]
  46. da SilveiraJ.C. VeeramachaneniD.N.R. WingerQ.A. CarnevaleE.M. BoumaG.J. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: A possible new form of cell communication within the ovarian follicle.Biol. Reprod.201286371110.1095/biolreprod.111.09325222116803
    [Google Scholar]
  47. MitchellP.S. ParkinR.K. KrohE.M. FritzB.R. WymanS.K. Pogosova-AgadjanyanE.L. PetersonA. NoteboomJ. O’BriantK.C. AllenA. LinD.W. UrbanN. DrescherC.W. KnudsenB.S. StirewaltD.L. GentlemanR. VessellaR.L. NelsonP.S. MartinD.B. TewariM. Circulating microRNAs as stable blood-based markers for cancer detection.Proc. Natl. Acad. Sci. USA200810530105131051810.1073/pnas.080454910518663219
    [Google Scholar]
  48. TurchinovichA. WeizL. LangheinzA. BurwinkelB. Characterization of extracellular circulating microRNA.Nucleic Acids Res.201139167223723310.1093/nar/gkr25421609964
    [Google Scholar]
  49. VickersK.C. PalmisanoB.T. ShoucriB.M. ShamburekR.D. RemaleyA.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins.Nat. Cell Biol.201113442343310.1038/ncb221021423178
    [Google Scholar]
  50. KosakaN. IguchiH. YoshiokaY. TakeshitaF. MatsukiY. OchiyaT. Secretory mechanisms and intercellular transfer of microRNAs in living cells.J. Biol. Chem.201028523174421745210.1074/jbc.M110.10782120353945
    [Google Scholar]
  51. HannafonB.N. CarpenterK.J. BerryW.L. JanknechtR. DooleyW.C. DingW.Q. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA).Mol. Cancer201514113310.1186/s12943‑015‑0400‑726178901
    [Google Scholar]
  52. LiZ. WuN. ChengJ. SunM. YangP. ZhaoF. ZhangJ. DuanX. FuX. ZhangJ. HuX. ChenH. AoY. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration.Theranostics202010115090510610.7150/thno.4427032308770
    [Google Scholar]
  53. LehmannS.M. KrügerC. ParkB. DerkowK. RosenbergerK. BaumgartJ. TrimbuchT. EomG. HinzM. KaulD. HabbelP. KälinR. FranzoniE. RybakA. NguyenD. VehR. NinnemannO. PetersO. NitschR. HeppnerF.L. GolenbockD. SchottE. PloeghH.L. WulczynF.G. LehnardtS. An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration.Nat. Neurosci.201215682783510.1038/nn.311322610069
    [Google Scholar]
  54. BugiardiniR. GalvaniM. FerriniD. GridelliC. MariL. PudduP. LenziS. Effects of iloprost, a stable prostacyclin analog, on exercise capacity and platelet aggregation in stable angina pectoris.Am. J. Cardiol.198658645345910.1016/0002‑9149(86)90014‑72428231
    [Google Scholar]
  55. AucherA. RudnickaD. DavisD.M. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation.J. Immunol.2013191126250626010.4049/jimmunol.130172824227773
    [Google Scholar]
  56. CaoT. ZhenX.C. Dysregulation of mi RNA and its potential therapeutic application in schizophrenia.CNS Neurosci. Ther.201824758659710.1111/cns.1284029529357
    [Google Scholar]
  57. ArifK.M.T. ElliottE.K. HauptL.M. GriffithsL.R. Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets.Cancers (Basel)20201210292210.3390/cancers1210292233050637
    [Google Scholar]
  58. DubonyteU. Asenjo-MartinezA. WergeT. LageK. KirkebyA. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells.Acta Neuropathol. Commun.202210118310.1186/s40478‑022‑01460‑236527106
    [Google Scholar]
  59. SrivastavaA.K. SchwartzC.E. Intellectual disability and autism spectrum disorders: Causal genes and molecular mechanisms.Neurosci. Biobehav. Rev.201446Pt 216117410.1016/j.neubiorev.2014.02.01524709068
    [Google Scholar]
  60. ParasarP. KaurN. SinghJ. Pathophysiology of X-linked adrenoleukodystrophy: Updates on molecular mechanisms.J. Biotechnol. Biomed.20247227728810.26502/jbb.2642‑9128015139056013
    [Google Scholar]
  61. KimY. SantosR. GageF.H. MarchettoM.C. Molecular mechanisms of bipolar disorder: Progress made and future challenges.Front. Cell. Neurosci.2017113010.3389/fncel.2017.0003028261061
    [Google Scholar]
  62. PrasadK.N. Oxidative stress, pro-inflammatory cytokines, and antioxidants regulate expression levels of microRNAs in Parkinson’s disease.Curr. Aging Sci.201710317718428042771
    [Google Scholar]
  63. ErmakovE.A. MelamudM.M. BunevaV.N. IvanovaS.A. Immune system abnormalities in schizophrenia: An integrative view and translational perspectives.Front. Psychiatry20221388056810.3389/fpsyt.2022.88056835546942
    [Google Scholar]
  64. MartinsH.C. SchrattG. MicroRNA-dependent control of neuroplasticity in affective disorders.Transl. Psychiatry202111126310.1038/s41398‑021‑01379‑733941769
    [Google Scholar]
  65. McCutcheonR.A. KrystalJ.H. HowesO.D. Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment.World Psychiatry2020191153310.1002/wps.2069331922684
    [Google Scholar]
  66. PierouliK. PapageorgiouL. MitsisT. PapakonstantinouE. DiakouI. LeptidisS. SigalaM. DragoumaniK. SpandidosD. BacopoulouF. ChrousosG. GoulielmosG. EliopoulosE. VlachakisD. Role of microRNAs and long non-coding RNAs in glucocorticoid signaling (Review).Int. J. Mol. Med.202250614710.3892/ijmm.2022.520336367164
    [Google Scholar]
  67. NascimentoJ.M. Martins-de-SouzaD. The proteome of schizophrenia.NPJ Schizophr.201511400310.1038/npjschz.2014.327336025
    [Google Scholar]
  68. YunusovaN.V. PopovaN.O. UdintsevaI.N. KlyushinaT.S. KazantsevaD.V. SmirnovaL.P. The role of intravesicular proteins and the protein corona of extracellular vesicles in the development of drug-induced polyneuropathy.Curr. Issues Mol. Biol.20234543302331410.3390/cimb4504021637185740
    [Google Scholar]
  69. RoyB. YoshinoY. AllenL. PrallK. SchellG. DwivediY. Exploiting circulating MicroRNAs as biomarkers in psychiatric disorders.Mol. Diagn. Ther.202024327929810.1007/s40291‑020‑00464‑932304043
    [Google Scholar]
  70. OlejniczakM. Kotowska-ZimmerA. KrzyzosiakW. Stress-induced changes in miRNA biogenesis and functioning.Cell. Mol. Life Sci.201875217719110.1007/s00018‑017‑2591‑028717872
    [Google Scholar]
  71. GeaghanM. CairnsM.J. MicroRNA and posttranscriptional dysregulation in psychiatry.Biol. Psychiatry201578423123910.1016/j.biopsych.2014.12.00925636176
    [Google Scholar]
  72. SantarelliD.M. CarrollA.P. CairnsH.M. TooneyP.A. CairnsM.J. Schizophrenia-associated MicroRNA–gene interactions in the dorsolateral prefrontal cortex.Genomics Proteomics Bioinformatics201917662363410.1016/j.gpb.2019.10.00332006661
    [Google Scholar]
  73. ThomasK.T. ZakharenkoS.S. MicroRNAs in the onset of schizophrenia.Cells20211010267910.3390/cells1010267934685659
    [Google Scholar]
  74. HeE. LozanoM.A.G. StringerS. WatanabeK. SakamotoK. den OudstenF. KoopmansF. GiamberardinoS.N. HammerschlagA. CornelisseL.N. LiK.W. van WeeringJ. PosthumaD. SmitA.B. SullivanP.F. VerhageM. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission.Hum. Mol. Genet.201827111879189110.1093/hmg/ddy08929635364
    [Google Scholar]
  75. RykovaE. ErshovN. DamarovI. MerkulovaT. SNPs in 3′UTR miRNA target sequences associated with individual drug susceptibility.Int. J. Mol. Sci.202223221372510.3390/ijms23221372536430200
    [Google Scholar]
  76. WangX. ZhouH. ChengR. ZhouX. HouX. ChenJ. QiuJ. Role of miR-326 in neonatal hypoxic-ischemic brain damage pathogenesis through targeting of the δ-opioid receptor.Mol. Brain20201315110.1186/s13041‑020‑00579‑432228617
    [Google Scholar]
  77. MoszyńskaA. GebertM. CollawnJ.F. BartoszewskiR. SNPs in microRNA target sites and their potential role in human disease.Open Biol.20177417001910.1098/rsob.17001928381629
    [Google Scholar]
  78. MagriF. VanoliF. CortiS. mi RNA in spinal muscular atrophy pathogenesis and therapy.J. Cell. Mol. Med.201822275576710.1111/jcmm.1345029160009
    [Google Scholar]
  79. ThomasK.T. GrossC. BassellG.J. MicroRNAs sculpt neuronal communication in a tight balance that is lost in neurological disease.Front. Mol. Neurosci.20181145510.3389/fnmol.2018.0045530618607
    [Google Scholar]
  80. SahafnejadZ. RamaziS. AllahverdiA. An update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review.Genes (Basel)202314487310.3390/genes1404087337107631
    [Google Scholar]
  81. MortazaviD. SohrabiB. MosallaeiM. Nariman-Saleh-FamZ. BastamiM. MansooriY. DaraeiA. ZununiV.S. NavidS. SaadatianZ. JamialahmadiT. TengY. SahebkarA. Epi-miRNAs: Regulators of the histone modification machinery in human cancer.J. Oncol.2022202212210.1155/2022/488980735087589
    [Google Scholar]
  82. DayJ.J. KennedyA.J. SweattJ.D. DNA methylation and its implications and accessibility for neuropsychiatric therapeutics.Annu. Rev. Pharmacol. Toxicol.201555159161110.1146/annurev‑pharmtox‑010814‑12452725340930
    [Google Scholar]
  83. MeemT.M. KhanU. MredulM.B.R. AwalM.A. RahmanM.H. KhanM.S. A comprehensive bioinformatics approach to identify molecular signatures and key pathways for the huntington disease.Bioinform. Biol. Insights2023171177932223121009810.1177/1177932223121009838033382
    [Google Scholar]
  84. LeeH.T. OhS. RoD.H. YooH. KwonY.W. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis.J. Lipid Atheroscler.20209341943410.12997/jla.2020.9.3.41933024734
    [Google Scholar]
  85. MikhedY. GörlachA. KnausU.G. DaiberA. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair.Redox Biol.2015527528910.1016/j.redox.2015.05.00826079210
    [Google Scholar]
  86. KhavariB. CairnsM.J. Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers.Cells202098183710.3390/cells908183732764320
    [Google Scholar]
  87. JaniK.S. JainS.U. GeE.J. DiehlK.L. LundgrenS.M. MüllerM.M. LewisP.W. MuirT.W. Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase.Proc. Natl. Acad. Sci. USA2019116178295830010.1073/pnas.181902911630967505
    [Google Scholar]
  88. CorrêaT. PoswarF. Santos-RebouçasC.B. Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II.Metab. Brain Dis.20223762089210210.1007/s11011‑021‑00872‑834797484
    [Google Scholar]
  89. SassoJ.M. AmbroseB.J.B. TenchovR. DattaR.S. BaselM.T. DeLongR.K. ZhouQ.A. The progress and promise of RNA medicine An arsenal of targeted treatments.J. Med. Chem.202265106975701510.1021/acs.jmedchem.2c0002435533054
    [Google Scholar]
  90. CreugnyA. FenderA. PfefferS. Regulation of primary micro RNA processing.FEBS Lett.2018592121980199610.1002/1873‑3468.1306729683487
    [Google Scholar]
  91. WengY.T. ChangY.M. ChernY. The impact of dysregulated microRNA biogenesis machinery and microRNA sorting on neurodegenerative diseases.Int. J. Mol. Sci.2023244344310.3390/ijms2404344336834853
    [Google Scholar]
  92. Nolte-’t HoenE.N.M. Van RooijE. BushellM. ZhangC.Y. DashwoodR.H. JamesW.P.T. HarrisC. BaltimoreD. The role of microRNA in nutritional control.J. Intern. Med.201527829910910.1111/joim.1237225832550
    [Google Scholar]
  93. RedfernA.D. ColleyS.M. BeveridgeD.J. IkedaN. EpisM.R. LiX. FouldsC.E. StuartL.M. BarkerA. RussellV.J. RamsayK. KobelkeS.J. LiX. HatchellE.C. PayneC. GilesK.M. MessineoA. GatignolA. LanzR.B. O’MalleyB.W. LeedmanP.J. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.Proc. Natl. Acad. Sci. USA2013110166536654110.1073/pnas.130162011023550157
    [Google Scholar]
  94. NavarreteK. PedrosoI. De JongS. StefanssonH. SteinbergS. StefanssonK. OphoffR.A. SchalkwykL.C. CollierD.A. TCF4 (e2-2; ITF2): A schizophrenia-associated gene with pleiotropic effects on human disease.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2013162111610.1002/ajmg.b.3210923129290
    [Google Scholar]
  95. CuellarT.L. DavisT.H. NelsonP.T. LoebG.B. HarfeB.D. UllianE. McManusM.T. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration.Proc. Natl. Acad. Sci. USA2008105145614561910.1073/pnas.080168910518385371
    [Google Scholar]
  96. O’BrienJ. HayderH. ZayedY. PengC. Overview of microRNA biogenesis, mechanisms of actions, and circulation.Front. Endocrinol. (Lausanne)2018940210.3389/fendo.2018.0040230123182
    [Google Scholar]
  97. BrioudesF. JayF. SarazinA. GrentzingerT. DeversE.A. VoinnetO. Hasty, the Arabidopsis exportins5 ortholog, regulates cell-to-cell and vascular microRNA movement.EMBO J.20214015e10745510.15252/embj.202010745534152631
    [Google Scholar]
  98. AnneseT. TammaR. De GiorgisM. RibattiD. microRNAs biogenesis, functions and role in tumor angiogenesis.Front. Oncol.20201058100710.3389/fonc.2020.58100733330058
    [Google Scholar]
  99. HuZ. LiZ. miRNAs in synapse development and synaptic plasticity.Curr. Opin. Neurobiol.201745243110.1016/j.conb.2017.02.01428334640
    [Google Scholar]
  100. CoutoR.R. KubaskiF. SiebertM. FélixT.M. Brusius-FacchinA.C. Leistner-SegalS. Increased serum levels of miR-125b and miR-132 in Fragile X Syndrome.Neurol. Genet.202286e20002410.1212/NXG.000000000020002436313066
    [Google Scholar]
  101. ElramahS. LandryM. FavereauxA. MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms.Front. Cell. Neurosci.201483110.3389/fncel.2014.0003124574967
    [Google Scholar]
  102. WuX.L. YanQ.J. ZhuF. Abnormal synaptic plasticity and impaired cognition in schizophrenia.World J. Psychiatry202212454155710.5498/wjp.v12.i4.54135582335
    [Google Scholar]
  103. KiltschewskijD. CairnsM.J. Temporospatial guidance of activity-dependent gene expression by microRNA: Mechanisms and functional implications for neural plasticity.Nucleic Acids Res.201947253354510.1093/nar/gky123530535081
    [Google Scholar]
  104. HollinsS.L. CairnsM.J. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress.Prog. Neurobiol.2016143618110.1016/j.pneurobio.2016.06.00527317386
    [Google Scholar]
  105. SchellG. RoyB. PrallK. DwivediY. miR-218: A stress-responsive epigenetic modifier.Noncoding RNA2022845510.3390/ncrna804005535893238
    [Google Scholar]
  106. MomtazmaneshS. Zare-ShahabadiA. RezaeiN. Cytokine alterations in schizophrenia: An updated review.Front. Psychiatry20191089210.3389/fpsyt.2019.0089231908647
    [Google Scholar]
  107. ProwseN. HayleyS. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype.Neurosci. Biobehav. Rev.202113113516310.1016/j.neubiorev.2021.09.01834537262
    [Google Scholar]
  108. HassanM. AmirA. ShahzadiS. KloczkowskiA. Therapeutic implications of microRNAs in depressive disorders: A review.Int. J. Mol. Sci.202223211353010.3390/ijms23211353036362315
    [Google Scholar]
  109. Improta-CariaA.C. NonakaC.K.V. CavalcanteB.R.R. De SousaR.A.L. Aras JúniorR. SouzaB.S.F. Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease.Int. J. Mol. Sci.20202114497710.3390/ijms2114497732674523
    [Google Scholar]
  110. TonacciA. BagnatoG. PandolfoG. BilleciL. SansoneF. ConteR. GangemiS. MicroRNA cross-involvement in autism spectrum disorders and atopic dermatitis: A literature review.J. Clin. Med.2019818810.3390/jcm801008830646527
    [Google Scholar]
  111. CaoD.D. LiL. ChanW.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases.Int. J. Mol. Sci.201617684210.3390/ijms1706084227240359
    [Google Scholar]
  112. BeveridgeN.J. CairnsM.J. MicroRNA dysregulation in schizophrenia.Neurobiol. Dis.201246226327110.1016/j.nbd.2011.12.02922207190
    [Google Scholar]
  113. UzuneserT.C. SpeidelJ. KogiasG. WangA.L. de Souza SilvaM.A. HustonJ.P. ZoicasI. von HörstenS. KornhuberJ. KorthC. MüllerC.P. Disrupted-in-schizophrenia 1 (DISC1) overexpression and juvenile immune activation cause sex-specific schizophrenia-related psychopathology in rats.Front. Psychiatry20191022210.3389/fpsyt.2019.0022231057438
    [Google Scholar]
  114. GuS. RongH. ZhangG. KangL. YangM. GuanH. Functional SNP in 3′-UTR microrna-binding site of ZNF350 confers risk for age-related cataract.Hum. Mutat.201637111223123010.1002/humu.2307327586871
    [Google Scholar]
  115. BathinaS. DasU.N. Brain-derived neurotrophic factor and its clinical implications.Arch. Med. Sci.2015661164117810.5114/aoms.2015.5634226788077
    [Google Scholar]
  116. DingC.Y. DingY.T. JiH. WangY.Y. ZhangX. YinD.M. Genetic labeling reveals spatial and cellular expression pattern of neuregulin 1 in mouse brain.Cell Biosci.20231317910.1186/s13578‑023‑01032‑437147705
    [Google Scholar]
  117. ZhangX. MaY. ZhouF. ZhangM. ZhaoD. WangX. YangT. MaJ. Identification of miRNA–mRNA regulatory network associated with the glutamatergic system in post-traumatic epilepsy rats.Front. Neurol.202213110267210.3389/fneur.2022.110267236619916
    [Google Scholar]
  118. NguyenT.P.N. KumarM. FedeleE. BonannoG. BonifacinoT. MicroRNA alteration, application as biomarkers, and therapeutic approaches in neurodegenerative diseases.Int. J. Mol. Sci.2022239471810.3390/ijms2309471835563107
    [Google Scholar]
  119. YusofK.M. GroenK. RosliR. Avery-KiejdaK.A. Crosstalk between microRNAs and the pathological features of secondary lymphedema.Front. Cell Dev. Biol.2021973241510.3389/fcell.2021.73241534733847
    [Google Scholar]
  120. GriffinA. MaheshA. TiwariV.K. Disruption of the gene regulatory programme in neurodevelopmental disorders.Biochim. Biophys. Acta Gene Regul. Mech.20221865719486010.1016/j.bbagrm.2022.19486036007842
    [Google Scholar]
  121. MaQ. ZhangL. PearceW.J. MicroRNAs in brain development and cerebrovascular pathophysiology.Am. J. Physiol. Cell Physiol.20193171C3C1910.1152/ajpcell.00022.201930840494
    [Google Scholar]
  122. MahmoudiE. CairnsM.J. MiR-137: An important player in neural development and neoplastic transformation.Mol. Psychiatry2017221445510.1038/mp.2016.15027620842
    [Google Scholar]
  123. YinJ. LinJ. LuoX. ChenY. LiZ. MaG. LiK. miR-137: A new player in schizophrenia.Int. J. Mol. Sci.20141523262327110.3390/ijms1502326224566148
    [Google Scholar]
  124. LiJ. XuX. LiuJ. ZhangS. TanX. LiZ. ZhangJ. WangZ. Decoding microRNAs in autism spectrum disorder.Mol. Ther. Nucleic Acids20223053554610.1016/j.omtn.2022.11.00536457702
    [Google Scholar]
  125. Miguel-HidalgoJ.J. HallK.O. BonnerH. RollerA.M. SyedM. ParkC.J. BallJ.P. RothenbergM.E. StockmeierC.A. RomeroD.G. MicroRNA-21: Expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism.Prog. Neuropsychopharmacol. Biol. Psychiatry201779Pt B50351410.1016/j.pnpbp.2017.08.00928802862
    [Google Scholar]
  126. PejhanS. RastegarM. Role of DNA methyl-CpG-binding protein MeCP2 in Rett syndrome pathobiology and mechanism of disease.Biomolecules20211117510.3390/biom1101007533429932
    [Google Scholar]
  127. DavisG.M. HaasM.A. PocockR. MicroRNAs: Not “fine-tuners” but key regulators of neuronal development and function.Front. Neurol.2015624510.3389/fneur.2015.0024526635721
    [Google Scholar]
  128. HusseinM. MagdyR. MicroRNAs in central nervous system disorders: Current advances in pathogenesis and treatment.Egypt. J. Neurol. Psychiat. Neurosurg.20215713610.1186/s41983‑021‑00289‑1
    [Google Scholar]
  129. ZhuZ. HuangX. DuM. WuC. FuJ. TanW. WuB. ZhangJ. LiaoZ.B. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury.Mol. Psychiatry20232872630264410.1038/s41380‑023‑02126‑837340171
    [Google Scholar]
  130. GuanF. NiT. ZhuW. WilliamsL.K. CuiL.B. LiM. TubbsJ. ShamP.C. GuiH. Integrative omics of schizophrenia: From genetic determinants to clinical classification and risk prediction.Mol. Psychiatry202227111312610.1038/s41380‑021‑01201‑234193973
    [Google Scholar]
  131. Di FazioA. GullerovaM. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology.Br. J. Cancer202312891625163510.1038/s41416‑023‑02191‑436759729
    [Google Scholar]
  132. WangJ. LeeJ.E. RiemondyK. YuY. MarquezS.M. LaiE.C. YiR. XPO5 promotes primary miRNA processing independently of RanGTP.Nat. Commun.2020111184510.1038/s41467‑020‑15598‑x32296071
    [Google Scholar]
  133. WuK. HeJ. PuW. PengY. The role of exportin-5 in microRNA biogenesis and cancer.Genomics Proteomics Bioinformatics201816212012610.1016/j.gpb.2017.09.00429723684
    [Google Scholar]
  134. ZinkstokJ.R. BootE. BassettA.S. HiroiN. ButcherN.J. VingerhoetsC. VorstmanJ.A.S. van AmelsvoortT.A.M.J. Neurobiological perspective of 22q11.2 deletion syndrome.Lancet Psychiatry201961195196010.1016/S2215‑0366(19)30076‑831395526
    [Google Scholar]
  135. SoreqH. European society for neurochemistry biannual conference: Molecular mechanisms of regulation in the nervous system.Brain20141163357
    [Google Scholar]
  136. ZhangK. LiaoP. WenJ. HuZ. Synaptic plasticity in schizophrenia pathophysiology.IBRO Neurosci. Rep.20231424425210.1016/j.ibneur.2023.01.00837388494
    [Google Scholar]
  137. HowesO.D. OnwordiE.C. The synaptic hypothesis of schizophrenia version III: A master mechanism.Mol. Psychiatry20232851843185610.1038/s41380‑023‑02043‑w37041418
    [Google Scholar]
  138. MajumderM. JohnsonR.H. PalanisamyV. Fragile X-related protein family: A double-edged sword in neurodevelopmental disorders and cancer.Crit. Rev. Biochem. Mol. Biol.202055540942410.1080/10409238.2020.181062132878499
    [Google Scholar]
  139. LiuY.Z. WangY.X. JiangC.L. Inflammation: The common pathway of stress-related diseases.Front. Hum. Neurosci.20171131610.3389/fnhum.2017.0031628676747
    [Google Scholar]
  140. ButzH. MészárosK. LikóI. PatocsA. Wnt-signaling regulated by glucocorticoid-induced miRNAs.Int. J. Mol. Sci.202122211177810.3390/ijms22211177834769207
    [Google Scholar]
  141. ZingaleV.D. GugliandoloA. MazzonE. MiR-155: An important regulator of neuroinflammation.Int. J. Mol. Sci.20212319010.3390/ijms2301009035008513
    [Google Scholar]
  142. MunawarN. AhsanK. MuhammadK. AhmadA. AnwarM.A. ShahI. Al AmeriA.K. Al MughairbiF. Hidden role of gut microbiome dysbiosis in schizophrenia: Antipsychotics or psychobiotics as therapeutics?Int. J. Mol. Sci.20212214767110.3390/ijms2214767134299291
    [Google Scholar]
  143. EylesD.W. How do established developmental risk-factors for schizophrenia change the way the brain develops?Transl. Psychiatry202111115810.1038/s41398‑021‑01273‑233686066
    [Google Scholar]
  144. SakamotoK. CrowleyJ.J. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2018177224225610.1002/ajmg.b.3255429442441
    [Google Scholar]
  145. AdvaniD. KumarP. Deciphering the molecular mechanism and crosstalk between Parkinson’s disease and breast cancer through multi-omics and drug repurposing approach.Neuropeptides20229610228310.1016/j.npep.2022.10228335994781
    [Google Scholar]
  146. XuB. HsuP.K. StarkK.L. KarayiorgouM. GogosJ.A. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion.Cell20131521-226227510.1016/j.cell.2012.11.05223332760
    [Google Scholar]
  147. CondratC.E. ThompsonD.C. BarbuM.G. BugnarO.L. BobocA. CretoiuD. SuciuN. CretoiuS.M. VoineaS.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis.Cells20209227610.3390/cells902027631979244
    [Google Scholar]
  148. OlivetoS. MancinoM. ManfriniN. BiffoS. Role of microRNAs in translation regulation and cancer.World J. Biol. Chem.201781455610.4331/wjbc.v8.i1.4528289518
    [Google Scholar]
  149. MayyaV.K. DuchaineT.F. Ciphers and executioners: How 3′-untranslated regions determine the fate of messenger RNAs.Front. Genet.201910610.3389/fgene.2019.0000630740123
    [Google Scholar]
  150. Tomé-CarneiroJ. de Las HazasM.C. BoughanemH. BöttcherY. CayirA. Macias GonzalezM. DávalosA. Up-to-date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation?RNA Biol.202118sup258659910.1080/15476286.2021.200200334843412
    [Google Scholar]
  151. StepienA. DolataJ. GulaniczT. BielewiczD. BajczykM. SmolinskiD.J. Szweykowska-KulinskaZ. JarmolowskiA. Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40.Plant Cell202234124920493510.1093/plcell/koac27836087009
    [Google Scholar]
  152. LohH.Y. NormanB.P. LaiK.S. RahmanN.M.A.N.A. AlitheenN.B.M. OsmanM.A. The regulatory role of microRNAs in breast cancer.Int. J. Mol. Sci.20192019494010.3390/ijms2019494031590453
    [Google Scholar]
  153. CatalanottoC. CogoniC. ZardoG. MicroRNA in control of gene expression: An overview of nuclear functions.Int. J. Mol. Sci.20161710171210.3390/ijms1710171227754357
    [Google Scholar]
  154. Aksoy-AkselA. ZampaF. SchrattG. MicroRNAs and synaptic plasticity—a mutual relationship.Philos. Trans. R. Soc. Lond. B Biol. Sci.201436916522013051510.1098/rstb.2013.051525135976
    [Google Scholar]
  155. CaoB. YangM. KangG. LiR. ZhuX. KangQ. SunY. ZhangM. WangY. ChenX. YuQ. The relationship between gene polymorphism of miRNAs regulating FGA and schizophrenia.Open Access Maced. J. Med. Sci.2019791436143910.3889/oamjms.2019.33431198450
    [Google Scholar]
  156. WangW. KwonE.J. TsaiL.H. MicroRNAs in learning, memory, and neurological diseases.Learn. Mem.201219935936810.1101/lm.026492.11222904366
    [Google Scholar]
  157. ZapletalD. TaborskaE. PasulkaJ. MalikR. KubicekK. ZanovaM. MuchC. SebestaM. BuccheriV. HorvatF. JenickovaI. ProchazkovaM. ProchazkaJ. PinkasM. NovacekJ. JosephD.F. SedlacekR. BerneckyC. O’CarrollD. SteflR. SvobodaP. Structural and functional basis of mammalian microRNA biogenesis by Dicer.Mol. Cell2022822140644079.e1310.1016/j.molcel.2022.10.01036332606
    [Google Scholar]
  158. SusterI. FengY. Multifaceted regulation of MicroRNA biogenesis: Essential roles and functional integration in neuronal and glial development.Int. J. Mol. Sci.20212213676510.3390/ijms2213676534201807
    [Google Scholar]
  159. ZhaoZ. JindeS. KoikeS. TadaM. SatomuraY. YoshikawaA. NishimuraY. TakizawaR. KinoshitaA. SakakibaraE. SakuradaH. YamagishiM. NishimuraF. InaiA. NishiokaM. EriguchiY. ArakiT. TakayaA. KanC. UmedaM. ShimazuA. HashimotoH. BundoM. IwamotoK. KakiuchiC. KasaiK. Altered expression of microRNA-223 in the plasma of patients with first-episode schizophrenia and its possible relation to neuronal migration-related genes.Transl. Psychiatry20199128910.1038/s41398‑019‑0609‑031712567
    [Google Scholar]
  160. LimM. CarolloA. NeohM.J.Y. EspositoG. Mapping miRNA research in schizophrenia: A scientometric review.Int. J. Mol. Sci.202224143610.3390/ijms2401043636613876
    [Google Scholar]
  161. EllwangerJ.H. ZambraF.M.B. GuimarãesR.L. ChiesJ.A.B. MicroRNA-related polymorphisms in infectious diseases—tiny changes with a huge impact on viral infections and potential clinical applications.Front. Immunol.20189131610.3389/fimmu.2018.0131629963045
    [Google Scholar]
  162. Valinezhad OrangA. SafaralizadehR. Kazemzadeh-BaviliM. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation.Int. J. Genomics2014201497060710.1155/2014/97060725180174
    [Google Scholar]
  163. WilczynskaA. BushellM. The complexity of miRNA-mediated repression.Cell Death Differ.2015221223310.1038/cdd.2014.11225190144
    [Google Scholar]
  164. Correia de SousaM. GjorgjievaM. DolickaD. SobolewskiC. FotiM. Deciphering miRNAs’ action through miRNA editing.Int. J. Mol. Sci.20192024624910.3390/ijms2024624931835747
    [Google Scholar]
  165. KellendonkC. SimpsonE.H. KandelE.R. Modeling cognitive endophenotypes of schizophrenia in mice.Trends Neurosci.200932634735810.1016/j.tins.2009.02.00319409625
    [Google Scholar]
  166. VogelB.O. LettT.A. ErkS. MohnkeS. WackerhagenC. BrandlE.J. Romanczuk-SeiferthN. OttoK. SchweigerJ.I. TostH. NöthenM.M. RietschelM. DegenhardtF. WittS.H. Meyer-LindenbergA. HeinzA. WalterH. The influence of MIR137 on white matter fractional anisotropy and cortical surface area in individuals with familial risk for psychosis.Schizophr. Res.201819519019610.1016/j.schres.2017.09.03028958479
    [Google Scholar]
  167. ShaoL. LuB. WenZ. TengS. WangL. ZhaoY. WangL. IshizukaK. XuX. SawaA. SongH. MingG. ZhongY. Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways.Hum. Mol. Genet.201726142634264810.1093/hmg/ddx14728472294
    [Google Scholar]
  168. TropeaD. HardinghamN. MillarK. FoxK. Mechanisms underlying the role of DISC1 in synaptic plasticity.J. Physiol.2018596142747277110.1113/JP27433030008190
    [Google Scholar]
  169. MagwaiT. ShangaseK.B. OgingaF.O. ChilizaB. MpofanaT. XuluK.R. DNA methylation and schizophrenia: Current literature and future perspective.Cells20211011289010.3390/cells1011289034831111
    [Google Scholar]
  170. HaubergM.E. RoussosP. GroveJ. BørglumA.D. MattheisenM. Schizophrenia Working Group of the Psychiatric Genomics Consortium Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants.JAMA Psychiatry201673436937710.1001/jamapsychiatry.2015.301826963595
    [Google Scholar]
  171. NedoluzhkoA. GruzdevaN. SharkoF. RastorguevS. ZakharovaN. KostyukG. UshakovV. The biomarker and therapeutic potential of circular RNAs in Schizophrenia.Cells2020910223810.3390/cells910223833020462
    [Google Scholar]
  172. ZhangW.H. JiangL. LiM. LiuJ. MicroRNA-124: An emerging therapeutic target in central nervous system disorders.Exp. Brain Res.202324151215122610.1007/s00221‑022‑06524‑236961552
    [Google Scholar]
  173. YeY. XuH. SuX. HeX. Role of microRNA in governing synaptic plasticity.Neural Plast20162016495952310.1155/2016/495952327034846
    [Google Scholar]
  174. RahimianP. HeJ.J. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression.J. Neuroinflammation201613124710.1186/s12974‑016‑0716‑227634380
    [Google Scholar]
  175. ParkI. KimH.J. KimY. HwangH.S. KasaiH. KimJ.H. ParkJ.W. Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines.Proc. Natl. Acad. Sci. USA2019116199616962110.1073/pnas.181937411631019087
    [Google Scholar]
  176. WangH. MoyanoA.L. MaZ. DengY. LinY. ZhaoC. ZhangL. JiangM. HeX. MaZ. LuF. XinM. ZhouW. YoonS.O. BongarzoneE.R. LuQ.R. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS.Dev. Cell2017406566582.e510.1016/j.devcel.2017.03.00128350989
    [Google Scholar]
  177. ZhouB. ZhuZ. RansomB.R. TongX. Oligodendrocyte lineage cells and depression.Mol. Psychiatry202126110311710.1038/s41380‑020‑00930‑033144710
    [Google Scholar]
  178. SidorovM.S. AuerbachB.D. BearM.F. Fragile X mental retardation protein and synaptic plasticity.Mol. Brain2013611510.1186/1756‑6606‑6‑1523566911
    [Google Scholar]
  179. ChandraP. RastogiV. PorwalM. SharmaH. VermaA. SachanN. A critical review on lipid nanoparticle-based siRNA formulations for breast cancer management.Pharm. Nanotechnol.20241311910.2174/012211738533000624112008472139670497
    [Google Scholar]
  180. KumariA. BajwaN. Tamana AshiqueS. SharmaH. MishraN. RathoreC. SinghP.A. From lab bench to bedside: Advancing malaria treatments through research, patents, and clinical trials.Curr. Treat. Options Infect. Dis.2024171410.1007/s40506‑024‑00279‑w
    [Google Scholar]
  181. Al NomanA. Dev SharmaP. Jahin MimT. Al AzadM. SharmaH. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease.Aging Pathobiol. Therap.20246411310.31491/APT.2024.12.155
    [Google Scholar]
  182. InamdarA. GurupadayyaB. HalagaliP. TippavajhalaV.K. KhanF. PathakR. SharmaH. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration.Curr. Drug Targets20242612410.2174/011389450133945524110106504039513304
    [Google Scholar]
  183. MishraR. KaurV. NogaiL. BhandariM. BajajM. PathakR. LohiaR. SaxenaA. SharmaH. Emerging insights and novel therapeutics in polycystic ovary syndrome.Biochem. Cell. Arch.20242421613162610.51470/bca.2024.24.2.1613
    [Google Scholar]
  184. InamdarA. GurupadayyaB. HalagaliP. SN. PathakR. SinghH. SharmaH. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease.Curr. Pharm. Des.20243112110.2174/011381612834457124101815450639492772
    [Google Scholar]
  185. Al NomanA. AfrosaH. LihuI.K. SarkarO. NabinN.R. DattaM. PathakR. SharmaH. Vitamin D and neurological health: Unraveling risk factors, disease progression, and treatment potential.CNS Neurol. Disord. Drug Targets20242411210.2174/011871527333097224100909282839440730
    [Google Scholar]
  186. ChandraP. PorwalM. RastogiV. TyagiS.J. SharmaH. VermaA. Carb-loaded passion: A comprehensive exploration of carbohydrates in shaping aphrodisiac effects.Macromol. Symp.20244135240006410.1002/masy.202400064
    [Google Scholar]
  187. SarkarS. BhuiU. KumarB. AshiqueS. KumarP. SharmaH. BhowmickM. PalR. KumarT. Correlation between cognitive impairment and peripheral biomarkers - significance of phosphorylated Tau and Amyloid-β in Alzheimer’s disease: A new insight.Curr Psychiatry Res Rev202412510.2174/0126660822329981241007105405
    [Google Scholar]
  188. PathakR. SharmaH. ChandraP. HalagaliP. AliZ. A compressive review: Mechanisms underlying the use of diuretics in the treatment of hypertension.Indian J Nat Sci.202415857806378075
    [Google Scholar]
  189. SharmaH. ChandraP. PathakR. BhandariM. ArushiS.V. Advancements in the therapeutic approaches to treat neurological disorders.Cah Magellanes-NS.20246243284389
    [Google Scholar]
  190. ChandraP. SharmaH. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease.Indian Drugs202461772210.53879/id.61.07.14382
    [Google Scholar]
  191. PathakR. SharmaS. BhandariM. NogaiL. MishraR. SaxenaA. Reena KmS.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions.J. Exp. Zool. India20242122447246110.59467/jez.2024.27.2.2447
    [Google Scholar]
  192. SinghA. KumarP. SharmaH. Breakthrough opportunities of nanotheranostics in psoriasis: From pathogenesis to management strategy.Infect. Disord. Drug Targets20242412010.2174/011871526529880224060312025139075964
    [Google Scholar]
  193. SharmaH. TyagiS.J. VarshneyP. PathakN. PathakR. A review on Mpox: Diagnosis, prevention and treatments.Coronaviruses2024511710.2174/0126667975301557240604113752
    [Google Scholar]
  194. SharmaH. HalagaliP. MajumderA. SharmaV. PathakR. Natural compounds targeting signaling pathways in breast cancer therapy.African J. Biol. Sci.20246105430547910.33472/AFJBS.6.10.2024.5430‑5479
    [Google Scholar]
  195. SharmaH. PathakR. BiswasD. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies.Current Psychiatry Research and Reviews2024201-2510.2174/0126660822304321240520075036
    [Google Scholar]
  196. PathakR. KaurV. SharmaS. BhandariM. MishraR. SaxenaA. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors.Afr.J.Bio.Sc.2024691311133010.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  197. KapoorD.U. SharmaH. MaheshwariR. PareekA. GaurM. PrajapatiB.G. CastroG.R. ThanawuthK. SuttiruengwongS. SriamornsakP. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications.Carbohydr. Polym.202433912226610.1016/j.carbpol.2024.12226638823930
    [Google Scholar]
  198. ChandraP. AliZ. FatimaN. SharmaH. SachanN. SharmaK.K. VermaA. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders.Curr. Bioact. Compd.20242010.2174/0115734072292339240416095600
    [Google Scholar]
  199. KumarP. SharmaH. SinghA. DurgapalS. KukretiG. BhowmickM. BhowmickP. AshiqueS. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders.Curr. Cancer Ther. Rev.202420[Internet].10.2174/0115733947304806240417092449
    [Google Scholar]
  200. SharmaH. ChandraP. Effects of natural remedies on memory loss and Alzheimer’s disease.Afr.J.Bio.Sc.20246718721110.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  201. HalagaliP. InamdarA. SinghJ. AnandA. SadhuP. PathakR. SharmaH. BiswasD. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management.Endocr. Metab. Immune Disord. Drug Targets 2024 10.2174/011871530328791124040905571038676520
    [Google Scholar]
  202. DasS. MukherjeeT. MohantyS. NayakN. MalP. AshiqueS. PalR. MohantoS. SharmaH. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention.Curr. Pharm. Biotechnol.20252681207-122010.2174/011389201030146924040908221238638042
    [Google Scholar]
  203. SharmaH. KaushikM. GoswamiP. SreevaniS. ChakrabortyA. AshiqueS. PalR. Role of miRNAs in brain development.MicroRNA20241329610910.2174/012211536628712724032205451938571343
    [Google Scholar]
  204. AshiqueS. BhowmickM. PalR. KhatoonH. KumarP. SharmaH. GargA. KumarS. DasU. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success.Adv. Cancer Biol. - Metastasis20241010011410.1016/j.adcanc.2024.100114
    [Google Scholar]
  205. AshiqueS. PalR. SharmaH. MishraN. GargA. Unraveling the emerging niche role of extracellular vesicles (EVs) in traumatic brain injury (TBI).CNS Neurol. Disord. Drug Targets202423111357137010.2174/011871527328815524020106504138351688
    [Google Scholar]
  206. KumarP. PandeyS. AhmadF. VermaA. SharmaH. AshiqueS. Carbon nanotubes: A targeted drug delivery against cancer cell.Curr. Nanosci.2023913110.2174/0115734137271865231105070727
    [Google Scholar]
  207. SharmaH. ChandraP. VermaA. PandeyS.N. KumarP. SighA. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders.Eur Chem Bull.20231251575159610.48047/ecb/2023.12.si5a.0382023.20/05/2023
    [Google Scholar]
  208. SharmaH. ChandraP. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease.Int. J. Pharm. Investig.202314111712610.5530/ijpi.14.1.15
    [Google Scholar]
  209. SharmaH. PathakR. JainS. BhandariM. MishraR. ReenaK. VarshneyP. Ficus racemosa L: A review on its important medicinal uses, phytochemicals and biological activities.J. Popul. Ther. Clin. Pharmacol.2023301721322710.47750/jptcp.2023.30.17.018
    [Google Scholar]
  210. SinghL.P. GugulothuS. PerusomulaR. MishraA. BhavaniP.D. SinghS. SharmaH. DwivediM. Synthesis of some tetrazole and thiazolidine-4-one derivatives of Schiff base by using ionic liquids as catalyst and evaluation of their antifungal and antibacterial activity.Eur. Chem. Bull.202312Special Issue 8281297
    [Google Scholar]
  211. Pathak, R.; Sharma, H.; Nogai, L.; Bhandari, M.; Koli, M.; Mishra, R.; Kumar, NA brief review on pathogenesis, transmission and management of monkeypox virus outbreaks.Bull. Environ. Pharmacol. Life Sci.2023124244256
    [Google Scholar]
  212. SharmaH. BhattacharyaV. BhattA. GargS. ChaurasiaG. AkramW. SharmaK. MandalS. Optimization of formulation by box Behnken and in vitro studies of emulsified gel containing zaltoprofen for the management of arthritis.Eur. Chem. Bull.202312SS-4117341174410.48047/ecb/2023.12.si4.1052
    [Google Scholar]
  213. Manju Koli NogaiL. BhandariM. MishraR. PathakR. SharmaH. Formulation And evaluation of berberine hydrochloride film coated tablet.J. Pharm. Negat. Results20231423439344910.47750/pnr.2023.14.02.403
    [Google Scholar]
  214. DwivediM. JhaK.K. PandeyS. SachanA. SharmaH. DwivediS.K. Formulation and evaluation of herbal medicated chocolate in treatment of intestinal worms and related problems.IJFANS202211214261439
    [Google Scholar]
  215. SharmaH. PathakR. KumarN. NogaiL. MishraR. BhandariM. KoliM. PandeyP. Endocannabinoid system: Role in depression, recompense, and pain control.J. Survey Fisheries Sci.2023104S2743275110.17762/sfs.v10i4S.1655
    [Google Scholar]
  216. SharmaH. PathakR. SaxenaD. KumarN. Emerging role of non-coding RNA’S: Human health and diseases.GIS20229720222050
    [Google Scholar]
  217. SharmaH. RaniT. KhanS. An insight into neuropathic pain: A systemic and up-to-date review.Int. J. Pharm. Sci. Res.202314260762110.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  218. PandeyP. KumarN. KaurT. SainiS. SharmaH. Antidiabetic activity of Caesalpinia bonducella leavess of hydro alcoholic extracts in albino rats.YMER Digital202221784084610.37896/YMER21.07/67
    [Google Scholar]
  219. PathakR. SharmaH. KumarN. A brief review on Anthocephalus cadamba.Acta Scient. Pharmacol.2022357-14
    [Google Scholar]
  220. SharmaS. DindaS.C.S.H. Matrix types drug delivery system for sustained release: A review.ASIO J Drug Deliv.20226118
    [Google Scholar]
  221. SharmaH. PathakR. A review on prelimenary phytochemical screening of Curcuma longa linn.J. Pharma. Herbal Med. Res. (ASIO-JPHMR)2021722427
    [Google Scholar]
  222. PathakR. SharmaH. A review on medicinal uses of Cinnamomum verum (Cinnamon).J. Drug Deliv. Ther.2021116-S16116610.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  223. SharmaH. PandeM. JhaK.K. Hyperuricemia: A risk factor beyond gout.ASIO J. Pharma. & Herbal Med. Res. (ASIO-JPHMR)2020614249
    [Google Scholar]
  224. SharmaH. SinghS. JhaK.K. Treatment and recommendations for homeless patients with hypertension, hyperlipidemia & heart failure-a review.ASIO J. Exp. Pharm. & Clin. Res. (ASIO-JEPCR)2020612432
    [Google Scholar]
  225. SuryawanshiM. KurtkotiS. MullaT. ShahE. SharmaH. BhattH. Edible Biopolymers for Food Applications. Green Biopolymers for Packaging Applications.Boca RatonCRC Press202422825410.1201/9781003455356‑10
    [Google Scholar]
  226. SuryawanshiM. MullaT. SuryawanshiI. VinchurkarK. KallawalaU. SharmaH. Modified Starch in Food Packaging. Green Biopolymers for Packaging Applications.Boca RatonCRC Press202425527110.1201/9781003455356‑11
    [Google Scholar]
  227. SharmaH. KaushikM. VenishaaS. PathakR. FaridA. BhowmickM. Correlation and successive role of synbiotics to manage blood pressure. Synbiotics in Metabolic Disorders.Boca RatonCRC Press202410312010.1201/9781032702438‑7
    [Google Scholar]
  228. RayP. FaseehM.A. AdakD. SharmaH. Probiotics, prebiotics, and postbiotics on metabolic diseases targeting gut microbiota. Synbiotics in Metabolic Disorders.Boca RatonCRC Press202416017210.1201/9781032702438‑11
    [Google Scholar]
  229. ChandraP. SharmaH. SachanN. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy. Synbiotics in Metabolic Disorders.Boca RatonCRC Press202419121310.1201/9781032702438‑13
    [Google Scholar]
  230. KaushikM. SharmaH. MadeswaragupthaP. VanangamudiM. MudiV. Synbiotic. Synbiotics in Metabolic Disorders.Boca RatonCRC Press202413515010.1201/9781032702438‑9
    [Google Scholar]
  231. SharmaH. KumarS. AshiqueS. BhowmickP. PalR. FaridA. The Impact of Probiotic and Synbiotic Supplementation on Oxidative Stress and Inflammation. Synbiotics in Metabolic Disorders.Boca RatonCRC Press20249010210.1201/9781032702438‑6
    [Google Scholar]
  232. HalagaliP. NayakD. TippavajhalaV.K. RathnanandM. BiswasD. SharmaH. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. Academic Press. 202539942010.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  233. HalagaliP. NayakD. RathnanandM. TippavajhalaV.K. SharmaH. BiswasD. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. Academic Press. 202537339710.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  234. KumarP. AshiqueS. KumarN. JainA. SharmaH. PandeyS.N. Regulation of Plant Hormones Under Abiotic Stress Conditions in Plants. Plant Secondary Metabolites and Abiotic Stress.Wiley202424327610.1002/9781394186457.ch10
    [Google Scholar]
  235. DattaD. ColacoV. BandiS.P. SharmaH. DhasN. GiramP.S. 7 - Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities.Polymers for Oral Drug Delivery TechnologiesElsevier202526333310.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  236. SharmaH. JaiT.S. PathakN. KeshariA. VarshneyP. PathakR. Social, Economic, and Environmental Justifications for 3D Printing of Pharmaceutical Products. Handbook of 3D Printing in Pharmaceutics.Boca RatonCRC Press202417919410.1201/9781003439509‑17
    [Google Scholar]
  237. SharmaH. PathakR. SachanN. ChandraP. Role of tumor antigens for cancer vaccine development. Cancer Vaccination and Challenges.New YorkApple Academic Press2024579410.1201/9781003501718‑3
    [Google Scholar]
  238. SharmaH. AnandA. HalagaliP. InamdarA. PathakR. Taghizadeh-HesaryF. AshiqueS. Advancement of nanoengineered flavonoids for chronic metabolic diseases.Role of flavonoids in chronic metabolic diseasesWiley202445951010.1002/9781394238071.ch13
    [Google Scholar]
  239. KaushikM. KumarS. SinghM. SharmaH. BhowmickM. BhowmickP. Bio-inspired nanomaterials in cancer theranostics. Nanotheranostics for Diagnosis and Therapy.SingaporeSpringer Nature Singapore20249512310.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  240. SharmaH. RachamallaH.K. MishraN. ChandraP. PathakR. AshiqueS. Introduction to exosome and its role in brain disorders. Exosomes Based Drug Delivery Strategies for Brain DisordersSingaporeSpringer Nature202413510.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  241. SharmaH. TyagiS.J. ChandraP. VermaA. KumarP. AshiqueS. Role of exosomes in Parkinson’s and Alzheimer’s diseases. Exosomes Based Drug Delivery Strategies for Brain DisordersSingaporeSpringer Nature Singapore202414718210.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  242. KumarP. SharmaH. SinghA. PandeyS.N. ChandraP. Correlation between exosomes and neuro-inflammation in various brain disorders. Exosomes Based Drug Delivery Strategies for Brain DisordersSingaporeSpringer Nature Singapore202427330210.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037362309250319035758
Loading
/content/journals/cpps/10.2174/0113892037362309250319035758
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): biomarkers; oxidative stress; peptidase; peripheral miRNAs; protein; Schizophrenia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test