Skip to content
2000
Volume 26, Issue 8
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Mitochondria are organelles in eukaryotic organisms with an electron transport chain consisting of four complexes ( CI, CII, CIII, and CIV) on the inner membrane, which have functions such as providing energy, electron transport, and generating proton gradients. NADH dehydrogenase type 2 (NDH-2), widely found in bacterial, plant, fungal and protist mitochondria, is a nonproton-pumping single-subunit enzyme bound to the surface of the inner mitochondrial membrane that partially replaces NDH-1. NDH-2 has a crucial role in the energy metabolism of pathogenic microorganisms, and the lack of NDH-2 or its homologs in humans makes NDH-2 an essential target for the development of antimicrobial drugs. There is a wide variety of pathogenic microorganisms that invade the human body and cause diseases; therefore, more and more inhibitors targeting NDH-2 of different pathogenic microorganisms continue to be reported. This paper first reviews the structure and function of NDH-2 and summarizes the classification of compounds targeting NDH-2. Given the relative paucity of inhibition mechanisms for NDH-2, which has greatly hindered the development of targeted drugs, the article concludes with a summary of two possible mechanisms in action: allosteric inhibition and competitive inhibition. This review will provide theoretical support for the subsequent molecular design and modification of drugs targeting the pathogenic microorganism NDH-2.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037350396250213115109
2025-03-10
2025-11-05
Loading full text...

Full text loading...

References

  1. GiorgioM. MigliaccioE. OrsiniF. PaolucciD. MoroniM. ContursiC. PellicciaG. LuziL. MinucciS. MarcaccioM. PintonP. RizzutoR. BernardiP. PaolucciF. PelicciP.G. Electron transfer between cytochrome C and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis.Cell2005122222123310.1016/j.cell.2005.05.011 16051147
    [Google Scholar]
  2. ChenX. LiJ. HouJ. XieZ. YangF. Mammalian mitochondrial proteomics: insights into mitochondrial functions and mitochondria-related diseases.Expert Rev. Proteomics20107333334510.1586/epr.10.22 20536306
    [Google Scholar]
  3. ZhangB. ChuW. WeiP. LiuY. WeiT. Xanthohumol induces generation of reactive oxygen species and triggers apoptosis through inhibition of mitochondrial electron transfer chain complex I.Free Radic. Biol. Med.20158948649710.1016/j.freeradbiomed.2015.09.021 26453927
    [Google Scholar]
  4. GiorgiC. AgnolettoC. BononiA. BonoraM. De MarchiE. MarchiS. MissiroliS. PatergnaniS. PolettiF. RimessiA. SuskiJ.M. WieckowskiM.R. PintonP. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine.Mitochondrion2012121778510.1016/j.mito.2011.07.004 21798374
    [Google Scholar]
  5. SkulachevV.P. AnisimovV.N. AntonenkoY.N. BakeevaL.E. ChernyakB.V. ErichevV.P. FilenkoO.F. KalininaN.I. KapelkoV.I. KolosovaN.G. KopninB.P. KorshunovaG.A. LichinitserM.R. ObukhovaL.A. PasyukovaE.G. PisarenkoO.I. RoginskyV.A. RuugeE.K. SeninI.I. SeverinaI.I. SkulachevM.V. SpivakI.M. TashlitskyV.N. TkachukV.A. VyssokikhM.Y. YaguzhinskyL.S. ZorovD.B. An attempt to prevent senescence: A mitochondrial approach.Biochim. Biophys. Acta Bioenerg.20091787543746110.1016/j.bbabio.2008.12.008
    [Google Scholar]
  6. WallaceD.C. Diseases of the mitochondrial DNA.Annu. Rev. Biochem.19926111175121210.1146/annurev.bi.61.070192.005523 1497308
    [Google Scholar]
  7. StuartK. Kinetoplast DNA, mitochondria DNA with a difference.Mol. Biochem. Parasitol.1983929310410.1016/0166‑6851(83)90103‑2 6366549
    [Google Scholar]
  8. MacinoG. TzagoloffA. Assembly of the mitochondrial membrane system: Sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci.Cell198020250751710.1016/0092‑8674(80)90637‑6 6446405
    [Google Scholar]
  9. MannellaC.A. Structure and dynamics of the mitochondrial inner membrane cristae.Biochim. Biophys. Acta Mol. Cell Res.200617635-654254810.1016/j.bbamcr.2006.04.006 16730811
    [Google Scholar]
  10. DudkinaN.V. FoleaI.M. BoekemaE.J. Towards structural and functional characterization of photosynthetic and mitochondrial supercomplexes.Micron201572395110.1016/j.micron.2015.03.002 25841081
    [Google Scholar]
  11. CogliatiS. LorenziI. RigoniG. CaicciF. SorianoM.E. Regulation of mitochondrial electron transport chain assembly.J. Mol. Biol.2018430244849487310.1016/j.jmb.2018.09.016 30292820
    [Google Scholar]
  12. SpeijerD. Can all major ROS forming sites of the respiratory chain be activated by high FADH2/NADH ratios? Ancient evolutionary constraints determine mitochondrial ROS formation.BioEssays2019411180018010.1002/bies.201800180 30512221
    [Google Scholar]
  13. MoserC.C. FaridT.A. ChobotS.E. DuttonP.L. Electron tunneling chains of mitochondria.Biochim. Biophys. Acta Bioenerg.200617579-101096110910.1016/j.bbabio.2006.04.015
    [Google Scholar]
  14. SadriS. TomarN. YangC. AudiS.H. CowleyA.W.Jr DashR.K. Effects of ROS pathway inhibitors and NADH and FADH2 linked substrates on mitochondrial bioenergetics and ROS emission in the heart and kidney cortex and outer medulla.Arch. Biochem. Biophys.202374410969010.1016/j.abb.2023.109690 37429534
    [Google Scholar]
  15. CarrollJ. FearnleyI.M. SkehelJ.M. ShannonR.J. HirstJ. WalkerJ.E. Bovine complex I is a complex of 45 different subunits.J. Biol. Chem.200628143327243272710.1074/jbc.M607135200 16950771
    [Google Scholar]
  16. ZhangC. ShuaiJ. RanZ. ZhaoJ. WuZ. LiaoR. WuJ. MaW. LeiM. Structural insights into NDH-1 mediated cyclic electron transfer.Nat. Commun.202011188810.1038/s41467‑020‑14732‑z 32060291
    [Google Scholar]
  17. VinothkumarK.R. ZhuJ. HirstJ. Architecture of mammalian respiratory complex I.Nature20145157525808410.1038/nature13686 25209663
    [Google Scholar]
  18. WirthC. BrandtU. HunteC. ZickermannV. Structure and function of mitochondrial complex I.Biochim. Biophys. Acta Bioenerg.20161857790291410.1016/j.bbabio.2016.02.013
    [Google Scholar]
  19. JanssenR.J.R.J. NijtmansL.G. HeuvelL.P. SmeitinkJ.A.M. Mitochondrial complex I: Structure, function and pathology.J. Inherit. Metab. Dis.200629449951510.1007/s10545‑006‑0362‑4 16838076
    [Google Scholar]
  20. BandeirasT.M. SalgueiroC. KletzinA. GomesC.M. TeixeiraM. Acidianus ambivalens type‐II NADH dehydrogenase: genetic characterisation and identification of the flavin moiety as FMN.FEBS Lett.2002531227327710.1016/S0014‑5793(02)03514‑7 12417325
    [Google Scholar]
  21. WeinsteinE.A. YanoT. LiL.S. AvarbockD. AvarbockA. HelmD. McColmA.A. DuncanK. LonsdaleJ.T. RubinH. Inhibitors of type II NADH:menaquinone oxidoreductase represent a class of antitubercular drugs.Proc. Natl. Acad. Sci. USA2005102124548455310.1073/pnas.0500469102 15767566
    [Google Scholar]
  22. RaoS.P.S. AlonsoS. RandL. DickT. PetheK. The protonmotive force is required for maintaining ATP homeostasis and viability of hypoxic, nonreplicating Mycobacterium tuberculosis.Proc. Natl. Acad. Sci. USA200810533119451195010.1073/pnas.0711697105 18697942
    [Google Scholar]
  23. LencinaA.M. FranzaT. SullivanM.J. UlettG.C. IpeD.S. GauduP. GennisR.B. Schurig-BriccioL.A. Type 2 NADH dehydrogenase is the only point of entry for electrons into the Streptococcus agalactiae respiratory chain and is a potential drug target. ASM J.,20189410.1128/mBio.01034‑18 29970468
    [Google Scholar]
  24. MeloA.M.P. BandeirasT.M. TeixeiraM. New insights into type II NAD(P)H:quinone oxidoreductases.Microbiol. Mol. Biol. Rev.200468460361610.1128/MMBR.68.4.603‑616.2004 15590775
    [Google Scholar]
  25. FengY. LiW. LiJ. WangJ. GeJ. XuD. LiuY. WuK. ZengQ. WuJ.W. TianC. ZhouB. YangM. Structural insight into the type-II mitochondrial NADH dehydrogenases.Nature2012491742447848210.1038/nature11541 23086143
    [Google Scholar]
  26. IwataM. LeeY. YamashitaT. YagiT. IwataS. CameronA.D. MaherM.J. The structure of the yeast NADH dehydrogenase (Ndi1) reveals overlapping binding sites for water- and lipid-soluble substrates.Proc. Natl. Acad. Sci. USA201210938152471525210.1073/pnas.1210059109 22949654
    [Google Scholar]
  27. HeikalA. NakataniY. DunnE. WeimarM.R. DayC.L. BakerE.N. LottJ.S. SazanovL.A. CookG.M. Structure of the bacterial type II NADH dehydrogenase: a monotopic membrane protein with an essential role in energy generation.Mol. Microbiol.201491595096410.1111/mmi.12507 24444429
    [Google Scholar]
  28. PepeS. MentzerR.M.Jr GottliebR.A. Cell-permeable protein therapy for complex I dysfunction.J. Bioenerg. Biomembr.201446433734510.1007/s10863‑014‑9559‑7 25005682
    [Google Scholar]
  29. SantidrianA.F. Matsuno-YagiA. RitlandM. SeoB.B. LeBoeufS.E. GayL.J. YagiT. Felding-HabermannB. Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer progression.J. Clin. Invest.201312331068108110.1172/JCI64264 23426180
    [Google Scholar]
  30. TehJ. YanoT. RubinH. Type II NADH: Menaquinone oxidoreductase of Mycobacterium tuberculosis.Infect. Disord. Drug Targets20077216918110.2174/187152607781001781
    [Google Scholar]
  31. NixonG.L. PidathalaC. ShoneA.E. AntoineT. FisherN. O’NeillP.M. WardS.A. BiaginiG.A. Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era.Future Med. Chem.20135131573159110.4155/fmc.13.121 24024949
    [Google Scholar]
  32. ZumlaA. NahidP. ColeS.T. Advances in the development of new tuberculosis drugs and treatment regimens.Nat. Rev. Drug Discov.201312538840410.1038/nrd4001 23629506
    [Google Scholar]
  33. SeoB.B. Kitajima-IharaT. ChanE.K.L. SchefflerI.E. Matsuno-YagiA. YagiT. Molecular remedy of complex I defects: Rotenone-insensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae mitochondria restores the NADH oxidase activity of complex I-deficient mammalian cells.Proc. Natl. Acad. Sci. USA199895169167917110.1073/pnas.95.16.9167 9689052
    [Google Scholar]
  34. SeoB.B. Matsuno-YagiA. YagiT. Modulation of oxidative phosphorylation of human kidney 293 cells by transfection with the internal rotenone-insensitive NADH–quinone oxidoreductase (ndi1) gene of saccharomyces cerevisiae.Biochim. Biophys. Acta Bioenerg.199914121566510.1016/S0005‑2728(99)00051‑1 10354494
    [Google Scholar]
  35. SantidrianA.F. Matsuno-YagiA. RitlandM. SeoB.B. LeBoeufS.E. GayL.J. YagiT. Felding-HabermannB. Abstract IA3: Normalizing tumor cell metabolism in breast cancer metastasis: A novel therapeutic approach.Cancer Res.2013733Suppl.IA310.1158/1538‑7445.TIM2013‑IA3
    [Google Scholar]
  36. MarellaM. SeoB.B. Nakamaru-OgisoE. GreenamyreJ.T. Matsuno-YagiA. YagiT. Protection by the ndi1 gene against neurodegeneration in a rotenone rat model of Parkinson’s disease.PLoS One200831e143310.1371/journal.pone.0001433 18197244
    [Google Scholar]
  37. RubinH. The respiratory chain of M. tuberculosis.New YorkWiley Online Library20071610.1096/fasebj.21.5.A207‑b
    [Google Scholar]
  38. Schurig-BriccioL.A. YanoT. RubinH. GennisR.B. Characterization of the type 2 NADH:Menaquinone oxidoreductases from staphylococcus aureus and the bactericidal action of phenothiazines.Biochim. Biophys. Acta Bioenerg.20141837795496310.1016/j.bbabio.2014.03.017 24709059
    [Google Scholar]
  39. ElguindyM.M. Nakamaru-OgisoE. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2).J. Biol. Chem.201529034208152082610.1074/jbc.M115.641498 26063804
    [Google Scholar]
  40. MarreirosB.C. SenaF.V. SousaF.M. OliveiraA.S.F. SoaresC.M. BatistaA.P. PereiraM.M. Structural and Functional insights into the catalytic mechanism of the Type II NADH:quinone oxidoreductase family.Sci. Rep.2017714230310.1038/srep42303 28181562
    [Google Scholar]
  41. YangY. YuY. LiX. LiJ. WuY. YuJ. GeJ. HuangZ. JiangL. RaoY. YangM. Target elucidation by cocrystal structures of NADH-ubiquinone oxidoreductase of plasmodium falciparum (pf ndh2) with small molecule to eliminate drug-resistant malaria.J. Med. Chem.20176051994200510.1021/acs.jmedchem.6b01733 28195463
    [Google Scholar]
  42. SousaF.M. SenaF.V. BatistaA.P. AthaydeD. BritoJ.A. ArcherM. OliveiraA.S.F. SoaresC.M. CatarinoT. PereiraM.M. The key role of glutamate 172 in the mechanism of type II NADH:Quinone oxidoreductase of staphylococcus aureus.Biochim. Biophys. Acta Bioenerg.201718581082383210.1016/j.bbabio.2017.08.002 28801048
    [Google Scholar]
  43. PetriJ. ShimakiY. JiaoW. BridgesH.R. RussellE.R. ParkerE.J. AragãoD. CookG.M. NakataniY. Structure of the NDH-2 – HQNO inhibited complex provides molecular insight into quinone-binding site inhibitors.Biochim. Biophys. Acta Bioenerg.20181859748249010.1016/j.bbabio.2018.03.014 29621505
    [Google Scholar]
  44. NakataniY. JiaoW. AragãoD. ShimakiY. PetriJ. ParkerE.J. CookG.M. Crystal structure of type II NADH:quinone oxidoreductase from Caldalkalibacillus thermarum with an improved resolution of 2.15 Å.Acta Crystallogr. F Struct. Biol. Commun.2017731054154910.1107/S2053230X17013073 28994401
    [Google Scholar]
  45. HerrouJ. CzyżD.M. WillettJ.W. KimH.S. ChhorG. BabniggG. KimY. CrossonS. Wrpa is an atypical flavodoxin family protein under regulatory control of the Brucella abortus general stress response system.J. Bacteriol.201619881281129310.1128/JB.00982‑15 26858101
    [Google Scholar]
  46. DouradoD.F.A.R. SwartM. CarvalhoA.T.P. Why the flavin adenine dinucleotide (fad) cofactor needs to be covalently linked to complex ii of the electron‐transport chain for the conversion of FADH2 into fad.Chemistry201824205246525210.1002/chem.201704622 29124817
    [Google Scholar]
  47. EschemannA. GalkinA. OettmeierW. BrandtU. KerscherS. HDQ (1-hydroxy-2-dodecyl-4(1H)quinolone), a high affinity inhibitor for mitochondrial alternative NADH dehydrogenase: evidence for a ping-pong mechanism.J. Biol. Chem.200528053138314210.1074/jbc.M411217200 15533932
    [Google Scholar]
  48. YanoT. LiL.S. WeinsteinE. TehJ.S. RubinH. Steady-state kinetics and inhibitory action of antitubercular phenothiazines on Mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2).J. Biol. Chem.200628117114561146310.1074/jbc.M508844200 16469750
    [Google Scholar]
  49. YangY. YamashitaT. Nakamaru-OgisoE. HashimotoT. MuraiM. IgarashiJ. MiyoshiH. MoriN. Matsuno-YagiA. YagiT. KosakaH. Reaction mechanism of single subunit NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae: evidence for a ternary complex mechanism.J. Biol. Chem.2011286119287929710.1074/jbc.M110.175547 21220430
    [Google Scholar]
  50. YagiT. SeoB.B. Nakamaru-OgisoE. MarellaM. Barber-SinghJ. YamashitaT. KaoM.C. Matsuno-YagiA. Can a single subunit yeast NADH dehydrogenase (Ndi1) remedy diseases caused by respiratory complex I defects?Rejuvenation Res.20069219119710.1089/rej.2006.9.191 16706641
    [Google Scholar]
  51. TorresA. KasturiarachiN. DuPontM. CooperV.S. BombergerJ. ZemkeA. NADH dehydrogenases in pseudomonas aeruginosa growth and virulence.Front. Microbiol.2019107510.3389/fmicb.2019.00075 30804898
    [Google Scholar]
  52. SurveS.V. JensenB.C. HeestandM. MazetM. SmithT.K. BringaudF. ParsonsM. SchnauferA. NADH dehydrogenase of trypanosoma brucei is important for efficient acetate production in bloodstream forms.Mol. Biochem. Parasitol.2017211576110.1016/j.molbiopara.2016.10.001 27717801
    [Google Scholar]
  53. KnuutiJ. BelevichG. SharmaV. BlochD.A. VerkhovskayaM. A single amino acid residue controls ROS production in the respiratory Complex I from E scherichia coli.Mol. Microbiol.20139061190120010.1111/mmi.12424 24325249
    [Google Scholar]
  54. Schurig-BriccioL.A. RintoulM.R. VolentiniS.I. FaríasR.N. BaldomàL. BadíaJ. Rodríguez-MontelongoL. RapisardaV.A. A critical phosphate concentration in the stationary phase maintains ndh gene expression and aerobic respiratory chain activity in Escherichia coli.FEMS Microbiol. Lett.20082841768310.1111/j.1574‑6968.2008.01188.x 18492062
    [Google Scholar]
  55. MurugesanD. RayP.C. BaylissT. ProsserG.A. HarrisonJ.R. GreenK. Soares de MeloC. FengT.S. StreetL.J. ChibaleK. WarnerD.F. MizrahiV. EpemoluO. ScullionP. EllisL. RileyJ. ShishikuraY. FergusonL. Osuna-CabelloM. ReadK.D. GreenS.R. LamprechtD.A. FininP.M. SteynA.J.C. IoergerT.R. SacchettiniJ. RheeK.Y. AroraK. BarryC.E.III WyattP.G. BoshoffH.I.M. 2-Mercapto-quinazolinones as inhibitors of type ii NADH dehydrogenase and mycobacterium tuberculosis: structure–activity relationships, mechanism of action and absorption, distribution, metabolism, and excretion characterization.ACS Infect. Dis.20184695496910.1021/acsinfecdis.7b00275 29522317
    [Google Scholar]
  56. ZhouJ.L. ChenH.H. XuJ. HuangM.Y. WangJ.F. ShenH.J. ShenS.X. GaoC.X. QianC.D. Myricetin acts as an inhibitor of type ii NADH dehydrogenase from Staphylococcus aureus.Molecules20242910235410.3390/molecules29102354 38792214
    [Google Scholar]
  57. BertsovaY.V. BogachevA.V. SkulachevV.P. Noncoupled NADH: ubiquinone oxidoreductase of Azotobacter vinelandii is required for diazotrophic growth at high oxygen concentrations.J. Bacteriol.2001183236869687410.1128/JB.183.23.6869‑6874.2001 11698376
    [Google Scholar]
  58. SahaP. SauS. KaliaN.P. SharmaD.K. 2-Aryl-benzoimidazoles as type ii NADH dehydrogenase inhibitors of mycobacterium tuberculosis.ACS Infect. Dis.202410103699371110.1021/acsinfecdis.4c00710 39360674
    [Google Scholar]
  59. ChukwuanukwuR.C. OnyenekweC.C. Martinez-PomaresL. FlynnR. SinghS. AmiloG.I. AgbakobaN.R. OkoyeJ.O. Modulation of the immune response to Mycobacterium tuberculosis during malarial M. tuberculosis co-infection.Clin. Exp. Immunol.2017187225926810.1111/cei.12861 27577087
    [Google Scholar]
  60. BanerjeeA. DubnauE. QuemardA. BalasubramanianV. UmK.S. WilsonT. CollinsD. de LisleG. JacobsW.R. Jr inha, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis.Science1994263514422723010.1126/science.8284673 8284673
    [Google Scholar]
  61. MaZ. LienhardtC. McIlleronH. NunnA.J. WangX. Global tuberculosis drug development pipeline: the need and the reality.Lancet201037597312100210910.1016/S0140‑6736(10)60359‑9 20488518
    [Google Scholar]
  62. GuptaH. MaceteE. BuloH. SalvadorC. WarsameM. CarvalhoE. MénardD. RingwaldP. BassatQ. EnosseS. MayorA. Drug-resistant polymorphisms and copy numbers in Plasmodium falciparum, mozambique, 2015.Emerg. Infect. Dis.2017241404810.3201/eid2401.170864 29260689
    [Google Scholar]
  63. MassieS.P. The chemistry of phenothiazine.Chem. Rev.195454579783310.1021/cr60171a003
    [Google Scholar]
  64. McDowellJ.J.H. The crystal and molecular structure of phenothiazine.Acta Crystallogr. B197632151010.1107/S0567740876002215 5536134
    [Google Scholar]
  65. OrdwayD. ViveirosM. LeandroC. BettencourtR. AlmeidaJ. MartinsM. KristiansenJ.E. MolnarJ. AmaralL. Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacterium tuberculosis.Antimicrob. Agents Chemother.200347391792210.1128/AAC.47.3.917‑922.2003 12604522
    [Google Scholar]
  66. AmaralL. UdwadiaZ. AbbateE. van SoolingenD. The added effect of thioridazine in the treatment of drug-resistant tuberculosis.Int. J. Tuberc. Lung Dis.201216121706170810.5588/ijtld.12.0616 23131273
    [Google Scholar]
  67. AmaralL. ViveirosM. KristiansenJ. “Non-Antibiotics”: alternative therapy for the management of MDRTB and MRSA in economically disadvantaged countries.Curr. Drug Targets20067788789110.2174/138945006777709539 16842219
    [Google Scholar]
  68. BateA.B. KalinJ.H. FooksmanE.M. AmoroseE.L. PriceC.M. WilliamsH.M. RodigM.J. MitchellM.O. ChoS.H. WangY. FranzblauS.G. Synthesis and antitubercular activity of quaternized promazine and promethazine derivatives.Bioorg. Med. Chem. Lett.20071751346134810.1016/j.bmcl.2006.11.091 17188865
    [Google Scholar]
  69. KatochV.M. SaxenaN. ShivannavarC.T. SharmaV.D. KatochK. SharmaR.K. Suryanarayana MurthyP. Effect of trifluoperazine on in vitro atp synthesis by Mycobacterium leprae.FEMS Immunol. Med. Microbiol.19982029910210.1111/j.1574‑695X.1998.tb01115.x 9544776
    [Google Scholar]
  70. HussainG. RasulA. AnwarH. AzizN. RazzaqA. WeiW. AliM. LiJ. LiX. Role of plant derived alkaloids and their mechanism in neurodegenerative disorders.Int. J. Biol. Sci.201814334135710.7150/ijbs.23247 29559851
    [Google Scholar]
  71. de FariaP.A. BettaninF. CunhaR.L.O.R. Paredes-GameroE.J. Homem-de-MelloP. NantesI.L. RodriguesT. Cytotoxicity of phenothiazine derivatives associated with mitochondrial dysfunction: a structure-activity investigation.Toxicology2015330445410.1016/j.tox.2015.02.004 25686698
    [Google Scholar]
  72. AmaralL. KristiansenJ.E. ViveirosM. AtouguiaJ. Activity of phenothiazines against antibiotic-resistant Mycobacterium tuberculosis: a review supporting further studies that may elucidate the potential use of thioridazine as anti-tuberculosis therapy.J. Antimicrob. Chemother.200147550551110.1093/jac/47.5.505 11328759
    [Google Scholar]
  73. MadridP.B. PolgarW.E. TollL. TangaM.J. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors.Bioorg. Med. Chem. Lett.200717113014301710.1016/j.bmcl.2007.03.064 17407813
    [Google Scholar]
  74. DunnE.A. RoxburghM. LarsenL. SmithR.A.J. McLellanA.D. HeikalA. MurphyM.P. CookG.M. Incorporation of triphenylphosphonium functionality improves the inhibitory properties of phenothiazine derivatives in mycobacterium tuberculosis.Bioorg. Med. Chem.201422195320532810.1016/j.bmc.2014.07.050 25150092
    [Google Scholar]
  75. NiziM.G. DesantisJ. NakataniY. MassariS. MazzarellaM.A. ShetyeG. SabatiniS. BarrecaM.L. ManfroniG. FelicettiT. Rushton-GreenR. HardsK. LataczG. SatałaG. BojarskiA.J. CecchettiV. KolářM.H. HandzlikJ. CookG.M. FranzblauS.G. TabarriniO. Antitubercular polyhalogenated phenothiazines and phenoselenazine with reduced binding to cns receptors.Eur. J. Med. Chem.202020111242010.1016/j.ejmech.2020.112420 32526553
    [Google Scholar]
  76. ThierbachS. BirmesF.S. LetzelM.C. HenneckeU. FetznerS. Chemical modification and detoxification of the pseudomonas aeruginosa toxin 2-heptyl-4-hydroxyquinoline n-oxide by environmental and pathogenic bacteria.ACS Chem. Biol.20171292305231210.1021/acschembio.7b00345 28708374
    [Google Scholar]
  77. SenaF.V. BatistaA.P. CatarinoT. BritoJ.A. ArcherM. ViertlerM. MadlT. CabritaE.J. PereiraM.M. Type‐ II NADH:quinone oxidoreductase from Staphylococcus aureus has two distinct binding sites and is rate limited by quinone reduction.Mol. Microbiol.201598227228810.1111/mmi.13120 26172206
    [Google Scholar]
  78. RadlinskiL. RoweS.E. KartchnerL.B. MaileR. CairnsB.A. VitkoN.P. GodeC.J. LachiewiczA.M. WolfgangM.C. ConlonB.P. Pseudomonas aeruginosa exoproducts determine antibiotic efficacy against staphylococcus aureus.PLoS Biol.20171511e200398110.1371/journal.pbio.2003981 29176757
    [Google Scholar]
  79. FryM. PudneyM. Site of action of the antimalarial hydroxynaphthoquinone, 2-[trans-4-(4′-chlorophenyl) cyclohexyl]-3- hydroxy-1,4-naphthoquinone (566C80).Biochem. Pharmacol.19924371545155310.1016/0006‑2952(92)90213‑3 1314606
    [Google Scholar]
  80. NakataniY. ShimakiY. DuttaD. MuenchS.P. IretonK. CookG.M. JeukenL.J.C. Unprecedented properties of phenothiazines unraveled by a NDH-2 bioelectrochemical assay platform.J. Am. Chem. Soc.202014231311132010.1021/jacs.9b10254 31880924
    [Google Scholar]
  81. MoJ. SiH. LiuS. ZengQ. CaiM. LiuZ. ZhangJ. FangJ. ZhangJ. Effect of the pseudomonas metabolites hqno on the Toxoplasma gondii rh strain in vitro and in vivo.Int. J. Parasitol. Drugs Drug Resist.202321748010.1016/j.ijpddr.2023.02.001 36758272
    [Google Scholar]
  82. LinS.S. KerscherS. SalehA. BrandtU. GroßU. BohneW. The toxoplasma gondii type-II NADH dehydrogenase TgNDH2-I is inhibited by 1-hydroxy-2-alkyl-4(1H)quinolones.Biochim. Biophys. Acta Bioenerg.20081777111455146210.1016/j.bbabio.2008.08.006
    [Google Scholar]
  83. BajohrL.L. MaL. PlatteC. LiesenfeldO. TietzeL.F. GroßU. BohneW. In vitro and in vivo activities of 1-hydroxy-2-alkyl-4(1H)quinolone derivatives against Toxoplasma gondii.Antimicrob. Agents Chemother.201054151752110.1128/AAC.01001‑09 19884369
    [Google Scholar]
  84. SalehA. FriesenJ. BaumeisterS. GrossU. BohneW. Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases.Antimicrob. Agents Chemother.20075141217122210.1128/AAC.00895‑06 17242151
    [Google Scholar]
  85. BiaginiG.A. FisherN. ShoneA.E. MubarakiM.A. SrivastavaA. HillA. AntoineT. WarmanA.J. DaviesJ. PidathalaC. AmewuR.K. LeungS.C. SharmaR. GibbonsP. HongD.W. PacorelB. LawrensonA.S. CharoensutthivarakulS. TaylorL. BergerO. MbekeaniA. StocksP.A. NixonG.L. ChadwickJ. HemingwayJ. DelvesM.J. SindenR.E. ZeemanA.M. KockenC.H.M. BerryN.G. O’NeillP.M. WardS.A. Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria.Proc. Natl. Acad. Sci. USA2012109218298830310.1073/pnas.1205651109 22566611
    [Google Scholar]
  86. YangY. TangT. LiX. MichelT. LingL. HuangZ. MulakaM. WuY. GaoH. WangL. ZhouJ. MeunierB. KeH. JiangL. RaoY. Design, synthesis, and biological evaluation of multiple targeting antimalarials.Acta Pharm. Sin. B20211192900291310.1016/j.apsb.2021.05.008 34589403
    [Google Scholar]
  87. LuL. ÅkerbladhL. AhmadS. KondaV. CaoS. VocatA. MaesL. ColeS.T. HughesD. LarhedM. BrandtP. KarlénA. MowbrayS.L. Synthesis and in vitro biological evaluation of quinolinyl pyrimidines targeting type II NADH-dehydrogenase (NDH-2).ACS Infect. Dis.20228348249810.1021/acsinfecdis.1c00413 35184552
    [Google Scholar]
  88. XieT. WuZ. GuJ. GuoR. YanX. DuanH. LiuX. LiuW. LiangL. WanH. LuoY. TangD. ShiH. HuJ. The global motion affecting electron transfer in Plasmodium falciparum type II NADH dehydrogenases: a novel non-competitive mechanism for quinoline ketone derivative inhibitors.Phys. Chem. Chem. Phys.20192133181051811810.1039/C9CP02645B 31396604
    [Google Scholar]
  89. CaoY. SunC. WenH. WangM. ZhuP. ZhongM. LiJ. ChenX. TangY. WangJ. ZhouB. A yeast-based drug discovery platform to identify Plasmodium falciparum type ii NADH dehydrogenase inhibitors.Antimicrob. Agents Chemother.2021366e02470e2010.1128/AAC.02470‑20 33722883
    [Google Scholar]
  90. ShirudeP.S. PaulB. Roy ChoudhuryN. KedariC. BandodkarB. UgarkarB.G. Quinolinyl pyrimidines: potent inhibitors of NDH-2 as a novel class of anti-TB agents.ACS Med. Chem. Lett.20123973674010.1021/ml300134b 24900541
    [Google Scholar]
  91. MyersA.G. ClarkR.B. Discovery of macrolide antibiotics effective against multi-drug resistant gram-negative pathogens.Acc. Chem. Res.20215471635164510.1021/acs.accounts.1c00020 33691070
    [Google Scholar]
  92. MogiT. MatsushitaK. MuraseY. KawaharaK. MiyoshiH. UiH. ShiomiK. OmuraS. KitaK. Identification of new inhibitors for alternative NADH dehydrogenase (NDH-II).FEMS Microbiol. Lett.2009291215716110.1111/j.1574‑6968.2008.01451.x 19076229
    [Google Scholar]
  93. YamashitaT. Nakamaru-OgisoE. MiyoshiH. Matsuno-YagiA. YagiT. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae.J. Biol. Chem.200728296012602010.1074/jbc.M610646200 17200125
    [Google Scholar]
  94. LechartierB. ColeS.T. Mode of action of clofazimine and combination therapy with benzothiazinones against Mycobacterium tuberculosis.Antimicrob. Agents Chemother.20155984457446310.1128/AAC.00395‑15 25987624
    [Google Scholar]
  95. GrossetJ.H. TyagiS. AlmeidaD.V. ConverseP.J. LiS.Y. AmmermanN.C. BishaiW.R. EnarsonD. TrébucqA. Assessment of clofazimine activity in a second-line regimen for tuberculosis in mice.Am. J. Respir. Crit. Care Med.2013188560861210.1164/rccm.201304‑0753OC 23822735
    [Google Scholar]
  96. YanoT. Kassovska-BratinovaS. TehJ.S. WinklerJ. SullivanK. IsaacsA. SchechterN.M. RubinH. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species.J. Biol. Chem.201128612102761028710.1074/jbc.M110.200501 21193400
    [Google Scholar]
  97. LamprechtD.A. FininP.M. RahmanM.A. CummingB.M. RussellS.L. JonnalaS.R. AdamsonJ.H. SteynA.J.C. Turning the respiratory flexibility of Mycobacterium tuberculosis against itself.Nat. Commun.2016711239310.1038/ncomms12393 27506290
    [Google Scholar]
  98. ZhangD. LuY. LiuK. LiuB. WangJ. ZhangG. ZhangH. LiuY. WangB. ZhengM. FuL. HouY. GongN. LvY. LiC. CooperC.B. UptonA.M. YinD. MaZ. HuangH. Identification of less lipophilic riminophenazine derivatives for the treatment of drug-resistant tuberculosis.J. Med. Chem.201255198409841710.1021/jm300828h 22931472
    [Google Scholar]
  99. LiQ. LuX. New antituberculosis drugs targeting the respiratory chain.Chin. Chem. Lett.20203161357136510.1016/j.cclet.2020.04.007
    [Google Scholar]
  100. DingY. ZhuH. FuL. ZhangW. WangB. GuoS. ChenX. WangN. LiuH. LuY. Superior efficacy of a TBI-166, bedaquiline, and pyrazinamide combination regimen in a murine model of tuberculosis.Antimicrob. Agents Chemother.2022669e00658e2210.1128/aac.00658‑22 35924925
    [Google Scholar]
  101. ZhuH. FuL. WangB. ChenX. ZhaoJ. HuangH. LuY. Activity of clofazimine and TBI-166 against Mycobacterium tuberculosis in different administration intervals in mouse tuberculosis models.Antimicrob. Agents Chemother.202165410.1128/AAC.02164‑20 33431417
    [Google Scholar]
  102. NandiS. SaxenaM. SaxenaA.K. Important Targets and Inhibitors of Mycobacterium tuberculosis. Tuberculosis: Integrated Studies for a Complex Disease.ChamSpringer202342945710.1007/978‑3‑031‑15955‑8_21
    [Google Scholar]
  103. StevanovićS. PerdihA. SenćanskiM. GlišićS. DuarteM. TomásA. SenaF. SousaF. PereiraM. SolmajerT. In silico discovery of a substituted 6-methoxy-quinalidine with leishmanicidal activity in Leishmania infantum.Molecules201823477210.3390/molecules23040772 29584709
    [Google Scholar]
  104. ChaJ-D. LeeJ-H. ChoiK.M. ChaS.C. ParkJ.H. Synergistic effect between cryptotanshinone and antibiotics against clinic methicillin and vancomycin-resistant Staphylococcus aureus.Evid. Based Complement. Alternat. Med.201410.1155/2014/450572 24782909
    [Google Scholar]
  105. BarbieriR. CoppoE. MarcheseA. DagliaM. Sobarzo-SánchezE. NabaviS.F. NabaviS.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity.Microbiol. Res.2017196446810.1016/j.micres.2016.12.003 28164790
    [Google Scholar]
  106. TengZ. LiM. ShiD. DengX. WangJ. Synergistic interactions of cryptotanshinone and aminoglycoside antibiotics against Staphylococcus aureus in vitro.J. Glob. Antimicrob. Resist.20181326426510.1016/j.jgar.2018.05.013 29807203
    [Google Scholar]
  107. BakerS. Advances in the discovery of acne and rosacea treatments. Elsevier2007795796810.1016/B0‑08‑045044‑X/00236‑4
    [Google Scholar]
  108. ZhouY-X. XiaW. YueW. PengC. RahmanK. ZhangH. Rhein: a review of pharmacological activities.Evid. Based Complement. Alternat. Med.201510.1155/2015/578107 26185519
    [Google Scholar]
  109. ChungJ.G. Rhein affects arylamine N‐acetyltransferase activity in Helicobacter pylori from peptic ulcer patients.In: Journal of Applied Toxicology: An International Forum Devoted to Research and Methods Emphasizing Direct Clinical, Industrial and Environmental Applications; Wiley Online Library: New York,1998
    [Google Scholar]
  110. VilchèzeC. WeinrickB. LeungL.W. JacobsW.R.Jr Plasticity of Mycobacterium tuberculosis NADH dehydrogenases and their role in virulence.Proc. Natl. Acad. Sci. USA201811571599160410.1073/pnas.1721545115 29382761
    [Google Scholar]
  111. NguyenA.T. KimK. Rhein inhibits the growth of Propionibacterium acnes by blocking NADH dehydrogenase-2 activity.J. Med. Microbiol.202069568969610.1099/jmm.0.001196 32375980
    [Google Scholar]
  112. ChenB.C. DingZ.S. DaiJ.S. ChenN.P. GongX.W. MaL.F. QianC.D. New insights into the antibacterial mechanism of Cryptotanshinone, a representative diterpenoid quinone from Salvia miltiorrhiza bunge.Front. Microbiol.20211264728910.3389/fmicb.2021.647289 33717044
    [Google Scholar]
  113. XueY.P. KaoM.C. LanC.Y. Novel mitochondrial complex I-inhibiting peptides restrain NADH dehydrogenase activity.Sci. Rep.2019911369410.1038/s41598‑019‑50114‑2 31548559
    [Google Scholar]
  114. KaurG. A medicinal chemistry approach to drug repositioning in the treatment of tuberculosis and malaria. Doctoral Thesis University of Cape Town.,2016
    [Google Scholar]
  115. VallièresC. FisherN. AntoineT. Al-HelalM. StocksP. BerryN.G. LawrensonA.S. WardS.A. O’NeillP.M. BiaginiG.A. MeunierB. HDQ, a potent inhibitor of Plasmodium falciparum proliferation, binds to the quinone reduction site of the cytochrome bc1 complex.Antimicrob. Agents Chemother.20125673739374710.1128/AAC.00486‑12 22547613
    [Google Scholar]
  116. KawaharaK. MogiT. TanakaT.Q. HataM. MiyoshiH. KitaK. Mitochondrial dehydrogenases in the aerobic respiratory chain of the rodent malaria parasite plasmodium yoelii yoelii.J. Biochem.2008145222923710.1093/jb/mvn161 19060309
    [Google Scholar]
  117. MounkoroP. MichelT. BenhachemiR. SurpateanuG. IorgaB.I. FisherN. MeunierB. Mitochondrial complex III Q i ‐site inhibitor resistance mutations found in laboratory selected mutants and field isolates.Pest Manag. Sci.20197582107211410.1002/ps.5264 30426681
    [Google Scholar]
  118. MatsubayashiM. InaokaD. KomatsuyaK. HattaT. KawaharaF. SakamotoK. HikosakaK. YamagishiJ. SasaiK. ShibaT. HaradaS. TsujiN. KitaK. Novel characteristics of mitochondrial electron transport chain from Eimeria tenella.Genes20191012910.1128/AAC.00486‑12 22547613
    [Google Scholar]
  119. LawrensonA. Antimalarial drug design: Targeting the plasmodium falciparum cytochrome bc1 complex through computational modelling, chemical synthesis and biological testing.Liverpool, UKUniversity of Liverpool201210.17638/00007719
    [Google Scholar]
  120. SousaF.M. PiresP. BarretoA. RefojoP.N. SilvaM.S. FernandesP.B. CarapetoA.P. RobaloT.T. RodriguesM.S. PinhoM.G. CabritaE.J. PereiraM.M. Unveiling the membrane bound dihydroorotate: quinone oxidoreductase from Staphylococcus aureus.Biochim. Biophys. Acta Bioenerg.20231864214894810.1016/j.bbabio.2022.148948 36481274
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037350396250213115109
Loading
/content/journals/cpps/10.2174/0113892037350396250213115109
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test