Skip to content
2000
Volume 26, Issue 9
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Dihydropyrimidinase (DPYS), a pivotal enzyme in the pyrimidine synthesis pathway, has been increasingly studied for its potential role in cancer therapy. While its presence has been noted in various cancers, its specific impact on sarcoma (SARC) still needs to be fully understood.

Objective

This study sought to explore the correlation between DPYS expression and SARC, utilizing data from The Cancer Genome Atlas (TCGA), bioinformatics tools, and experimental validation.

Methods

The study employed statistical analysis and logistic regression to assess the link between DPYS expression levels and clinical features in SARC patients. Survival analysis was conducted using the Kaplan-Meier method and Cox regression, evaluating the prognostic significance of DPYS expression. Gene set enrichment analysis and immuno-infiltration analysis were conducted to uncover the potential regulatory mechanisms of the DPYS gene. We validated the expression of DPYS using GSE17674. Quantitative reverse transcription PCR was utilized to measure DPYS expression levels in SARC cell lines.

Results

The study found that reduced DPYS expression in SARC correlated with therapeutic response ( 0.011), histological subtype ( 0.003), and the presence of residual tumor ( 0.043). Reduced DPYS expression was a predictor of inferior Overall Survival (OS), with a Hazard Ratio (HR) of 0.56 and a 95% Confidence Interval (CI) of 0.37-0.84 ( 0.005), as well as Disease-Specific Survival (DSS), with an HR of 0.64 and a 95% CI of 0.41-1.00 ( 0.048). DPYS expression was also identified as an independent factor for OS in SARC (HR: 0.335; 95% CI: 0.169-0.664; 0.002). The gene was associated with various pathways, including GPCR ligand binding, signaling by interleukins, G alpha (i) signaling events, Class A/1 Rhodopsin-like receptors, cytokine-cytokine receptor interaction, and platelet activation. DPYS expression also showed a correlation with certain immune cell infiltrates and was found to be significantly downregulated in SARC cell lines.

Conclusion

DPYS may serve as a potential prognostic biomarker and therapeutic target for SARC.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037362065250227064739
2025-04-04
2025-11-29
Loading full text...

Full text loading...

References

  1. KohlmeyerJ.L. GordonD.J. TanasM.R. MongaV. DoddR.D. QuelleD.E. CDKs in sarcoma: Mediators of disease and emerging therapeutic targets.Int. J. Mol. Sci.2020218301810.3390/ijms2108301832344731
    [Google Scholar]
  2. BlelochJ.S. BallimR.D. KimaniS. ParkesJ. PanieriE. WillmerT. PrinceS. Managing sarcoma: Where have we come from and where are we going?Ther. Adv. Med. Oncol.201791063765910.1177/175883401772892728974986
    [Google Scholar]
  3. PotterJ.W. JonesK.B. BarrottJ.J. Sarcoma: The standard-bearer in cancer discovery.Crit. Rev. Oncol. Hematol.20181261510.1016/j.critrevonc.2018.03.00729759550
    [Google Scholar]
  4. DancsokA.R. Asleh-AburayaK. NielsenT.O. Advances in sarcoma diagnostics and treatment.Oncotarget2017847068709310.18632/oncotarget.1254827732970
    [Google Scholar]
  5. LinH. MaY. WeiY. ShangH. Genome-wide analysis of aberrant gene expression and methylation profiles reveals susceptibility genes and underlying mechanism of cervical cancer.Eur. J. Obstet. Gynecol. Reprod. Biol.201620714715210.1016/j.ejogrb.2016.10.01727863272
    [Google Scholar]
  6. ChungW. Kwabi-AddoB. IttmannM. JelinekJ. ShenL. YuY. IssaJ.P.J. Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling.PLoS One200834e207910.1371/journal.pone.000207918446232
    [Google Scholar]
  7. TaharaT. MaegawaS. ChungW. GarrigaJ. JelinekJ. EstécioM.R.H. ShibataT. HirataI. ArisawaT. IssaJ.P.J. Examination of whole blood DNA methylation as a potential risk marker for gastric cancer.Cancer Prev. Res. (Phila.)20136101093110010.1158/1940‑6207.CAPR‑13‑003423943784
    [Google Scholar]
  8. VasiljevićN. Scibior-BentkowskaD. BrentnallA.R. CuzickJ. LorinczA.T. Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women.Gynecol. Oncol.2014132370971410.1016/j.ygyno.2014.02.00124508839
    [Google Scholar]
  9. LiS. YangR. SunX. MiaoS. LuT. WangY. WoY. JiaoW. Identification of SPP1 as a promising biomarker to predict clinical outcome of lung adenocarcinoma individuals.Gene201867939840410.1016/j.gene.2018.09.03030240883
    [Google Scholar]
  10. ShenY. LiuJ. ZhangL. DongS. ZhangJ. LiuY. ZhouH. DongW. Identification of potential biomarkers and survival analysis for head and neck squamous cell carcinoma using bioinformatics strategy: A study based on TCGA and GEO datasets.BioMed Res. Int.2019201911410.1155/2019/737603431485443
    [Google Scholar]
  11. ZouY. LinJ. LiuJ. ZhangF. YangT. GongJ. JiangT. ZuoJ. SongR. ShenH. ShenF. LiJ. Aspartate β-hydroxylase (ASPH) accelerates intrahepatic cholangiocarcinoma metastasis via upregulating SHH signaling pathway.Curr. Protein Pept. Sci.202324543644610.2174/138920372466623050211040437132101
    [Google Scholar]
  12. YanJ. ChenG. Dysregulation of SNHG16(lncRNA)-Hsa-Let-7b-5p(miRNA)-TUBB4A (mRNA) pathway fuels progression of skin cutaneous melanoma.Curr. Protein Pept. Sci.2022231179180910.2174/138920102366622092812090236173063
    [Google Scholar]
  13. LiangK. XieR. XieZ. WanW. FuX. LaiX. LiD. MiaoH. MEF2C is a potential prognostic biomarker and is correlated with immune infiltrates in lung adenocarcinoma.Curr. Med. Chem.202432.10.2174/010929867331791024100310192539428936
    [Google Scholar]
  14. PourghasemN. GhorbanzadehS. NejatizadehA. Expression and regulatory roles of small nucleolar RNA host gene 4 in gastric cancer.Curr. Protein Pept. Sci.202324976777910.2174/138920372466623081009454837565552
    [Google Scholar]
  15. WangS. ZhangL. LiD. GouM. Comprehensive analysis and experimental validation of HEPACAM2 as a potential prognosis biomarker and immunotherapy target in colorectal cancer.Curr. Gene Ther.202425.10.2174/011566523232539524101810300639492767
    [Google Scholar]
  16. WangX. YanG. ZhangX. LiD. LiG. LNX1-AS2 as a key prognostic and immunotherapy response biomarker for lung adenocarcinoma.Curr. Med. Chem.20243210.2174/010929867332102924101515395839484773
    [Google Scholar]
  17. XingS. LiD. ZhaoQ. RPL22L1 is a novel biomarker for prognosis and immune infiltration in lung adenocarcinoma, promoting the growth and metastasis of LUAD cells by inhibiting the MDM2/P53 signaling pathway.Aging (Albany NY)20241617123921241310.18632/aging.20609639207452
    [Google Scholar]
  18. JiangJ. DuZ. TangH. HuangY. LiD. LiangQ. >Comprehensive analysis and experimental validation of TLL2 as a potential new prognostic biomarker associated with immune infiltration in lung adenocarcinomaRecent. Pat. Anticancer. Drug. Discov.2024Epub ahead of print.
    [Google Scholar]
  19. QinH. QiT. XuJ. WangT. ZengH. YangJ. YuF. Integration of ubiquitination-related genes in predictive signatures for prognosis and immunotherapy response in sarcoma.Front. Oncol.202414144652210.3389/fonc.2024.144652239469643
    [Google Scholar]
  20. WuZ. TanJ. ZhuangY. ZhongM. XiongY. MaJ. YangY. GaoZ. ZhaoJ. YeZ. ZhouH. ZhuY. LuH. HongX. Identification of crucial genes of pyrimidine metabolism as biomarkers for gastric cancer prognosis.Cancer Cell Int.202121166810.1186/s12935‑021‑02385‑x34906153
    [Google Scholar]
  21. WeiX. LiuY. LiW. ShaoX. Nucleotide-binding oligomerization domain-containing protein 1 regulates inflammatory response in endometriosis.Curr. Protein Pept. Sci.202223212112835319362
    [Google Scholar]
  22. YangH. YuG. WangY. GuoX. REST-restrained lncRNA EPB41L4A-AS2 modulates laryngeal squamous cell carcinoma development via regulating miR-1254/HIPK2 pathway.Curr. Protein Pept. Sci.202324973775710.2174/138920372466623080309402837534482
    [Google Scholar]
  23. CaiF. XuH. SongS. WangG. ZhangY. QianJ. XuL. Knockdown of ubiquitin-conjugating enzyme E2 T abolishes the progression of head and neck squamous cell carcinoma by inhibiting NF-Κb signaling and inducing ferroptosis.Curr. Protein Pept. Sci.202425757758510.2174/011389203728764024032208494638584528
    [Google Scholar]
  24. PeivandiZ. ShiraziF.H. TeimourianS. FarnamG. BabaeiV. MehrparvarN. KoohsariN. AshtarinezhadA. Silica nanoparticles-induced cytotoxicity and genotoxicity in A549 cell lines.Sci. Rep.20241411448410.1038/s41598‑024‑65333‑538914713
    [Google Scholar]
  25. AliS. LatifT. SheikhM.A. PerveenS. BilalM. SarwarA. Testicular tumours in children: A single-centre experience.Singapore Med. J.2023Epub ahead of print. 10.4103/singaporemedj.SMJ‑2021‑38037721303
    [Google Scholar]
  26. CapassoL. FlorioM. LilloM. BasilicoM. De SantisV. ZiranuA. GrassoA. MinutilloF. MaccauroG. Vascular endothelial growth factor expression as a biomarker of prognosis in patients with chondrosarcoma, Ewing’s sarcoma and osteosarcoma. Current concepts.J. Biol. Regul. Homeost. Agents2019332394331169001
    [Google Scholar]
  27. JiangJ. LiuC. XuG. LiangT. YuC. LiaoS. ZhangZ. LuZ. WangZ. ChenJ. ChenT. LiH. ZhanX. CCT6A, a novel prognostic biomarker for Ewing sarcoma.Medicine (Baltimore)20211004e2448410.1097/MD.000000000002448433530265
    [Google Scholar]
  28. SueharaY. TochigiN. KubotaD. KikutaK. NakayamaR. SekiK. YoshidaA. IchikawaH. HasegawaT. KanekoK. ChumanH. BeppuY. KawaiA. KondoT. Secernin-1 as a novel prognostic biomarker candidate of synovial sarcoma revealed by proteomics.J. Proteomics201174682984210.1016/j.jprot.2011.02.03321385630
    [Google Scholar]
  29. StrasserA. WittmannH.J. SeifertR. Binding kinetics and pathways of ligands to GPCRs.Trends Pharmacol. Sci.201738871773210.1016/j.tips.2017.05.00528645833
    [Google Scholar]
  30. ChanH.C.S. WangJ. PalczewskiK. FilipekS. VogelH. LiuZ.J. YuanS. Exploring a new ligand binding site of G protein-coupled receptors.Chem. Sci. (Camb.)20189316480648910.1039/C8SC01680A30310578
    [Google Scholar]
  31. BriukhovetskaD. DörrJ. EndresS. LibbyP. DinarelloC.A. KoboldS. Interleukins in cancer: From biology to therapy.Nat. Rev. Cancer202121848149910.1038/s41568‑021‑00363‑z34083781
    [Google Scholar]
  32. ChandanN.R. AbrahamS. SenGuptaS. ParentC.A. SmrckaA.V. A network of Gα i signaling partners is revealed by proximity labeling proteomics analysis and includes PDZ-RhoGEF.Sci. Signal.202215717eabi986910.1126/scisignal.abi986935041463
    [Google Scholar]
  33. YangD. ZhouQ. LabroskaV. QinS. DarbalaeiS. WuY. YuliantieE. XieL. TaoH. ChengJ. LiuQ. ZhaoS. ShuiW. JiangY. WangM.W. G protein-coupled receptors: Structure- and function-based drug discovery.Signal Transduct. Target. Ther.202161710.1038/s41392‑020‑00435‑w33414387
    [Google Scholar]
  34. SpanglerJ.B. MoragaI. MendozaJ.L. GarciaK.C. Insights into cytokine-receptor interactions from cytokine engineering.Annu. Rev. Immunol.201533113916710.1146/annurev‑immunol‑032713‑12021125493332
    [Google Scholar]
  35. LabelleM. BegumS. HynesR.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis.Cancer Cell201120557659010.1016/j.ccr.2011.09.00922094253
    [Google Scholar]
  36. ShitaraK. UehaS. ShichinoS. AokiH. OgiwaraH. NakatsuraT. SuzukiT. ShimomuraM. YoshikawaT. ShodaK. KitanoS. YamashitaM. NakayamaT. SatoA. KurodaS. WakabayashiM. NomuraS. YokochiS. ItoS. MatsushimaK. DoiT. First-in-human phase 1 study of IT1208, a defucosylated humanized anti-CD4 depleting antibody, in patients with advanced solid tumors.J. Immunother. Cancer20197119510.1186/s40425‑019‑0677‑y31340866
    [Google Scholar]
  37. PandolfiF. FranzaL. TodiL. CarusiV. CentroneM. BuonomoA. ChiniR. NewtonE.E. SchiavinoD. NuceraE. The importance of complying with vaccination protocols in developed countries: “Anti-Vax” Hysteria and the spread of severe preventable diseases.Curr. Med. Chem.201925426070608110.2174/092986732566618051807273029773050
    [Google Scholar]
  38. YokoiK. NakajimaY. MatsuokaH. ShinkaiY. IshiharaT. MaedaY. KatoT. KatsunoH. MasumoriK. KawadaK. YoshikawaT. ItoT. KurahashiH. Impact of DPYD, DPYS, and UPB1 gene variations on severe drug-related toxicity in patients with cancer.Cancer Sci.202011193359336610.1111/cas.1455332619063
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037362065250227064739
Loading
/content/journals/cpps/10.2174/0113892037362065250227064739
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test