Skip to content
2000
image of Decoding the Molecular Mechanisms of miRNAs: Protein Interactions in Schizophrenia Pathogenesis

Abstract

Schizophrenia is now diagnosed mostly based on symptoms and physical signs rather than the patient's pathological and physiological markers. While oncologists once felt satisfied when their patients experienced a long remission, today, they are leading research into innovative treatments with molecularly targeted drugs, as well as strategies to enhance diagnostic accuracy and alleviate symptoms as the disease advances.Because biomarkers reflect an organism's physiological, physical, and biochemical state, they are very beneficial and have a wide range of real-world uses. The identification of blood biomarkers may open up new avenues for studying schizophrenia. MicroRNAs (miRNAs) may serve as diagnostic indicators for schizophrenia as their abnormal expression has recently been linked to the disease's pathophysiology. The precise etiological process of schizophrenia remains largely unknown despite the general agreement that developmental and genetic factors play a critical role in the pathophysiology of the disorder. miRNAs have gained recognition as an essential post-transcriptional regulator in the regulation of gene expression in recent decades. The importance of miRNAs for brain development and neuroplasticity is well established.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037362309250319035758
2025-04-14
2025-09-10
Loading full text...

Full text loading...

References

  1. Nadim W. Simion V. Benedetti H. Pichon C. Baril P. Morisset-Lopez S. MicroRNAs in neurocognitive dysfunctions: New molecular targets for pharmacological treatments? Curr. Neuropharmacol. 2017 15 2 260 275 10.2174/1570159X14666160709001441 27396304
    [Google Scholar]
  2. Winter J. Jung S. Keller S. Gregory R.I. Diederichs S. Many roads to maturity: MicroRNA biogenesis pathways and their regulation. Nat. Cell Biol. 2009 11 3 228 234 10.1038/ncb0309‑228 19255566
    [Google Scholar]
  3. Purcell S.M. Wray N.R. Stone J.L. Visscher P.M. O’Donovan M.C. Sullivan P.F. Sklar P. International Schizophrenia Consortium Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 2009 460 7256 748 752 10.1038/nature08185 19571811
    [Google Scholar]
  4. American Psychiatric Association AP, American Psychiatric Association Diagnostic and statistical manual of mental disorders: DSM-IV American psychiatric association Washington, DC 1994
    [Google Scholar]
  5. Murante T. Cohen C.I. Cognitive functioning in older adults with schizophrenia. Focus Am. Psychiatr. Publ. 2017 15 1 26 34 10.1176/appi.focus.20160032 31975837
    [Google Scholar]
  6. Shafie A. Ashour A.A. Anwar S. Anjum F. Hassan M.I. Exploring molecular mechanisms, therapeutic strategies, and clinical manifestations of Huntington’s disease. Arch. Pharm. Res. 2024 47 6 571 595 10.1007/s12272‑024‑01499‑w 38764004
    [Google Scholar]
  7. Ripke S. O’Dushlaine C. Chambert K. Moran J.L. Kähler A.K. Akterin S. Bergen S.E. Collins A.L. Crowley J.J. Fromer M. Kim Y. Lee S.H. Magnusson P.K.E. Sanchez N. Stahl E.A. Williams S. Wray N.R. Xia K. Bettella F. Borglum A.D. Bulik-Sullivan B.K. Cormican P. Craddock N. de Leeuw C. Durmishi N. Gill M. Golimbet V. Hamshere M.L. Holmans P. Hougaard D.M. Kendler K.S. Lin K. Morris D.W. Mors O. Mortensen P.B. Neale B.M. O’Neill F.A. Owen M.J. Milovancevic M.P. Posthuma D. Powell J. Richards A.L. Riley B.P. Ruderfer D. Rujescu D. Sigurdsson E. Silagadze T. Smit A.B. Stefansson H. Steinberg S. Suvisaari J. Tosato S. Verhage M. Walters J.T. Bramon E. Corvin A.P. O’Donovan M.C. Stefansson K. Scolnick E. Purcell S. McCarroll S.A. Sklar P. Hultman C.M. Sullivan P.F. Wildenauer D.B. Dudbridge F. Holmans P. Shi J. Albus M. Alexander M. Campion D. Cohen D. Dikeos D. Duan J. Eichhammer P. Godard S. Hansen M. Lerer F.B. Liang K.Y. Maier W. Mallet J. Nertney D.A. Nestadt G. Norton N. O’Neill F.A. Papadimitriou G.N. Ribble R. Sanders A.R. Silverman J.M. Walsh D. Williams N.M. Wormley B. Arranz M.J. Bakker S. Bender S. Bramon E. Collier D. Crespo-Facorro B. Hall J. Iyegbe C. Jablensky A. Kahn R.S. Kalaydjieva L. Lawrie S. Lewis C.M. Lin K. Linszen D.H. Mata I. McIntosh A. Murray R.M. Ophoff R.A. Powell J. Rujescu D. Van Os J. Walshe M. Weisbrod M. Wiersma D. Donnelly P. Barroso I. Blackwell J.M. Bramon E. Brown M.A. Casas J.P. Corvin A.P. Deloukas P. Duncanson A. Jankowski J. Markus H.S. Mathew C.G. Palmer C.N. Plomin R. Rautanen A. Sawcer S.J. Trembath R.C. Viswanathan A.C. Wood N.W. Spencer C.C. Band G. Bellenguez C. Freeman C. Hellenthal G. Giannoulatou E. Pirinen M. Pearson R.D. Strange A. Su Z. Vukcevic D. Donnelly P. Langford C. Hunt S.E. Edkins S. Gwilliam R. Blackburn H. Bumpstead S.J. Dronov S. Gillman M. Gray E. Hammond N. Jayakumar A. McCann O.T. Liddle J. Potter S.C. Ravindrarajah R. Ricketts M. Tashakkori-Ghanbaria A. Waller M.J. Weston P. Widaa S. Whittaker P. Barroso I. Deloukas P. Mathew C.G. Blackwell J.M. Brown M.A. Corvin A.P. McCarthy M.I. Spencer C.C. Bramon E. Corvin A.P. O’Donovan M.C. Stefansson K. Scolnick E. Purcell S. McCarroll S.A. Sklar P. Hultman C.M. Sullivan P.F. Multicenter Genetic Studies of Schizophrenia Consortium Psychosis Endophenotypes International Consortium Wellcome Trust Case Control Consortium 2 Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nat. Genet. 2013 45 10 1150 1159 10.1038/ng.2742 23974872
    [Google Scholar]
  8. Beveridge N.J. Gardiner E. Carroll A.P. Tooney P.A. Cairns M.J. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol. Psychiatry 2010 15 12 1176 1189 10.1038/mp.2009.84 19721432
    [Google Scholar]
  9. Beveridge N.J. Tooney P.A. Carroll A.P. Gardiner E. Bowden N. Scott R.J. Tran N. Dedova I. Cairns M.J. Dysregulation of miRNA 181b in the temporal cortex in schizophrenia. Hum. Mol. Genet. 2008 17 8 1156 1168 10.1093/hmg/ddn005 18184693
    [Google Scholar]
  10. He K. Guo C. He L. Shi Y. MiRNAs of peripheral blood as the biomarker of schizophrenia. Hereditas 2018 155 1 9 10.1186/s41065‑017‑0044‑2 28860957
    [Google Scholar]
  11. Gunasekaran S. Jacob R.S. Omkumar R.V. Differential expression of miR-148b, miR-129-2 and miR-296 in animal models of schizophrenia-Relevance to NMDA receptor hypofunction. Neuropharmacology 2022 210 109024 10.1016/j.neuropharm.2022.109024 35276119
    [Google Scholar]
  12. Johnstone A.L. O’Reilly J.J. Patel A.J. Guo Z. Andrade N.S. Magistri M. Nathanson L. Esanov R. Miller B.H. Turecki G. Brothers S.P. Zeier Z. Wahlestedt C. EZH1 is an antipsychotic-sensitive epigenetic modulator of social and motivational behavior that is dysregulated in schizophrenia. Neurobiol. Dis. 2018 119 149 158 10.1016/j.nbd.2018.08.005 30099093
    [Google Scholar]
  13. Hu Z. Gao S. Lindberg D. Panja D. Wakabayashi Y. Li K. Kleinman J.E. Zhu J. Li Z. Temporal dynamics of miRNAs in human DLPFC and its association with miRNA dysregulation in schizophrenia. Transl. Psychiatry 2019 9 1 196 10.1038/s41398‑019‑0538‑y 31431609
    [Google Scholar]
  14. Xu Y. Li F. Zhang B. Zhang K. Zhang F. Huang X. Sun N. Ren Y. Sui M. Liu P. MicroRNAs and target site screening reveals a pre-microRNA-30e variant associated with schizophrenia. Schizophr. Res. 2010 119 1-3 219 227 10.1016/j.schres.2010.02.1070 20347265
    [Google Scholar]
  15. Tello-Flores V.A. Beltrán-Anaya F.O. Ramírez-Vargas M.A. Esteban-Casales B.E. Navarro-Tito N. Alarcón-Romero L.C. Luciano-Villa C.A. Ramírez M. del Moral-Hernández Ó. Flores-Alfaro E. Role of long non-coding RNAs and the molecular mechanisms involved in insulin resistance. Int. J. Mol. Sci. 2021 22 14 7256 10.3390/ijms22147256 34298896
    [Google Scholar]
  16. Takayama Y. Akagi Y. Kida Y.S. Deciphering the molecular mechanisms of autonomic nervous system neuron induction through integrative bioinformatics analysis. Int. J. Mol. Sci. 2023 24 10 9053 10.3390/ijms24109053 37240399
    [Google Scholar]
  17. Caputo V. Ciolfi A. Macri S. Pizzuti A. The emerging role of MicroRNA in schizophrenia. CNS Neurol Disord Drug Targets 2015 14 2 208 221 10.2174/1871527314666150116124253 25613509
    [Google Scholar]
  18. Zhao H. Xu J. Pang L. Zhang Y. Fan H. Liu L. Liu T. Yu F. Zhang G. Lan Y. Bai J. Li X. Xiao Y. Genome-wide DNA methylome reveals the dysfunction of intronic microRNAs in major psychosis. BMC Med. Genomics 2015 8 1 62 10.1186/s12920‑015‑0139‑4 26462620
    [Google Scholar]
  19. Nguyen T.D. Trinh T.A. Bao S. Nguyen T.A. Secondary structure RNA elements control the cleavage activity of DICER. Nat. Commun. 2022 13 1 2138 10.1038/s41467‑022‑29822‑3 35440644
    [Google Scholar]
  20. Han J. Lee Y. Yeom K.H. Kim Y.K. Jin H. Kim V.N. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 2004 18 24 3016 3027 10.1101/gad.1262504 15574589
    [Google Scholar]
  21. Yoda M. Kawamata T. Paroo Z. Ye X. Iwasaki S. Liu Q. Tomari Y. ATP-dependent human RISC assembly pathways. Nat. Struct. Mol. Biol. 2010 17 1 17 23 10.1038/nsmb.1733 19966796
    [Google Scholar]
  22. Kang Y.J. Mbonye U.R. DeLong C.J. Wada M. Smith W.L. Regulation of intracellular cyclooxygenase levels by gene transcription and protein degradation. Prog. Lipid Res. 2007 46 2 108 125 10.1016/j.plipres.2007.01.001 17316818
    [Google Scholar]
  23. Friedländer M.R. Lizano E. Houben A.J.S. Bezdan D. Báñez-Coronel M. Kudla G. Mateu-Huertas E. Kagerbauer B. González J. Chen K.C. LeProust E.M. Martí E. Estivill X. Evidence for the biogenesis of more than 1,000 novel human microRNAs. Genome Biol. 2014 15 4 R57 10.1186/gb‑2014‑15‑4‑r57 24708865
    [Google Scholar]
  24. Xie M. Li M. Vilborg A. Lee N. Shu M.D. Yartseva V. Šestan N. Steitz J.A. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 2013 155 7 1568 1580 10.1016/j.cell.2013.11.027 24360278
    [Google Scholar]
  25. Yang J.S. Maurin T. Robine N. Rasmussen K.D. Jeffrey K.L. Chandwani R. Papapetrou E.P. Sadelain M. O’Carroll D. Lai E.C. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 2010 107 34 15163 15168 10.1073/pnas.1006432107 20699384
    [Google Scholar]
  26. Cheloufi S. Dos Santos C.O. Chong M.M.W. Hannon G.J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 2010 465 7298 584 589 10.1038/nature09092 20424607
    [Google Scholar]
  27. Sharma H. Pathak R. Saxena D. Kumar N. Emerging role of non-coding RNA’s: Human health and diseases. GIS J. 2022 9 7 2022 2050
    [Google Scholar]
  28. Gebert L.F.R. MacRae I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019 20 1 21 37 10.1038/s41580‑018‑0045‑7 30108335
    [Google Scholar]
  29. Ipsaro J.J. Joshua-Tor L. From guide to target: Molecular insights into eukaryotic RNA-interference machinery. Nat. Struct. Mol. Biol. 2015 22 1 20 28 10.1038/nsmb.2931 25565029
    [Google Scholar]
  30. Dharap A. Pokrzywa C. Murali S. Pandi G. Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One 2013 8 11 e79467 10.1371/journal.pone.0079467 24265774
    [Google Scholar]
  31. Jo M.H. Shin S. Jung S.R. Kim E. Song J.J. Hohng S. Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol. Cell 2015 59 1 117 124 10.1016/j.molcel.2015.04.027 26140367
    [Google Scholar]
  32. Jonas S. Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 2015 16 7 421 433 10.1038/nrg3965 26077373
    [Google Scholar]
  33. Vasudevan S. Steitz J.A. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 2007 128 6 1105 1118 10.1016/j.cell.2007.01.038 17382880
    [Google Scholar]
  34. Truesdell S.S. Mortensen R.D. Seo M. Schroeder J.C. Lee J.H. LeTonqueze O. Vasudevan S. MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci. Rep. 2012 2 1 842 10.1038/srep00842 23150790
    [Google Scholar]
  35. Nishi K. Nishi A. Nagasawa T. Ui-Tei K. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 2013 19 1 17 35 10.1261/rna.034769.112 23150874
    [Google Scholar]
  36. Nam J.W. Rissland O.S. Koppstein D. Abreu-Goodger C. Jan C.H. Agarwal V. Yildirim M.A. Rodriguez A. Bartel D.P. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 2014 53 6 1031 1043 10.1016/j.molcel.2014.02.013 24631284
    [Google Scholar]
  37. Blazie S.M. Geissel H.C. Wilky H. Joshi R. Newbern J. Mangone M. Alternative polyadenylation directs tissue-specific miRNA targeting in Caenorhabditis elegans somatic tissues. Genetics 2017 206 2 757 774 10.1534/genetics.116.196774 28348061
    [Google Scholar]
  38. Barman B. Bhattacharyya S.N. mRNA targeting to endoplasmic reticulum precedes ago protein interaction and microRNA (miRNA)-mediated translation repression in mammalian cells. J. Biol. Chem. 2015 290 41 24650 24656 10.1074/jbc.C115.661868 26304123
    [Google Scholar]
  39. Lai X. Wolkenhauer O. Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 2016 44 13 6019 6035 10.1093/nar/gkw550 27317695
    [Google Scholar]
  40. Schmiedel J.M. Klemm S.L. Zheng Y. Sahay A. Blüthgen N. Marks D.S. van Oudenaarden A. MicroRNA control of protein expression noise. Science 2015 348 6230 128 132 10.1126/science.aaa1738 25838385
    [Google Scholar]
  41. Denzler R. McGeary S.E. Title A.C. Agarwal V. Bartel D.P. Stoffel M. Impact of microRNA levels, target-site complementarity, and cooperativity on competing endogenous RNA-regulated gene expression. Mol. Cell 2016 64 3 565 579 10.1016/j.molcel.2016.09.027 27871486
    [Google Scholar]
  42. Molotski N. Soen Y. Differential association of microRNAs with polysomes reflects distinct strengths of interactions with their mRNA targets. RNA 2012 18 9 1612 1623 10.1261/rna.033142.112 22836355
    [Google Scholar]
  43. O’Connor R.M. Gururajan A. Dinan T.G. Kenny P.J. Cryan J.F. All roads lead to the miRNome: miRNAs have a central role in the molecular pathophysiology of psychiatric disorders. Trends Pharmacol. Sci. 2016 37 12 1029 1044 10.1016/j.tips.2016.10.004 27832923
    [Google Scholar]
  44. Pereira-da-Silva T. Coutinho Cruz M. Carrusca C. Cruz Ferreira R. Napoleão P. Mota Carmo M. Circulating microRNA profiles in different arterial territories of stable atherosclerotic disease: A systematic review. Am. J. Cardiovasc. Dis. 2018 8 1 1 13 29531852
    [Google Scholar]
  45. Iftikhar H. Carney G.E. Evidence and potential in vivo functions for biofluid miRNAs: From expression profiling to functional testing. BioEssays 2016 38 4 367 378 10.1002/bies.201500130 26934338
    [Google Scholar]
  46. da Silveira J.C. Veeramachaneni D.N.R. Winger Q.A. Carnevale E.M. Bouma G.J. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: A possible new form of cell communication within the ovarian follicle. Biol. Reprod. 2012 86 3 71 1 10.1095/biolreprod.111.093252 22116803
    [Google Scholar]
  47. Mitchell P.S. Parkin R.K. Kroh E.M. Fritz B.R. Wyman S.K. Pogosova-Agadjanyan E.L. Peterson A. Noteboom J. O’Briant K.C. Allen A. Lin D.W. Urban N. Drescher C.W. Knudsen B.S. Stirewalt D.L. Gentleman R. Vessella R.L. Nelson P.S. Martin D.B. Tewari M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008 105 30 10513 10518 10.1073/pnas.0804549105 18663219
    [Google Scholar]
  48. Turchinovich A. Weiz L. Langheinz A. Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011 39 16 7223 7233 10.1093/nar/gkr254 21609964
    [Google Scholar]
  49. Vickers K.C. Palmisano B.T. Shoucri B.M. Shamburek R.D. Remaley A.T. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 2011 13 4 423 433 10.1038/ncb2210 21423178
    [Google Scholar]
  50. Kosaka N. Iguchi H. Yoshioka Y. Takeshita F. Matsuki Y. Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 2010 285 23 17442 17452 10.1074/jbc.M110.107821 20353945
    [Google Scholar]
  51. Hannafon B.N. Carpenter K.J. Berry W.L. Janknecht R. Dooley W.C. Ding W.Q. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol. Cancer 2015 14 1 133 10.1186/s12943‑015‑0400‑7 26178901
    [Google Scholar]
  52. Li Z. Wu N. Cheng J. Sun M. Yang P. Zhao F. Zhang J. Duan X. Fu X. Zhang J. Hu X. Chen H. Ao Y. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration. Theranostics 2020 10 11 5090 5106 10.7150/thno.44270 32308770
    [Google Scholar]
  53. Lehmann S.M. Krüger C. Park B. Derkow K. Rosenberger K. Baumgart J. Trimbuch T. Eom G. Hinz M. Kaul D. Habbel P. Kälin R. Franzoni E. Rybak A. Nguyen D. Veh R. Ninnemann O. Peters O. Nitsch R. Heppner F.L. Golenbock D. Schott E. Ploegh H.L. Wulczyn F.G. Lehnardt S. An unconventional role for miRNA: Let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat. Neurosci. 2012 15 6 827 835 10.1038/nn.3113 22610069
    [Google Scholar]
  54. Bugiardini R. Galvani M. Ferrini D. Gridelli C. Mari L. Puddu P. Lenzi S. Effects of iloprost, a stable prostacyclin analog, on exercise capacity and platelet aggregation in stable angina pectoris. Am. J. Cardiol. 1986 58 6 453 459 10.1016/0002‑9149(86)90014‑7 2428231
    [Google Scholar]
  55. Aucher A. Rudnicka D. Davis D.M. MicroRNAs transfer from human macrophages to hepato-carcinoma cells and inhibit proliferation. J. Immunol. 2013 191 12 6250 6260 10.4049/jimmunol.1301728 24227773
    [Google Scholar]
  56. Cao T. Zhen X.C. Dysregulation of mi RNA and its potential therapeutic application in schizophrenia. CNS Neurosci. Ther. 2018 24 7 586 597 10.1111/cns.12840 29529357
    [Google Scholar]
  57. Arif K.M.T. Elliott E.K. Haupt L.M. Griffiths L.R. Regulatory mechanisms of epigenetic miRNA relationships in human cancer and potential as therapeutic targets. Cancers (Basel) 2020 12 10 2922 10.3390/cancers12102922 33050637
    [Google Scholar]
  58. Dubonyte U. Asenjo-Martinez A. Werge T. Lage K. Kirkeby A. Current advancements of modelling schizophrenia using patient-derived induced pluripotent stem cells. Acta Neuropathol. Commun. 2022 10 1 183 10.1186/s40478‑022‑01460‑2 36527106
    [Google Scholar]
  59. Srivastava A.K. Schwartz C.E. Intellectual disability and autism spectrum disorders: Causal genes and molecular mechanisms. Neurosci. Biobehav. Rev. 2014 46 Pt 2 161 174 10.1016/j.neubiorev.2014.02.015 24709068
    [Google Scholar]
  60. Parasar P. Kaur N. Singh J. Pathophysiology of X-Linked Adrenoleukodystrophy: Updates on Molecular Mechanisms. J. Biotechnol. Biomed. 2024 7 2 277 288 10.26502/jbb.2642‑91280151 39056013
    [Google Scholar]
  61. Kim Y. Santos R. Gage F.H. Marchetto M.C. Molecular mechanisms of bipolar disorder: Progress made and future challenges. Front. Cell. Neurosci. 2017 11 30 10.3389/fncel.2017.00030 28261061
    [Google Scholar]
  62. Prasad K.N. Oxidative stress, pro-inflammatory cytokines, and antioxidants regulate expression levels of microRNAs in Parkinson’s disease. Curr. Aging Sci. 2017 10 3 177 184 28042771
    [Google Scholar]
  63. Ermakov E.A. Melamud M.M. Buneva V.N. Ivanova S.A. Immune system abnormalities in schizophrenia: An integrative view and translational perspectives. Front. Psychiatry 2022 13 880568 10.3389/fpsyt.2022.880568 35546942
    [Google Scholar]
  64. Martins H.C. Schratt G. MicroRNA-dependent control of neuroplasticity in affective disorders. Transl. Psychiatry 2021 11 1 263 10.1038/s41398‑021‑01379‑7 33941769
    [Google Scholar]
  65. McCutcheon R.A. Krystal J.H. Howes O.D. Dopamine and glutamate in schizophrenia: Biology, symptoms and treatment. World Psychiatry 2020 19 1 15 33 10.1002/wps.20693 31922684
    [Google Scholar]
  66. Pierouli K. Papageorgiou L. Mitsis T. Papakonstantinou E. Diakou I. Leptidis S. Sigala M. Dragoumani K. Spandidos D. Bacopoulou F. Chrousos G. Goulielmos G. Eliopoulos E. Vlachakis D. Role of microRNAs and long non-coding RNAs in glucocorticoid signaling (Review). Int. J. Mol. Med. 2022 50 6 147 10.3892/ijmm.2022.5203 36367164
    [Google Scholar]
  67. Nascimento J.M. Martins-de-Souza D. The proteome of schizophrenia. NPJ Schizophr 2015 1 14003 10.1038/npjschz.2014.3 27336025
    [Google Scholar]
  68. Yunusova N.V. Popova N.O. Udintseva I.N. Klyushina T.S. Kazantseva D.V. Smirnova L.P. The role of intravesicular proteins and the protein corona of extracellular vesicles in the development of drug-induced polyneuropathy. Curr. Issues Mol. Biol. 2023 45 4 3302 3314 10.3390/cimb45040216 37185740
    [Google Scholar]
  69. Roy B. Yoshino Y. Allen L. Prall K. Schell G. Dwivedi Y. Exploiting circulating MicroRNAs as biomarkers in psychiatric disorders. Mol. Diagn. Ther. 2020 24 3 279 298 10.1007/s40291‑020‑00464‑9 32304043
    [Google Scholar]
  70. Olejniczak M. Kotowska-Zimmer A. Krzyzosiak W. Stress-induced changes in miRNA biogenesis and functioning. Cell. Mol. Life Sci. 2018 75 2 177 191 10.1007/s00018‑017‑2591‑0 28717872
    [Google Scholar]
  71. Geaghan M. Cairns M.J. MicroRNA and posttranscriptional dysregulation in psychiatry. Biol. Psychiatry 2015 78 4 231 239 10.1016/j.biopsych.2014.12.009 25636176
    [Google Scholar]
  72. Santarelli D.M. Carroll A.P. Cairns H.M. Tooney P.A. Cairns M.J. Schizophrenia-associated MicroRNA–gene interactions in the dorsolateral prefrontal cortex. Genomics Proteomics Bioinformatics 2019 17 6 623 634 10.1016/j.gpb.2019.10.003 32006661
    [Google Scholar]
  73. Thomas K.T. Zakharenko S.S. MicroRNAs in the onset of schizophrenia. Cells 2021 10 10 2679 10.3390/cells10102679 34685659
    [Google Scholar]
  74. He E. Lozano M.A.G. Stringer S. Watanabe K. Sakamoto K. den Oudsten F. Koopmans F. Giamberardino S.N. Hammerschlag A. Cornelisse L.N. Li K.W. van Weering J. Posthuma D. Smit A.B. Sullivan P.F. Verhage M. MIR137 schizophrenia-associated locus controls synaptic function by regulating synaptogenesis, synapse maturation and synaptic transmission. Hum. Mol. Genet. 2018 27 11 1879 1891 10.1093/hmg/ddy089 29635364
    [Google Scholar]
  75. Rykova E. Ershov N. Damarov I. Merkulova T. SNPs in 3′UTR miRNA target sequences associated with individual drug susceptibility. Int. J. Mol. Sci. 2022 23 22 13725 10.3390/ijms232213725 36430200
    [Google Scholar]
  76. Wang X. Zhou H. Cheng R. Zhou X. Hou X. Chen J. Qiu J. Role of miR-326 in neonatal hypoxic-ischemic brain damage pathogenesis through targeting of the δ-opioid receptor. Mol. Brain 2020 13 1 51 10.1186/s13041‑020‑00579‑4 32228617
    [Google Scholar]
  77. Moszyńska A. Gebert M. Collawn J.F. Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol. 2017 7 4 170019 10.1098/rsob.170019 28381629
    [Google Scholar]
  78. Magri F. Vanoli F. Corti S. mi RNA in spinal muscular atrophy pathogenesis and therapy. J. Cell. Mol. Med. 2018 22 2 755 767 10.1111/jcmm.13450 29160009
    [Google Scholar]
  79. Thomas K.T. Gross C. Bassell G.J. MicroRNAs sculpt neuronal communication in a tight balance that is lost in neurological disease. Front. Mol. Neurosci. 2018 11 455 10.3389/fnmol.2018.00455 30618607
    [Google Scholar]
  80. Sahafnejad Z. Ramazi S. Allahverdi A. An update of epigenetic drugs for the treatment of cancers and brain diseases: A comprehensive review. Genes (Basel) 2023 14 4 873 10.3390/genes14040873 37107631
    [Google Scholar]
  81. Mortazavi D. Sohrabi B. Mosallaei M. Nariman-Saleh-Fam Z. Bastami M. Mansoori Y. Daraei A. Zununi Vahed S. Navid S. Saadatian Z. Jamialahmadi T. Teng Y. Sahebkar A. Epi-miRNAs: Regulators of the histone modification machinery in human cancer. J. Oncol. 2022 2022 1 22 10.1155/2022/4889807 35087589
    [Google Scholar]
  82. Day J.J. Kennedy A.J. Sweatt J.D. DNA methylation and its implications and accessibility for neuropsychiatric therapeutics. Annu. Rev. Pharmacol. Toxicol. 2015 55 1 591 611 10.1146/annurev‑pharmtox‑010814‑124527 25340930
    [Google Scholar]
  83. Meem T.M. Khan U. Mredul M.B.R. Awal M.A. Rahman M.H. Khan M.S. A comprehensive bioinformatics approach to identify molecular signatures and key pathways for the huntington disease. Bioinform. Biol. Insights 2023 17 11779322231210098 10.1177/11779322231210098 38033382
    [Google Scholar]
  84. Lee H.T. Oh S. Ro D.H. Yoo H. Kwon Y.W. The key role of DNA methylation and histone acetylation in epigenetics of atherosclerosis. J. Lipid Atheroscler. 2020 9 3 419 434 10.12997/jla.2020.9.3.419 33024734
    [Google Scholar]
  85. Mikhed Y. Görlach A. Knaus U.G. Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol. 2015 5 275 289 10.1016/j.redox.2015.05.008 26079210
    [Google Scholar]
  86. Khavari B. Cairns M.J. Epigenomic dysregulation in schizophrenia: In search of disease etiology and biomarkers. Cells 2020 9 8 1837 10.3390/cells9081837 32764320
    [Google Scholar]
  87. Jani K.S. Jain S.U. Ge E.J. Diehl K.L. Lundgren S.M. Müller M.M. Lewis P.W. Muir T.W. Histone H3 tail binds a unique sensing pocket in EZH2 to activate the PRC2 methyltransferase. Proc. Natl. Acad. Sci. USA 2019 116 17 8295 8300 10.1073/pnas.1819029116 30967505
    [Google Scholar]
  88. Corrêa T. Poswar F. Santos-Rebouças C.B. Convergent molecular mechanisms underlying cognitive impairment in mucopolysaccharidosis type II. Metab. Brain Dis. 2022 37 6 2089 2102 10.1007/s11011‑021‑00872‑8 34797484
    [Google Scholar]
  89. Sasso J.M. Ambrose B.J.B. Tenchov R. Datta R.S. Basel M.T. DeLong R.K. Zhou Q.A. The progress and promise of RNA medicine An arsenal of targeted treatments. J. Med. Chem. 2022 65 10 6975 7015 10.1021/acs.jmedchem.2c00024 35533054
    [Google Scholar]
  90. Creugny A. Fender A. Pfeffer S. Regulation of primary micro RNA processing. FEBS Lett. 2018 592 12 1980 1996 10.1002/1873‑3468.13067 29683487
    [Google Scholar]
  91. Weng Y.T. Chang Y.M. Chern Y. The impact of dysregulated microRNA biogenesis machinery and microRNA sorting on neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 4 3443 10.3390/ijms24043443 36834853
    [Google Scholar]
  92. Nolte-’t Hoen E.N.M. Van Rooij E. Bushell M. Zhang C.Y. Dashwood R.H. James W.P.T. Harris C. Baltimore D. The role of microRNA in nutritional control. J. Intern. Med. 2015 278 2 99 109 10.1111/joim.12372 25832550
    [Google Scholar]
  93. Redfern A.D. Colley S.M. Beveridge D.J. Ikeda N. Epis M.R. Li X. Foulds C.E. Stuart L.M. Barker A. Russell V.J. Ramsay K. Kobelke S.J. Li X. Hatchell E.C. Payne C. Giles K.M. Messineo A. Gatignol A. Lanz R.B. O’Malley B.W. Leedman P.J. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc. Natl. Acad. Sci. USA 2013 110 16 6536 6541 10.1073/pnas.1301620110 23550157
    [Google Scholar]
  94. Navarrete K. Pedroso I. De Jong S. Stefansson H. Steinberg S. Stefansson K. Ophoff R.A. Schalkwyk L.C. Collier D.A. TCF4 ( e2-2; ITF2 ): A schizophrenia-associated gene with pleiotropic effects on human disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2013 162 1 1 16 10.1002/ajmg.b.32109 23129290
    [Google Scholar]
  95. Cuellar T.L. Davis T.H. Nelson P.T. Loeb G.B. Harfe B.D. Ullian E. McManus M.T. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc. Natl. Acad. Sci. USA 2008 105 14 5614 5619 10.1073/pnas.0801689105 18385371
    [Google Scholar]
  96. O’Brien J. Hayder H. Zayed Y. Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne) 2018 9 402 10.3389/fendo.2018.00402 30123182
    [Google Scholar]
  97. Brioudes F. Jay F. Sarazin A. Grentzinger T. Devers E.A. Voinnet O. Hasty, the Arabidopsis exportins5 ortholog, regulates cell-to-cell and vascular microRNA movement. EMBO J. 2021 40 15 e107455 10.15252/embj.2020107455 34152631
    [Google Scholar]
  98. Annese T. Tamma R. De Giorgis M. Ribatti D. microRNAs biogenesis, functions and role in tumor angiogenesis. Front. Oncol. 2020 10 581007 10.3389/fonc.2020.581007 33330058
    [Google Scholar]
  99. Hu Z. Li Z. miRNAs in synapse development and synaptic plasticity. Curr. Opin. Neurobiol. 2017 45 24 31 10.1016/j.conb.2017.02.014 28334640
    [Google Scholar]
  100. Couto R.R. Kubaski F. Siebert M. Félix T.M. Brusius-Facchin A.C. Leistner-Segal S. Increased Serum Levels of miR-125b and miR-132 in Fragile X Syndrome. Neurol. Genet. 2022 8 6 e200024 10.1212/NXG.0000000000200024 36313066
    [Google Scholar]
  101. Elramah S. Landry M. Favereaux A. MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front. Cell. Neurosci. 2014 8 31 10.3389/fncel.2014.00031 24574967
    [Google Scholar]
  102. Wu X.L. Yan Q.J. Zhu F. Abnormal synaptic plasticity and impaired cognition in schizophrenia. World J. Psychiatry 2022 12 4 541 557 10.5498/wjp.v12.i4.541 35582335
    [Google Scholar]
  103. Kiltschewskij D. Cairns M.J. Temporospatial guidance of activity-dependent gene expression by microRNA: Mechanisms and functional implications for neural plasticity. Nucleic Acids Res. 2019 47 2 533 545 10.1093/nar/gky1235 30535081
    [Google Scholar]
  104. Hollins S.L. Cairns M.J. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog. Neurobiol. 2016 143 61 81 10.1016/j.pneurobio.2016.06.005 27317386
    [Google Scholar]
  105. Schell G. Roy B. Prall K. Dwivedi Y. miR-218: A stress-responsive epigenetic modifier. Noncoding RNA 2022 8 4 55 10.3390/ncrna8040055 35893238
    [Google Scholar]
  106. Momtazmanesh S. Zare-Shahabadi A. Rezaei N. Cytokine alterations in schizophrenia: An updated review. Front. Psychiatry 2019 10 892 10.3389/fpsyt.2019.00892 31908647
    [Google Scholar]
  107. Prowse N. Hayley S. Microglia and BDNF at the crossroads of stressor related disorders: Towards a unique trophic phenotype. Neurosci. Biobehav. Rev. 2021 131 135 163 10.1016/j.neubiorev.2021.09.018 34537262
    [Google Scholar]
  108. Hassan M. Amir A. Shahzadi S. Kloczkowski A. Therapeutic implications of microRNAs in depressive disorders: A review. Int. J. Mol. Sci. 2022 23 21 13530 10.3390/ijms232113530 36362315
    [Google Scholar]
  109. Improta-Caria A.C. Nonaka C.K.V. Cavalcante B.R.R. De Sousa R.A.L. Aras Júnior R. Souza B.S.F. Modulation of microRNAs as a potential molecular mechanism involved in the beneficial actions of physical exercise in Alzheimer disease. Int. J. Mol. Sci. 2020 21 14 4977 10.3390/ijms21144977 32674523
    [Google Scholar]
  110. Tonacci A. Bagnato G. Pandolfo G. Billeci L. Sansone F. Conte R. Gangemi S. MicroRNA cross-involvement in autism spectrum disorders and atopic dermatitis: A literature review. J. Clin. Med. 2019 8 1 88 10.3390/jcm8010088 30646527
    [Google Scholar]
  111. Cao D.D. Li L. Chan W.Y. MicroRNAs: Key regulators in the central nervous system and their implication in neurological diseases. Int. J. Mol. Sci. 2016 17 6 842 10.3390/ijms17060842 27240359
    [Google Scholar]
  112. Beveridge N.J. Cairns M.J. MicroRNA dysregulation in schizophrenia. Neurobiol. Dis. 2012 46 2 263 271 10.1016/j.nbd.2011.12.029 22207190
    [Google Scholar]
  113. Uzuneser T.C. Speidel J. Kogias G. Wang A.L. de Souza Silva M.A. Huston J.P. Zoicas I. von Hörsten S. Kornhuber J. Korth C. Müller C.P. Disrupted-in-schizophrenia 1 (DISC1) overexpression and juvenile immune activation cause sex-specific schizophrenia-related psychopathology in rats. Front. Psychiatry 2019 10 222 10.3389/fpsyt.2019.00222 31057438
    [Google Scholar]
  114. Gu S. Rong H. Zhang G. Kang L. Yang M. Guan H. Functional SNP in 3′-UTR microrna-binding site of ZNF350 confers risk for age-related cataract. Hum. Mutat. 2016 37 11 1223 1230 10.1002/humu.23073 27586871
    [Google Scholar]
  115. Bathina S. Das U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015 6 6 1164 1178 10.5114/aoms.2015.56342 26788077
    [Google Scholar]
  116. Ding C.Y. Ding Y.T. Ji H. Wang Y.Y. Zhang X. Yin D.M. Genetic labeling reveals spatial and cellular expression pattern of neuregulin 1 in mouse brain. Cell Biosci. 2023 13 1 79 10.1186/s13578‑023‑01032‑4 37147705
    [Google Scholar]
  117. Zhang X. Ma Y. Zhou F. Zhang M. Zhao D. Wang X. Yang T. Ma J. Identification of miRNA–mRNA regulatory network associated with the glutamatergic system in post-traumatic epilepsy rats. Front. Neurol. 2022 13 1102672 10.3389/fneur.2022.1102672 36619916
    [Google Scholar]
  118. Nguyen T.P.N. Kumar M. Fedele E. Bonanno G. Bonifacino T. MicroRNA alteration, application as biomarkers, and therapeutic approaches in neurodegenerative diseases. Int. J. Mol. Sci. 2022 23 9 4718 10.3390/ijms23094718 35563107
    [Google Scholar]
  119. Yusof K.M. Groen K. Rosli R. Avery-Kiejda K.A. Crosstalk between microRNAs and the pathological features of secondary lymphedema. Front. Cell Dev. Biol. 2021 9 732415 10.3389/fcell.2021.732415 34733847
    [Google Scholar]
  120. Griffin A. Mahesh A. Tiwari V.K. Disruption of the gene regulatory programme in neurodevelopmental disorders. Biochim Biophys Acta Gene Regul Mech. 2022 1865 7 194860 10.1016/j.bbagrm.2022.194860 36007842
    [Google Scholar]
  121. Ma Q. Zhang L. Pearce W.J. MicroRNAs in brain development and cerebrovascular pathophysiology. Am. J. Physiol. Cell Physiol. 2019 317 1 C3 C19 10.1152/ajpcell.00022.2019 30840494
    [Google Scholar]
  122. Mahmoudi E. Cairns M.J. MiR-137: An important player in neural development and neoplastic transformation. Mol. Psychiatry 2017 22 1 44 55 10.1038/mp.2016.150 27620842
    [Google Scholar]
  123. Yin J. Lin J. Luo X. Chen Y. Li Z. Ma G. Li K. miR-137: A new player in schizophrenia. Int. J. Mol. Sci. 2014 15 2 3262 3271 10.3390/ijms15023262 24566148
    [Google Scholar]
  124. Li J. Xu X. Liu J. Zhang S. Tan X. Li Z. Zhang J. Wang Z. Decoding microRNAs in autism spectrum disorder. Mol. Ther. Nucleic Acids 2022 30 535 546 10.1016/j.omtn.2022.11.005 36457702
    [Google Scholar]
  125. Miguel-Hidalgo J.J. Hall K.O. Bonner H. Roller A.M. Syed M. Park C.J. Ball J.P. Rothenberg M.E. Stockmeier C.A. Romero D.G. MicroRNA-21: Expression in oligodendrocytes and correlation with low myelin mRNAs in depression and alcoholism. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017 79 Pt B 503 514 10.1016/j.pnpbp.2017.08.009 28802862
    [Google Scholar]
  126. Pejhan S. Rastegar M. Role of DNA methyl-CpG-binding protein MeCP2 in Rett syndrome pathobiology and mechanism of disease. Biomolecules 2021 11 1 75 10.3390/biom11010075 33429932
    [Google Scholar]
  127. Davis G.M. Haas M.A. Pocock R. MicroRNAs: Not “fine-tuners” but key regulators of neuronal development and function. Front. Neurol. 2015 6 245 10.3389/fneur.2015.00245 26635721
    [Google Scholar]
  128. Hussein M. Magdy R. MicroRNAs in central nervous system disorders: Current advances in pathogenesis and treatment. Egypt. J. Neurol. Psychiat. Neurosurg. 2021 57 1 36 10.1186/s41983‑021‑00289‑1
    [Google Scholar]
  129. Zhu Z. Huang X. Du M. Wu C. Fu J. Tan W. Wu B. Zhang J. Liao Z.B. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol. Psychiatry 2023 28 7 2630 2644 10.1038/s41380‑023‑02126‑8 37340171
    [Google Scholar]
  130. Guan F. Ni T. Zhu W. Williams L.K. Cui L.B. Li M. Tubbs J. Sham P.C. Gui H. Integrative omics of schizophrenia: From genetic determinants to clinical classification and risk prediction. Mol. Psychiatry 2022 27 1 113 126 10.1038/s41380‑021‑01201‑2 34193973
    [Google Scholar]
  131. Di Fazio A. Gullerova M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br. J. Cancer 2023 128 9 1625 1635 10.1038/s41416‑023‑02191‑4 36759729
    [Google Scholar]
  132. Wang J. Lee J.E. Riemondy K. Yu Y. Marquez S.M. Lai E.C. Yi R. XPO5 promotes primary miRNA processing independently of RanGTP. Nat. Commun. 2020 11 1 1845 10.1038/s41467‑020‑15598‑x 32296071
    [Google Scholar]
  133. Wu K. He J. Pu W. Peng Y. The role of exportin-5 in microRNA biogenesis and cancer. Genomics Proteomics Bioinformatics 2018 16 2 120 126 10.1016/j.gpb.2017.09.004 29723684
    [Google Scholar]
  134. Zinkstok J.R. Boot E. Bassett A.S. Hiroi N. Butcher N.J. Vingerhoets C. Vorstman J.A.S. van Amelsvoort T.A.M.J. Neurobiological perspective of 22q11.2 deletion syndrome. Lancet Psychiatry 2019 6 11 951 960 10.1016/S2215‑0366(19)30076‑8 31395526
    [Google Scholar]
  135. Soreq H. European society for neurochemistry biannual conference: Molecular mechanisms of regulation in the nervous system. Brain 2014 116 33 57
    [Google Scholar]
  136. Zhang K. Liao P. Wen J. Hu Z. Synaptic plasticity in schizophrenia pathophysiology. IBRO Neurosci Rep. 2023 14 244 252 10.1016/j.ibneur.2023.01.008 37388494
    [Google Scholar]
  137. Howes O.D. Onwordi E.C. The synaptic hypothesis of schizophrenia version III: A master mechanism. Mol. Psychiatry 2023 28 5 1843 1856 10.1038/s41380‑023‑02043‑w 37041418
    [Google Scholar]
  138. Majumder M. Johnson R.H. Palanisamy V. Fragile X-related protein family: A double-edged sword in neurodevelopmental disorders and cancer. Crit. Rev. Biochem. Mol. Biol. 2020 55 5 409 424 10.1080/10409238.2020.1810621 32878499
    [Google Scholar]
  139. Liu Y.Z. Wang Y.X. Jiang C.L. Inflammation: The common pathway of stress-related diseases. Front. Hum. Neurosci. 2017 11 316 10.3389/fnhum.2017.00316 28676747
    [Google Scholar]
  140. Butz H. Mészáros K. Likó I. Patocs A. Wnt-signaling regulated by glucocorticoid-induced miRNAs. Int. J. Mol. Sci. 2021 22 21 11778 10.3390/ijms222111778 34769207
    [Google Scholar]
  141. Zingale V.D. Gugliandolo A. Mazzon E. MiR-155: An important regulator of Neuroinflammation. Int. J. Mol. Sci. 2021 23 1 90 10.3390/ijms23010090 35008513
    [Google Scholar]
  142. Munawar N. Ahsan K. Muhammad K. Ahmad A. Anwar M.A. Shah I. Al Ameri A.K. Al Mughairbi F. Hidden role of gut microbiome dysbiosis in schizophrenia: Antipsychotics or psychobiotics as therapeutics? Int. J. Mol. Sci. 2021 22 14 7671 10.3390/ijms22147671 34299291
    [Google Scholar]
  143. Eyles D.W. How do established developmental risk-factors for schizophrenia change the way the brain develops? Transl. Psychiatry 2021 11 1 158 10.1038/s41398‑021‑01273‑2 33686066
    [Google Scholar]
  144. Sakamoto K. Crowley J.J. A comprehensive review of the genetic and biological evidence supports a role for MicroRNA-137 in the etiology of schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2018 177 2 242 256 10.1002/ajmg.b.32554 29442441
    [Google Scholar]
  145. Advani D. Kumar P. Deciphering the molecular mechanism and crosstalk between Parkinson’s disease and breast cancer through multi-omics and drug repurposing approach. Neuropeptides 2022 96 102283 10.1016/j.npep.2022.102283 35994781
    [Google Scholar]
  146. Xu B. Hsu P.K. Stark K.L. Karayiorgou M. Gogos J.A. Derepression of a neuronal inhibitor due to miRNA dysregulation in a schizophrenia-related microdeletion. Cell 2013 152 1-2 262 275 10.1016/j.cell.2012.11.052 23332760
    [Google Scholar]
  147. Condrat C.E. Thompson D.C. Barbu M.G. Bugnar O.L. Boboc A. Cretoiu D. Suciu N. Cretoiu S.M. Voinea S.C. miRNAs as biomarkers in disease: Latest findings regarding their role in diagnosis and prognosis. Cells 2020 9 2 276 10.3390/cells9020276 31979244
    [Google Scholar]
  148. Oliveto S. Mancino M. Manfrini N. Biffo S. Role of microRNAs in translation regulation and cancer. World J. Biol. Chem. 2017 8 1 45 56 10.4331/wjbc.v8.i1.45 28289518
    [Google Scholar]
  149. Mayya V.K. Duchaine T.F. Ciphers and executioners: How 3′-untranslated regions determine the fate of messenger RNAs. Front. Genet. 2019 10 6 10.3389/fgene.2019.00006 30740123
    [Google Scholar]
  150. Tomé-Carneiro J. de Las Hazas M.C. Boughanem H. Böttcher Y. Cayir A. Macias Gonzalez M. Dávalos A. Up-to-date on the evidence linking miRNA-related epitranscriptomic modifications and disease settings. Can these modifications affect cross-kingdom regulation? RNA Biol. 2021 18 sup2 586 599 10.1080/15476286.2021.2002003 34843412
    [Google Scholar]
  151. Stepien A. Dolata J. Gulanicz T. Bielewicz D. Bajczyk M. Smolinski D.J. Szweykowska-Kulinska Z. Jarmolowski A. Chromatin-associated microprocessor assembly is regulated by the U1 snRNP auxiliary protein PRP40. Plant Cell 2022 34 12 4920 4935 10.1093/plcell/koac278 36087009
    [Google Scholar]
  152. Loh H.Y. Norman B.P. Lai K.S. Rahman N.M.A.N.A. Alitheen N.B.M. Osman M.A. The regulatory role of microRNAs in breast cancer. Int. J. Mol. Sci. 2019 20 19 4940 10.3390/ijms20194940 31590453
    [Google Scholar]
  153. Catalanotto C. Cogoni C. Zardo G. MicroRNA in control of gene expression: An overview of nuclear functions. Int. J. Mol. Sci. 2016 17 10 1712 10.3390/ijms17101712 27754357
    [Google Scholar]
  154. Aksoy-Aksel A. Zampa F. Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014 369 1652 20130515 10.1098/rstb.2013.0515 25135976
    [Google Scholar]
  155. Cao B. Yang M. Kang G. Li R. Zhu X. Kang Q. Sun Y. Zhang M. Wang Y. Chen X. Yu Q. The relationship between gene polymorphism of miRNAs regulating FGA and schizophrenia. Open Access Maced. J. Med. Sci. 2019 7 9 1436 1439 10.3889/oamjms.2019.334 31198450
    [Google Scholar]
  156. Wang W. Kwon E.J. Tsai L.H. MicroRNAs in learning, memory, and neurological diseases. Learn. Mem. 2012 19 9 359 368 10.1101/lm.026492.112 22904366
    [Google Scholar]
  157. Zapletal D. Taborska E. Pasulka J. Malik R. Kubicek K. Zanova M. Much C. Sebesta M. Buccheri V. Horvat F. Jenickova I. Prochazkova M. Prochazka J. Pinkas M. Novacek J. Joseph D.F. Sedlacek R. Bernecky C. O’Carroll D. Stefl R. Svoboda P. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell 2022 82 21 4064 4079.e13 10.1016/j.molcel.2022.10.010 36332606
    [Google Scholar]
  158. Suster I. Feng Y. Multifaceted regulation of MicroRNA biogenesis: Essential roles and functional integration in neuronal and glial development. Int. J. Mol. Sci. 2021 22 13 6765 10.3390/ijms22136765 34201807
    [Google Scholar]
  159. Zhao Z. Jinde S. Koike S. Tada M. Satomura Y. Yoshikawa A. Nishimura Y. Takizawa R. Kinoshita A. Sakakibara E. Sakurada H. Yamagishi M. Nishimura F. Inai A. Nishioka M. Eriguchi Y. Araki T. Takaya A. Kan C. Umeda M. Shimazu A. Hashimoto H. Bundo M. Iwamoto K. Kakiuchi C. Kasai K. Altered expression of microRNA-223 in the plasma of patients with first-episode schizophrenia and its possible relation to neuronal migration-related genes. Transl. Psychiatry 2019 9 1 289 10.1038/s41398‑019‑0609‑0 31712567
    [Google Scholar]
  160. Lim M. Carollo A. Neoh M.J.Y. Esposito G. Mapping miRNA research in schizophrenia: A scientometric review. Int. J. Mol. Sci. 2022 24 1 436 10.3390/ijms24010436 36613876
    [Google Scholar]
  161. Ellwanger J.H. Zambra F.M.B. Guimarães R.L. Chies J.A.B. MicroRNA-related polymorphisms in infectious diseases—tiny changes with a huge impact on viral infections and potential clinical applications. Front. Immunol. 2018 9 1316 10.3389/fimmu.2018.01316 29963045
    [Google Scholar]
  162. Valinezhad Orang A. Safaralizadeh R. Kazemzadeh-Bavili M. Mechanisms of miRNA-mediated gene regulation from common downregulation to mRNA-specific upregulation. Int J Genomics 2014 2014 970607 10.1155/2014/970607 25180174
    [Google Scholar]
  163. Wilczynska A. Bushell M. The complexity of miRNA-mediated repression. Cell Death Differ. 2015 22 1 22 33 10.1038/cdd.2014.112 25190144
    [Google Scholar]
  164. Correia de Sousa M. Gjorgjieva M. Dolicka D. Sobolewski C. Foti M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci. 2019 20 24 6249 10.3390/ijms20246249 31835747
    [Google Scholar]
  165. Kellendonk C. Simpson E.H. Kandel E.R. Modeling cognitive endophenotypes of schizophrenia in mice. Trends Neurosci. 2009 32 6 347 358 10.1016/j.tins.2009.02.003 19409625
    [Google Scholar]
  166. Vogel B.O. Lett T.A. Erk S. Mohnke S. Wackerhagen C. Brandl E.J. Romanczuk-Seiferth N. Otto K. Schweiger J.I. Tost H. Nöthen M.M. Rietschel M. Degenhardt F. Witt S.H. Meyer-Lindenberg A. Heinz A. Walter H. The influence of MIR137 on white matter fractional anisotropy and cortical surface area in individuals with familial risk for psychosis. Schizophr. Res. 2018 195 190 196 10.1016/j.schres.2017.09.030 28958479
    [Google Scholar]
  167. Shao L. Lu B. Wen Z. Teng S. Wang L. Zhao Y. Wang L. Ishizuka K. Xu X. Sawa A. Song H. Ming G. Zhong Y. Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Hum. Mol. Genet. 2017 26 14 2634 2648 10.1093/hmg/ddx147 28472294
    [Google Scholar]
  168. Tropea D. Hardingham N. Millar K. Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J. Physiol. 2018 596 14 2747 2771 10.1113/JP274330 30008190
    [Google Scholar]
  169. Magwai T. Shangase K.B. Oginga F.O. Chiliza B. Mpofana T. Xulu K.R. DNA methylation and schizophrenia: Current literature and future perspective. Cells 2021 10 11 2890 10.3390/cells10112890 34831111
    [Google Scholar]
  170. Hauberg M.E. Roussos P. Grove J. Børglum A.D. Mattheisen M. Schizophrenia Working Group of the Psychiatric Genomics Consortium Analyzing the role of microRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry 2016 73 4 369 377 10.1001/jamapsychiatry.2015.3018 26963595
    [Google Scholar]
  171. Nedoluzhko A. Gruzdeva N. Sharko F. Rastorguev S. Zakharova N. Kostyuk G. Ushakov V. The biomarker and therapeutic potential of circular RNAs in Schizophrenia. Cells 2020 9 10 2238 10.3390/cells9102238 33020462
    [Google Scholar]
  172. Zhang W.H. Jiang L. Li M. Liu J. MicroRNA-124: An emerging therapeutic target in central nervous system disorders. Exp. Brain Res. 2023 241 5 1215 1226 10.1007/s00221‑022‑06524‑2 36961552
    [Google Scholar]
  173. Ye Y. Xu H. Su X. He X. Role of microRNA in governing synaptic plasticity. Neural Plast 2016 2016 4959523 10.1155/2016/4959523 27034846
    [Google Scholar]
  174. Rahimian P. He J.J. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression. J. Neuroinflammation 2016 13 1 247 10.1186/s12974‑016‑0716‑2 27634380
    [Google Scholar]
  175. Park I. Kim H.J. Kim Y. Hwang H.S. Kasai H. Kim J.H. Park J.W. Nanoscale imaging reveals miRNA-mediated control of functional states of dendritic spines. Proc. Natl. Acad. Sci. USA 2019 116 19 9616 9621 10.1073/pnas.1819374116 31019087
    [Google Scholar]
  176. Wang H. Moyano A.L. Ma Z. Deng Y. Lin Y. Zhao C. Zhang L. Jiang M. He X. Ma Z. Lu F. Xin M. Zhou W. Yoon S.O. Bongarzone E.R. Lu Q.R. miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev. Cell 2017 40 6 566 582.e5 10.1016/j.devcel.2017.03.001 28350989
    [Google Scholar]
  177. Zhou B. Zhu Z. Ransom B.R. Tong X. Oligodendrocyte lineage cells and depression. Mol. Psychiatry 2021 26 1 103 117 10.1038/s41380‑020‑00930‑0 33144710
    [Google Scholar]
  178. Sidorov M.S. Auerbach B.D. Bear M.F. Fragile X mental retardation protein and synaptic plasticity. Mol. Brain 2013 6 1 15 10.1186/1756‑6606‑6‑15 23566911
    [Google Scholar]
  179. Chandra P. Rastogi V. Porwal M. Sharma H. Verma A. Sachan N. A critical review on lipid nanoparticle-based siRNA formulations for breast cancer management. Pharm. Nanotechnol. 2024 13 1 19 10.2174/0122117385330006241120084721 39670497
    [Google Scholar]
  180. Kumari A. Bajwa N. Tamana Ashique S. Sharma H. Mishra N. Rathore C. Singh P.A. From lab bench to bedside: Advancing malaria treatments through research, patents, and clinical trials. Curr. Treat. Options Infect. Dis. 2024 17 1 4 10.1007/s40506‑024‑00279‑w
    [Google Scholar]
  181. Al Noman A. Dev Sharma P. Jahin Mim T. Al Azad M. Sharma H. Molecular docking and ADMET analysis of coenzyme Q10 as a potential therapeutic agent for Alzheimer’s disease. Aging Pathobiology and Therapeutics 2024 6 4 1 13 10.31491/APT.2024.12.155
    [Google Scholar]
  182. Inamdar A. Gurupadayya B. Halagali P. Tippavajhala V.K. Khan F. Pathak R. Sharma H. Unraveling neurological drug delivery: Polymeric nanocarriers for enhanced blood-brain barrier penetration. Curr. Drug Targets 2024 26 1 24 10.2174/0113894501339455241101065040 39513304
    [Google Scholar]
  183. Mishra R. Kaur V. Nogai L. Bhandari M. Bajaj M. Pathak R. Lohia R. Saxena A. Sharma H. Emerging insights and novel therapeutics in polycystic ovary syndrome. Biochem. Cell. Arch. 2024 24 2 1613 1626 10.51470/bca.2024.24.2.1613
    [Google Scholar]
  184. Inamdar A. Gurupadayya B. Halagali P. S N. Pathak R. Singh H. Sharma H. Cutting-edge strategies for overcoming therapeutic barriers in Alzheimer’s disease. Curr. Pharm. Des. 2024 31 1 21 10.2174/0113816128344571241018154506 39492772
    [Google Scholar]
  185. Al Noman A. Afrosa H. Lihu I.K. Sarkar O. Nabin N.R. Datta M. Pathak R. Sharma H. Vitamin D and neurological health: Unraveling risk factors, disease progression, and treatment potential. CNS Neurol. Disord. Drug Targets 2024 24 1 12 10.2174/0118715273330972241009092828 39440730
    [Google Scholar]
  186. Chandra P. Porwal M. Rastogi V. Tyagi S.J. Sharma H. Verma A. Carb-loaded passion: A comprehensive exploration of carbohydrates in shaping aphrodisiac effects. Macromol. Symp. 2024 413 5 2400064 10.1002/masy.202400064
    [Google Scholar]
  187. Sarkar S. Bhui U. Kumar B. Ashique S. Kumar P. Sharma H. Bhowmick M. Pal R. Kumar T. Correlation between cognitive impairment and peripheral biomarkers - significance of phosphorylated Tau and Amyloid-β in Alzheimer’s disease: A new insight. Curr Psychiatry Res Rev 2024 1 25 10.2174/0126660822329981241007105405
    [Google Scholar]
  188. Pathak R. Sharma H. Chandra P. Halagali P. Ali Z. A compressive review: Mechanisms underlying the use of diuretics in the treatment of hypertension. Indian J Nat Sci. 2024 15 85 78063 78075
    [Google Scholar]
  189. Sharma H. Chandra P. Pathak R. Bhandari M. Arushi S.V. Advancements in the therapeutic approaches to treat neurological disorders. Cah Magellanes-NS. 2024 6 2 4328 4389
    [Google Scholar]
  190. Chandra P. Sharma H. Phosphodiesterase inhibitors for treatment of Alzheimer’s Disease. Indian Drugs 2024 61 7 7 22 10.53879/id.61.07.14382
    [Google Scholar]
  191. Pathak R. Sharma S. Bhandari M. Nogai L. Mishra R. Saxena A. Reena Km S.H. Neuroinflammation at the crossroads of metabolic and neurodegenerative diseases: Causes, consequences and interventions. J. Exp. Zool. India 2024 21 2 2447 2461 10.59467/jez.2024.27.2.2447
    [Google Scholar]
  192. Singh A. Kumar P. Sharma H. Breakthrough opportunities of nanotheranostics in psoriasis: From pathogenesis to management strategy. Infect. Disord. Drug Targets 2024 24 1 20 10.2174/0118715265298802240603120251 39075964
    [Google Scholar]
  193. Sharma H. Tyagi S.J. Varshney P. Pathak N. Pathak R. A review on Mpox: Diagnosis, prevention and treatments. Coronaviruses 2024 5 1 17 10.2174/0126667975301557240604113752
    [Google Scholar]
  194. Sharma H. Halagali P. Majumder A. Sharma V. Pathak R. Natural compounds targeting signaling pathways in breast cancer therapy. African J. Biol. Sci. 2024 6 10 5430 5479 10.33472/AFJBS.6.10.2024.5430‑5479
    [Google Scholar]
  195. Sharma H. Pathak R. Biswas D. Unveiling the therapeutic potential of modern probiotics in addressing neurodegenerative disorders: A comprehensive exploration, review and future perspectives on intervention strategies. Current Psychiatry Research and Reviews 2024 20 1-25 10.2174/0126660822304321240520075036
    [Google Scholar]
  196. Pathak R. Kaur V. Sharma S. Bhandari M. Mishra R. Saxena A. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors. Afr.J.Bio.Sc. 2024 6 9 1311 1330 10.33472/AFJBS.6.9.2024.1311‑1330
    [Google Scholar]
  197. Kapoor D.U. Sharma H. Maheshwari R. Pareek A. Gaur M. Prajapati B.G. Castro G.R. Thanawuth K. Suttiruengwong S. Sriamornsak P. Konjac glucomannan: A comprehensive review of its extraction, health benefits, and pharmaceutical applications. Carbohydr. Polym. 2024 339 122266 10.1016/j.carbpol.2024.122266 38823930
    [Google Scholar]
  198. Chandra P. Ali Z. Fatima N. Sharma H. Sachan N. Sharma K.K. Verma A. Shankhpushpi (Convolvulus pluricaulis): Exploring its cognitive enhancing mechanisms and therapeutic potential in neurodegenerative disorders. Curr. Bioact. Compd. 2024 20 10.2174/0115734072292339240416095600
    [Google Scholar]
  199. Kumar P. Sharma H. Singh A. Durgapal S. Kukreti G. Bhowmick M. Bhowmick P. Ashique S. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders. Curr. Cancer Ther. Rev. 2024 20 [Internet]. 10.2174/0115733947304806240417092449
    [Google Scholar]
  200. Sharma H. Chandra P. Effects of natural remedies on memory loss and Alzheimer’s disease. Afr.J.Bio.Sc. 2024 6 7 187 211 10.33472/AFJBS.6.7.2024.187‑211
    [Google Scholar]
  201. Halagali P. Inamdar A. Singh J. Anand A. Sadhu P. Pathak R. Sharma H. Biswas D. Phytochemicals, herbal extracts, and dietary supplements for metabolic disease management. Endocr. Metab. Immune Disord. Drug Targets 2024 10.2174/011871530328791124040905571038676520
    [Google Scholar]
  202. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention.Curr. Pharm. Biotechnol. 2024 10.2174/011389201030146924040908221238638042
    [Google Scholar]
  203. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in brain development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  204. Ashique S. Bhowmick M. Pal R. Khatoon H. Kumar P. Sharma H. Garg A. Kumar S. Das U. Multi drug resistance in Colorectal Cancer- approaches to overcome, advancements and future success. Advances in Cancer Biology - Metastasis 2024 10 100114 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  205. Ashique S. Pal R. Sharma H. Mishra N. Garg A. Unraveling the emerging niche role of extracellular vesicles (EVs) in traumatic brain injury (TBI). CNS Neurol. Disord. Drug Targets 2024 23 11 1357 1370 10.2174/0118715273288155240201065041 38351688
    [Google Scholar]
  206. Kumar P. Pandey S. Ahmad F. Verma A. Sharma H. Ashique S. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2023 9 1 31 10.2174/0115734137271865231105070727
    [Google Scholar]
  207. Sharma H. Chandra P. Verma A. Pandey S.N. Kumar P. Sigh A. Therapeutic approaches of nutraceuticals in the prevention of neurological disorders. Eur Chem Bull. 2023 12 5 1575 1596 10.48047/ecb/2023.12.si5a.0382023.20/05/2023
    [Google Scholar]
  208. Sharma H. Chandra P. Challenges and future prospects: A benefaction of phytoconstituents on molecular targets pertaining to Alzheimer’s disease. Int. J. Pharm. Investig. 2023 14 1 117 126 10.5530/ijpi.14.1.15
    [Google Scholar]
  209. Sharma H. Pathak R. Jain S. Bhandari M. Mishra R. Reena K. Varshney P. Ficus racemosa L: A review on its important medicinal uses, phytochemicals and biological activities. J. Popul. Ther. Clin. Pharmacol. 2023 30 17 213 227 10.47750/jptcp.2023.30.17.018
    [Google Scholar]
  210. Singh L.P. Gugulothu S. Perusomula R. Mishra A. Bhavani P.D. Singh S. Sharma H. Dwivedi M. Synthesis of some tetrazole and thiazolidine-4-one derivatives of Schiff base by using ionic liquids as catalyst and evaluation of their antifungal and antibacterial activity. Eur. Chem. Bull. 2023 12 Special Issue 8 281 297
    [Google Scholar]
  211. Pathak, Rashmi & Sharma, Himanshu & Nogai, Lipi & Bhandari, Maulshree & Koli, Manju & Mishra, Riya & Kumar, N. A brief review on pathogenesis, transmission and management of monkeypox virus outbreaks. Bull. Environ. Pharmacol. Life Sci. 2023 12 4 244 256
    [Google Scholar]
  212. Sharma H. Bhattacharya V. Bhatt A. Garg S. Chaurasia G. Akram W. Sharma K. Mandal S. Optimization of formulation by box Behnken and invitro studies of emulsified gel containing zaltoprofen for the management of arthritis. European Chemical Bulletin 2023 12 SS-4 11734 11744 10.48047/ecb/2023.12.si4.1052
    [Google Scholar]
  213. Manju Koli Nogai L. Bhandari M. Mishra R. Pathak R. Sharma H. Formulation And evaluation of berberine hydrochloride film coated tablet. J. Pharm. Negat. Results 2023 3439 3449 10.47750/pnr.2023.14.02.403
    [Google Scholar]
  214. Dwivedi M. Jha K.K. Pandey S. Sachan A. Sharma H. Dwivedi S.K. Formulation and evaluation of herbal medicated chocolate in treatment of intestinal worms and related problems. IJFANS 2022 11 2 1426 1439
    [Google Scholar]
  215. Sharma H. Pathak R. Kumar N. Nogai L. Mishra R. Bhandari M. Koli M. Pandey P. Endocannabinoid system: Role in depression, recompense, and pain control. J. Survey Fisheries Sci. 2023 10 4S 2743 2751 10.17762/sfs.v10i4S.1655
    [Google Scholar]
  216. Sharma H. Pathak R. Saxena D. Kumar N. Emerging role of non-coding RNA’S: Human health and diseases. GIS 2022 9 7 2022 2050
    [Google Scholar]
  217. Sharma H. Rani T. Khan S. An insight into neuropathic pain: A systemic and up-to-date review. Int. J. Pharm. Sci. Res. 2023 14 2 607 621 10.13040/IJPSR.0975‑8232.14(2).607‑21
    [Google Scholar]
  218. Pandey P. Kumar N. Kaur T. Saini S. Sharma H. Antidiabetic activity of caesalpinia bonducella leavess of hydro alcoholic extracts in albino rats. YMER Digital 2022 21 7 840 846 10.37896/YMER21.07/67
    [Google Scholar]
  219. Pathak R. Sharma H. Kumar N. A brief review on Anthocephalus cadamba. Acta Scientific Pharmacology. 2022 3 5.
    [Google Scholar]
  220. Sharma S. Dinda S.C.S.H. Matrix types drug delivery system for sustained release: A review. ASIO J Drug Deliv. 2022 6 1 1 8
    [Google Scholar]
  221. Sharma H. Pathak R. A review on prelimenary phytochemical screening of Curcuma longa linn. J Pharma Herbal Med Res (ASIO-JPHMR) 2021 7 2 24 27
    [Google Scholar]
  222. Pathak R. Sharma H. A review on medicinal uses of Cinnamomum verum (Cinnamon). J. Drug Deliv. Ther. 2021 11 6-S 161 166 10.22270/jddt.v11i6‑S.5145
    [Google Scholar]
  223. Sharma H. Pande M. Jha K.K. Hyperuricemia: A risk factor beyond gout. ASIO Journal of Pharmaceutical & Herbal Medicines Research 2020 6 1 42 49
    [Google Scholar]
  224. Sharma H. Singh S. Jha K.K. Treatment and recommendations for homeless patients with hypertension, hyperlipidemia & heart failure-a review. ASIO Journal of Experimental Pharmacology & Clin. Res.ical Research 2020 6 1 24 32
    [Google Scholar]
  225. Suryawanshi M. Kurtkoti S. Mulla T. Shah E. Sharma H. Bhatt H. Edible Biopolymers for Food Applications. Green Biopolymers for Packaging Applications.CRC Press: Boca Raton, 2024 228 254 10.1201/9781003455356‑10
    [Google Scholar]
  226. Suryawanshi M. Mulla T. Suryawanshi I. Vinchurkar K. Kallawala U. Sharma H. Modified Starch in Food Packaging. Green Biopolymers for Packaging Applications. Boca Raton CRC Press 2024 255 271 10.1201/9781003455356‑11
    [Google Scholar]
  227. Sharma H. Kaushik M. Venishaa S. Pathak R. Farid A. Bhowmick M. Correlation and Successive Role of Synbiotics to Manage Blood Pressure. Synbiotics in Metabolic Disorders.CRC Press: Boca Raton 2024 103 120 10.1201/9781032702438‑7
    [Google Scholar]
  228. Ray P. Faseeh M.A. Adak D. Sharma H. Probiotics, Prebiotics, and Postbiotics on Metabolic Diseases Targeting Gut Microbiota. Synbiotics in Metabolic Disorders. CRC Press: Boca Raton, 2024 160 172 10.1201/9781032702438‑11
    [Google Scholar]
  229. Chandra P. Sharma H. Sachan N. The Potential Role of Prebiotics, Probiotics, and Synbiotics in Cancer Prevention and Therapy. Synbiotics in Metabolic Disorders.CRC Press: Boca Raton, 2024 191 213 10.1201/9781032702438‑13
    [Google Scholar]
  230. Kaushik M. Sharma H. Madeswaraguptha P. Vanangamudi M. Mudi V. Synbiotic. Synbiotics in Metabolic Disorders. CRC Press: Boca Raton, 2024 135 150 10.1201/9781032702438‑9
    [Google Scholar]
  231. Sharma H. Kumar S. Ashique S. Bhowmick P. Pal R. Farid A. The Impact of Probiotic and Synbiotic Supplementation on Oxidative Stress and Inflammation. Synbiotics in Metabolic Disorders. Boca Raton CRC Press 2024 90 102 10.1201/9781032702438‑6
    [Google Scholar]
  232. Halagali P. Nayak D. Tippavajhala V.K. Rathnanand M. Biswas D. Sharma H. Navigating the nanoscopic frontier: Ethical dimensions in developing nanocarriers for neurodegenerative diseases. Academic Press.Koduru, T.S.; Osmani, R.A.M.; Singh, E.; Dutta, S.B.T.T.N.R., Eds.; 2025 399 420 10.1016/B978‑0‑443‑28822‑7.00011‑8
    [Google Scholar]
  233. Halagali P. Nayak D. Rathnanand M. Tippavajhala V.K. Sharma H. Biswas D. Synergizing sustainable green nanotechnology and AI/ML for advanced nanocarriers: A paradigm shift in the treatment of neurodegenerative diseases. Academic Press. 2025 373 397 10.1016/B978‑0‑443‑28822‑7.00017‑9
    [Google Scholar]
  234. Kumar P. Ashique S. Kumar N. Jain A. Sharma H. Pandey S.N. Regulation of Plant Hormones Under Abiotic Stress Conditions in Plants. Plant Secondary Metabolites and Abiotic Stress. Wiley 2024 243 276 10.1002/9781394186457.ch10
    [Google Scholar]
  235. Datta D. Colaco V. Bandi S.P. Sharma H. Dhas N. Giram P.S. 7 - Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities. Polymers for Oral Drug Delivery Technologies Elsevier 2025 263 333 10.1016/B978‑0‑443‑13774‑7.00007‑4
    [Google Scholar]
  236. Sharma H. Jai Tyagi S. Pathak N. Keshari A. Varshney P. Pathak R. Social, Economic, and Environmental Justifications for 3D Printing of Pharmaceutical Products. Handbook of 3D Printing in Pharmaceutics.CRC Press: Boca Raton, 2024 179 194 10.1201/9781003439509‑17
    [Google Scholar]
  237. Sharma H. Pathak R. Sachan N. Chandra P. Role of Tumor Antigens for Cancer Vaccine Development. Cancer Vaccination and Challenges. Apple Academic Press: New York, 2024 57 94 10.1201/9781003501718‑3
    [Google Scholar]
  238. Sharma H. Anand A. Halagali P. Inamdar A. Pathak R. Taghizadeh-Hesary F. Ashique S. Advancement of nanoengineered flavonoids for chronic metabolic diseases. Role of flavonoids in chronic metabolic diseases Wiley 2024 459 510 10.1002/9781394238071.ch13
    [Google Scholar]
  239. Kaushik M. Kumar S. Singh M. Sharma H. Bhowmick M. Bhowmick P. Bio-inspired Nanomaterials in Cancer Theranostics. Nanotheranostics for Diagnosis and Therapy.Springer Nature Singapore: Singapore, 2024 95 123 10.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  240. Sharma H. Rachamalla H.K. Mishra N. Chandra P. Pathak R. Ashique S. Introduction to Exosome and Its Role in Brain Disorders. Exosomes Based Drug Delivery Strategies for Brain Disorders Mishra, N.; Ashique, S.; Garg, A.; Chithravel, V.; Anand, K., Eds.; Springer Nature: Singapore, 2024 1 35 10.1007/978‑981‑99‑8373‑5_1
    [Google Scholar]
  241. Sharma H. Tyagi S.J. Chandra P. Verma A. Kumar P. Ashique S. Role of Exosomes in Parkinson’s and Alzheimer’s Diseases. Exosomes Based Drug Delivery Strategies for Brain Disorders Mishra, N.; Ashique, S.; Garg, A.; Chithravel, V.; Anand, K., Eds.; Springer Nature Singapore: Singapore, 2024 147 182 10.1007/978‑981‑99‑8373‑5_6
    [Google Scholar]
  242. Kumar P. Sharma H. Singh A. Pandey S.N. Chandra P. Correlation Between Exosomes and Neuro-inflammation in Various Brain Disorders. Exosomes Based Drug Delivery Strategies for Brain Disorders Mishra, N.; Ashique, S.; Garg, A.; Chithravel, V.; Anand, K., Eds.; Springer Nature Singapore: Singapore, 2024 273 302 10.1007/978‑981‑99‑8373‑5_11
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037362309250319035758
Loading
/content/journals/cpps/10.2174/0113892037362309250319035758
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: biomarkers ; protein ; Schizophrenia ; oxidative stress ; peripheral miRNAs ; peptidase
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test