Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Introduction

The rising prevalence of () strains resistant to aminoglycosides (amikacin and kanamycin) challenges effective TB control and treatment. Understanding the mechanisms behind this resistance is crucial since aminoglycosides are a mainstay of TB therapy.

Aim

The study aimed to analyze the cell wall proteins overexpressed in aminoglycosides-resistant isolates of using proteomics approaches.

Methods

We used two-dimensional electrophoresis and mass spectrometry to compare the cell wall proteomes of aminoglycosides-resistant and susceptible clinical isolates. The overexpressed protein spots were excised and identified using liquid chromatography-mass spectrometry (LC/MS). The identified proteins were subsequently analyzed for molecular docking, pupylation site identification, and STRING analysis.

Results

We found a total of nine significantly upregulated proteins in aminoglycosides-resistant isolates. Three of these proteins were the same (isoform), resulting in the identification of seven unique proteins. Specifically, Rv3841 and Rv1308 belonged to intermediary metabolism and respiration; Rv2115c to the cell wall and cell processes; Rv2501c, Rv2247 and Rv0295c to lipid metabolism; and Rv2416c to virulence, detoxification/adaptation. Notably, variations in these proteins support cell wall integrity, aiding mycobacteria's establishment and proliferation. Molecular docking study revealed that both drugs bind strongly to the proteins' active site regions. Additionally, the GPS-PUP algorithm successfully identified possible pupylation sites within these proteins, except Rv0295c. Based on interactome analysis using the STRING 12.0 database, we have identified potential interactive partners suggesting their role in aminoglycosides resistance.

Conclusion

Overexpressed proteins not only act to counteract or regulate drug effects but also have a role in protein dynamics that allow for resistance. Some of these identified proteins may serve as innovative drug targets and biomarkers for the early detection of drug-specific resistance in . Further research is needed to elucidate the mechanisms by which these potential protein targets contribute to resistance in AK and KM isolates.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037334796240927055243
2024-11-07
2025-11-02
Loading full text...

Full text loading...

References

  1. HasanA. PraveenS.H. TarkeC. AbdullahF. Clinical aspects and principles of management of Tuberculosis.Mycobacterium Tuberculosis: Molecular Infection Biology, Pathogenesis, Diagnostics and New Interventions HasnainS. EhteshamN. GroverS. Springer2019355-7410.1007/978‑981‑32‑9413‑4_20
    [Google Scholar]
  2. Global Tuberculosis Report 2023.2023Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023
  3. AkkermanO.W. ter BeekL. CentisR. MaeurerM. ViscaD. Muñoz-TorricoM. TiberiS. MiglioriG.B. Rehabilitation, optimized nutritional care, and boosting host internal milieu to improve long-term treatment outcomes in tuberculosis patients.Int. J. Infect. Dis.202092S10S1410.1016/j.ijid.2020.01.02931982628
    [Google Scholar]
  4. MiglioriG.B. MarxF.M. AmbrosinoN. ZampognaE. SchaafH.S. van der ZalmM.M. AllwoodB. ByrneA.L. MortimerK. WallisR.S. FoxG.J. LeungC.C. ChakayaJ.M. SeaworthB. RachowA. MaraisB.J. FurinJ. AkkermanO.W. Al YaquobiF. AmaralA.F.S. BorisovS. CamineroJ.A. CarvalhoA.C.C. ChesovD. CodecasaL.R. TeixeiraR.C. DalcolmoM.P. DattaS. Dinh-XuanA-T. DuarteR. EvansC.A. García-GarcíaJ-M. GüntherG. HoddinottG. HuddartS. IvanovaO. Laniado-LaborínR. MangaS. ManikaK. MariandyshevA. MelloF.C.Q. MpagamaS.G. Muñoz-TorricoM. NahidP. OngC.W.M. PalmeroD.J. PiubelloA. PontaliE. SilvaD.R. SinglaR. SpanevelloA. TiberiS. UdwadiaZ.F. VitaccaM. CentisR. D´AmbrosioL. SotgiuG. LangeC. ViscaD. Clinical standards for the assessment, management and rehabilitation of post-TB lung disease.Int. J. Tuberc. Lung Dis.2021251079781310.5588/ijtld.21.042534615577
    [Google Scholar]
  5. MenziesN.A. QuaifeM. AllwoodB.W. ByrneA.L. CoussensA.K. HarriesA.D. MarxF.M. MeghjiJ. PedrazzoliD. SalomonJ.A. SweeneyS. van KampenS.C. WallisR.S. HoubenR.M.G.J. CohenT. Lifetime burden of disease due to incident tuberculosis: A global reappraisal including post-tuberculosis sequelae.Lancet Glob. Health2021912e1679e168710.1016/S2214‑109X(21)00367‑334798027
    [Google Scholar]
  6. Global Tuberculosis Report 2022.2022Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  7. RechtM.I. DouthwaiteS. PuglisiJ.D. Basis for prokaryotic specificity of action of aminoglycoside antibiotics.EMBO J.199918113133313810.1093/emboj/18.11.313310357824
    [Google Scholar]
  8. WatanabeS. MatsumuraK. IwaiH. FunatogawaK. HaishimaY. FukuiC. OkumuraK. Kato-MiyazawaM. HashimotoM. TeramotoK. KirikaeF. Miyoshi-AkiyamaT. KirikaeT. A Mutation in the 16S rRNA decoding region attenuates the virulence of Mycobacterium tuberculosis. Infect. Immun.20168482264227310.1128/IAI.00417‑1627245411
    [Google Scholar]
  9. PunethaA. NgoH.X. HolbrookS.Y.L. GreenK.D. WillbyM.J. BonnettS.A. KriegerK. DennisE.K. PoseyJ.E. ParishT. TsodikovO.V. Garneau-TsodikovaS. Structure-guided optimization of inhibitors of acetyltransferase eis from Mycobacterium tuberculosis.ACS Chem. Biol.20201561581159410.1021/acschembio.0c0018432421305
    [Google Scholar]
  10. VargasR.Jr FreschiL. SpitaleriA. TahseenS. BarilarI. NiemannS. MiottoP. CirilloD.M. KöserC.U. FarhatM.R. Role of epistasis in amikacin, kanamycin, bedaquiline, and clofazimine resistance in Mycobacterium tuberculosis Complex.Antimicrob. Agents Chemother.20216511e01164-2110.1128/AAC.01164‑2134460306
    [Google Scholar]
  11. MagnetS. SmithT.A. ZhengR. NordmannP. BlanchardJ.S. Aminoglycoside resistance resulting from tight drug binding to an altered aminoglycoside acetyltransferase.Antimicrob. Agents Chemother.20034751577158310.1128/AAC.47.5.1577‑1583.200312709325
    [Google Scholar]
  12. SmithT. WolffK.A. NguyenL. Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr. Top. Microbiol. Immunol.2012374538010.1007/82_2012_27923179675
    [Google Scholar]
  13. Garneau-TsodikovaS. LabbyK.J. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives.MedChemComm201671112710.1039/C5MD00344J26877861
    [Google Scholar]
  14. HoffmannE. MachelartA. SongO.R. BrodinP. Proteomics of Mycobacterium infection: Moving towards a better understanding of pathogen-driven immunomodulation.Front. Immunol.201898610.3389/fimmu.2018.0008629441067
    [Google Scholar]
  15. ChoudharyE. SharmaR. PalP. AgarwalN. Deciphering the proteomic landscape of Mycobacterium tuberculosis in response to acid and oxidative stresses.ACS Omega2022730267492676610.1021/acsomega.2c0309235936415
    [Google Scholar]
  16. GengenbacherM. MouritsenJ. SchubertO.T. AebersoldR. KaufmannS.H.E. Mycobacterium tuberculosis in the proteomics era.Microbiol. Spectr.2014222.2.0510.1128/microbiolspec.MGM2‑0020‑201326105825
    [Google Scholar]
  17. ZhengJ. RenX. WeiC. YangJ. HuY. LiuL. XuX. WangJ. JinQ. Analysis of the secretome and identification of novel constituents from culture filtrate of bacillus Calmette-Guerin using high-resolution mass spectrometry.Mol. Cell. Proteomics20131282081209510.1074/mcp.M113.02731823616670
    [Google Scholar]
  18. SharmaD. BishtD. Secretory proteome analysis of streptomycin-resistant Mycobacterium tuberculosis clinical isolates.SLAS Discov.201722101229123810.1177/247255521769842828314116
    [Google Scholar]
  19. SharmaP. KumarB. GuptaY. SinghalN. KatochV.M. VenkatesanK. BishtD. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis. Proteome Sci.2010815910.1186/1477‑5956‑8‑5921083941
    [Google Scholar]
  20. BespyatykhJ. ShitikovE. ButenkoI. AltukhovI. AlexeevD. MokrousovI. DogonadzeM. ZhuravlevV. YablonskyP. IlinaE. GovorunV. Proteome analysis of the Mycobacterium tuberculosis Beijing B0/W148 cluster.Sci. Rep.2016612898510.1038/srep2898527356881
    [Google Scholar]
  21. MålenH. De SouzaG.A. PathakS. SøftelandT. WikerH.G. Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains.BMC Microbiol.20111111810.1186/1471‑2180‑11‑1821261938
    [Google Scholar]
  22. BishtD. SinghR. SharmaD. SharmaD. GuptaM.K. Analysis of membrane proteins of streptomycin-resistant Mycobacterium tuberculosis isolates.Curr. Proteomics202219538839910.2174/1570164619666220428082752
    [Google Scholar]
  23. SongH. SandieR. WangY. Andrade-NavarroM.A. NiederweisM. Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb.)200888652654410.1016/j.tube.2008.02.00418439872
    [Google Scholar]
  24. HeZ. De BuckJ. Cell wall proteome analysis of Mycobacterium smegmatis strain MC2 155.BMC Microbiol.201010112110.1186/1471‑2180‑10‑12120412585
    [Google Scholar]
  25. HeZ. De BuckJ. Localization of proteins in the cell wall of Mycobacterium avium subsp. paratuberculosis K10 by proteomic analysis.Proteome Sci.2010812110.1186/1477‑5956‑8‑2120377898
    [Google Scholar]
  26. WolfeL.M. MahaffeyS.B. KruhN.A. DobosK.M. Proteomic definition of the cell wall of Mycobacterium tuberculosis. J. Proteome Res.20109115816582610.1021/pr100587320825248
    [Google Scholar]
  27. SinghP. RameshwaramN. R. GhoshS. MukhopadhyayS. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis. Future Microbiol20181368971010.2217/fmb‑2017‑0135
    [Google Scholar]
  28. SinghG. KumarA. MaanP. KaurJ. Cell wall associated factors of Mycobacterium tuberculosis as major virulence determinants: Current perspectives in drugs discovery and design.Curr. Drug Targets201718161904191810.2174/138945011866617071115003428699515
    [Google Scholar]
  29. CanettiG. FoxW. KhomenkoA. MahlerH.T. MenonN.K. MitchisonD.A. RistN. SmelevN.A. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes.Bull. World Health Organ.196941121435309084
    [Google Scholar]
  30. BrodieA.F. KalraV.K. LeeS. CohenN.S. Properties of energy-transducing systems in different types of membrane preparations from Mycobacterium phlei-preparation, resolution, and reconstitution.Methods Enzymol.19795517520010.1016/0076‑6879(79)55024‑1156832
    [Google Scholar]
  31. HirschfieldG.R. McNeilM. BrennanP.J. Peptidoglycan-associated polypeptides of Mycobacterium tuberculosis. J. Bacteriol.199017221005101310.1128/jb.172.2.1005‑1013.19902105289
    [Google Scholar]
  32. KumarB. SharmaD. SharmaP. KatochV.M. VenkatesanK. BishtD. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin.J. Proteomics201394687710.1016/j.jprot.2013.08.02524036035
    [Google Scholar]
  33. BradfordM.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem.1976721-224825410.1016/0003‑2697(76)90527‑3942051
    [Google Scholar]
  34. GörgA. ObermaierC. BoguthG. HarderA. ScheibeB. WildgruberR. WeissW. The current state of two-dimensional electrophoresis with immobilized pH gradients.Electrophoresis20002161037105310.1002/(SICI)1522‑2683(20000401)21:6<1037::AID‑ELPS1037>3.0.CO;2‑V10786879
    [Google Scholar]
  35. LaemmliU.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature1970227525968068510.1038/227680a05432063
    [Google Scholar]
  36. ShevchenkoA. TomasH. HavliJ. OlsenJ.V. MannM. In-gel digestion for mass spectrometric characterization of proteins and proteomes.Nat. Protoc.2006162856286010.1038/nprot.2006.46817406544
    [Google Scholar]
  37. Perez-RiverolY. BaiJ. BandlaC. García-SeisdedosD. HewapathiranaS. KamatchinathanS. KunduD.J. PrakashA. Frericks-ZipperA. EisenacherM. WalzerM. WangS. BrazmaA. VizcaínoJ.A. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences.Nucleic Acids Res.202250D1D543D55210.1093/nar/gkab103834723319
    [Google Scholar]
  38. LiuZ. MaQ. CaoJ. GaoX. RenJ. XueY. GPS-PUP: Computational prediction of pupylation sites in prokaryotic proteins.Mol. Biosyst.20117102737274010.1039/c1mb05217a21850344
    [Google Scholar]
  39. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  40. NovichikhinaN. IlinI. TashchilovaA. SulimovA. KutovD. LedenyovaI. KrysinM. ShikhalievK. GantsevaA. GantsevaE. PodoplelovaN. SulimovV. Synthesis, docking, and in vitro anticoagulant activity assay of hybrid derivatives of pyrrolo[3,2,1-ij]quinolin-2(1H)-one as new inhibitors of factor Xa and factor XIa.Molecules2020258188910.3390/molecules2508188932325823
    [Google Scholar]
  41. LaskowskiR.A. JabłońskaJ. PravdaL. VařekováR.S. ThorntonJ.M. PDBsum: Structural summaries of PDB entries.Protein Sci.201827112913410.1002/pro.328928875543
    [Google Scholar]
  42. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.2008415264254
    [Google Scholar]
  43. Dassault Systèmes. Discovery Studio Visualizer.2021Available from: https://discover.3ds.com/discovery-studio-visualizer-download
  44. WallaceA.C. LaskowskiR.A. ThorntonJ.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions.Protein Eng. Des. Sel.19958212713410.1093/protein/8.2.1277630882
    [Google Scholar]
  45. PandeyR. RodriguezG.M. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice.Infect. Immun.201280103650365910.1128/IAI.00229‑1222802345
    [Google Scholar]
  46. KhareG. NangpalP. TyagiA.K. Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis. PLoS One2017121e016954510.1371/journal.pone.016954528060867
    [Google Scholar]
  47. SharmaD. LataM. FaheemM. KhanA.U. JoshiB. VenkatesanK. ShuklaS. BishtD. M. tuberculosis ferritin (Rv3841): Potential involvement in Amikacin (AK) & Kanamycin (KM) resistance.Biochem. Biophys. Res. Commun.2016478290891210.1016/j.bbrc.2016.08.04927521892
    [Google Scholar]
  48. YinY. KovachA. HsuH.C. DarwinK.H. LiH. The mycobacterial proteasomal ATPase Mpa forms a gapped ring to engage the 20S proteasome.J. Biol. Chem.202129610071310.1016/j.jbc.2021.10071333930464
    [Google Scholar]
  49. DarwinK.H. LinG. ChenZ. LiH. NathanC.F. Characterization of a Mycobacterium tuberculosis proteasomal ATPase homologue.Mol. Microbiol.200555256157110.1111/j.1365‑2958.2004.04403.x15659170
    [Google Scholar]
  50. WangT. LiH. LinG. TangC. LiD. NathanC. DarwinK.H. LiH. Structural insights on the Mycobacterium tuberculosis proteasomal ATPase Mpa.Structure200917101377138510.1016/j.str.2009.08.01019836337
    [Google Scholar]
  51. UllahN. HaoL. BangaN.J.L. ChenS. WuY. LiL. BorhamM.E. HuY. FanX. Label-free comparative proteomics of differentially expressed Mycobacterium tuberculosis protein in rifampicin-related drug-resistant strains.Pathogens202110560710.3390/pathogens1005060734063426
    [Google Scholar]
  52. MontgomeryM.G. PetriJ. SpikesT.E. WalkerJ.E. Structure of the ATP synthase from Mycobacterium smegmatis provides targets for treating tuberculosis.Proc. Natl. Acad. Sci. USA202111847e211189911810.1073/pnas.211189911834782468
    [Google Scholar]
  53. RagunathanP. SielaffH. SundararamanL. BiukovićG. SubramanianM.M.S. SinghD. KunduS. WohlandT. FraschW. DickT. GrüberG. The uniqueness of subunit α of mycobacterial F-ATP synthases: An evolutionary variant for niche adaptation.J. Biol. Chem.201729227112621127910.1074/jbc.M117.78495928495884
    [Google Scholar]
  54. GagoG. KurthD. DiacovichL. TsaiS.C. GramajoH. Biochemical and structural characterization of an essential acyl coenzyme A carboxylase from Mycobacterium tuberculosis. J. Bacteriol.2006188247748610.1128/JB.188.2.477‑486.200616385038
    [Google Scholar]
  55. EhebauerM.T. ZimmermannM. JakobiA.J. NoensE.E. LaubitzD. CichockiB. MarrakchiH. LanéelleM.A. DafféM. SachseC. DziembowskiA. SauerU. WilmannsM. Characterization of the mycobacterial acyl-CoA carboxylase holo complexes reveals their functional expansion into amino acid catabolism.PLoS Pathog.2015112e100462310.1371/journal.ppat.100462325695631
    [Google Scholar]
  56. ReddyM.C.M. BredaA. BruningJ.B. SherekarM. ValluruS. ThurmanC. EhrenfeldH. SacchettiniJ.C. Structure, activity, and inhibition of the Carboxyltransferase β-subunit of acetyl coenzyme A carboxylase (AccD6) from Mycobacterium tuberculosis. Antimicrob. Agents Chemother.201458106122613210.1128/AAC.02574‑1325092705
    [Google Scholar]
  57. LiuX.X. ShenM.J. LiuW.B. YeB.C. Transcriptional and post-translational regulation of AccD6 in Mycobacterium smegmatis. FEMS Microbiol. Lett.2018365910.1093/femsle/fny07429590418
    [Google Scholar]
  58. PawelczykJ. BrzostekA. KremerL. DziadekB. Rumijowska-GalewiczA. FiolkaM. DziadekJ. AccD6, a key carboxyltransferase essential for mycolic acid synthesis in Mycobacterium tuberculosis, is dispensable in a nonpathogenic strain.J. Bacteriol.2011193246960697210.1128/JB.05638‑1121984794
    [Google Scholar]
  59. PawelczykJ. ViljoenA. KremerL. DziadekJ. The influence of AccD5 on AccD6 carboxyltransferase essentiality in pathogenic and non-pathogenic Mycobacterium. Sci. Rep.2017714269210.1038/srep4269228205597
    [Google Scholar]
  60. Sanz-GarcíaF. Anoz-CarbonellE. Pérez-HerránE. MartínC. LucíaA. RodriguesL. AínsaJ.A. Mycobacterial aminoglycoside acetyltransferases: A little of drug resistance, and a lot of other roles.Front. Microbiol.2019104610.3389/fmicb.2019.0004630761098
    [Google Scholar]
  61. ChenW. GreenK.D. Garneau-TsodikovaS. Cosubstrate tolerance of the aminoglycoside resistance enzyme Eis from Mycobacterium tuberculosis. Antimicrob. Agents Chemother.201256115831583810.1128/AAC.00932‑1222948873
    [Google Scholar]
  62. TsodikovO.V. GreenK.D. Garneau-TsodikovaS. A random sequential mechanism of aminoglycoside acetylation by Mycobacterium tuberculosis Eis protein.PLoS One201494e9237010.1371/journal.pone.009237024699000
    [Google Scholar]
  63. SowajassatakulA. PrammanananT. ChaiprasertA. PhunpruchS. Overexpression of eis without a mutation in promoter region of amikacin- and kanamycin-resistant Mycobacterium tuberculosis clinical strain.Ann. Clin. Microbiol. Antimicrob.20181713310.1186/s12941‑018‑0285‑630008266
    [Google Scholar]
  64. GarzanA. WillbyM.J. NgoH.X. GajadeeraC.S. GreenK.D. HolbrookS.Y.L. HouC. PoseyJ.E. TsodikovO.V. Garneau-TsodikovaS. Combating enhanced intracellular survival (Eis)-mediated kanamycin resistance of Mycobacterium tuberculosis by novel pyrrolo[1,5- a ]pyrazine-based Eis inhibitors.ACS Infect. Dis.20173430230910.1021/acsinfecdis.6b0019328192916
    [Google Scholar]
  65. MishraM. DadhichR. MoghaP. KapoorS. Correction to “Mycobacterium lipids modulate host cell membrane mechanics, lipid diffusivity, and cytoskeleton in a virulence-selective manner”.ACS Infect. Dis.20217120210.1021/acsinfecdis.0c0082833301307
    [Google Scholar]
  66. MougousJ.D. PetzoldC.J. SenaratneR.H. LeeD.H. AkeyD.L. LinF.L. MunchelS.E. PrattM.R. RileyL.W. LearyJ.A. BergerJ.M. BertozziC.R. Identification, function and structure of the mycobacterial sulfotransferase that initiates sulfolipid-1 biosynthesis.Nat. Struct. Mol. Biol.200411872172910.1038/nsmb80215258569
    [Google Scholar]
  67. GilmoreS.A. SchelleM.W. HolsclawC.M. LeighC.D. JainM. CoxJ.S. LearyJ.A. BertozziC.R. Sulfolipid-1 biosynthesis restricts Mycobacterium tuberculosis growth in human macrophages.ACS Chem. Biol.20127586387010.1021/cb200311s22360425
    [Google Scholar]
  68. LinF.L. van HalbeekH. BertozziC.R. Synthesis of mono- and dideoxygenated α,α-trehalose analogs.Carbohydr. Res.2007342142014203010.1016/j.carres.2007.05.00917559818
    [Google Scholar]
  69. BhaveD.P. MuseW.B.III CarrollK.S. Drug targets in mycobacterial sulfur metabolism.Infect. Disord. Drug Targets20077214015810.2174/18715260778100177217970225
    [Google Scholar]
  70. BurnsK.E. Cerda-MairaF.A. WangT. LiH. BishaiW.R. DarwinK.H. “Depupylation” of prokaryotic ubiquitin-like protein from mycobacterial proteasome substrates.Mol. Cell201039582182710.1016/j.molcel.2010.07.01920705495
    [Google Scholar]
  71. DelleyC.L. MüllerA.U. ZiemskiM. Weber-BanE. Prokaryotic ubiquitin-like protein and its ligase/deligase enyzmes.J. Mol. Biol.2017429223486349910.1016/j.jmb.2017.04.02028478282
    [Google Scholar]
  72. PengZ. ChenL. ZhangH. Serum proteomic analysis of Mycobacterium tuberculosis antigens for discriminating active tuberculosis from latent infection.J. Int. Med. Res.202048310.1177/030006052091004232216499
    [Google Scholar]
  73. SalmasoV. MoroS. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview.Front. Pharmacol.2018992310.3389/fphar.2018.0092330186166
    [Google Scholar]
  74. MagdeldinS. EnanyS. YoshidaY. XuB. ZhangY. ZureenaZ. LokamaniI. YaoitaE. YamamotoT. Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis.Clin. Proteomics20141111610.1186/1559‑0275‑11‑1624735559
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037334796240927055243
Loading
/content/journals/cpps/10.2174/0113892037334796240927055243
Loading

Data & Media loading...

Supplements

Supplement file : Images of two-dimensional electrophoresis gel of cell wall proteins of aminoglycosides resistant and sensitive isolates. Supplement file : The grid box parameters used in the molecular docking study. Supplementary material is available on the publisher’s web site along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test