Skip to content
2000
Volume 26, Issue 5
  • ISSN: 1389-2037
  • E-ISSN: 1875-5550

Abstract

Background

Triple-negative breast cancer (TNBC) is an aggressive type of breast cancer with a high recurrence rate. A new therapeutic intervention is urgently needed to combat this lethal subtype. The identification of biomarkers is also crucial for improving outcomes in TNBC.

Methods

The cell cytotoxicity of ML364 (2-(4-Methylphenylsulfonamido)-N-(4-phenylthiazol-2-yl)-4-(trifluoromethyl)benzamide) was measured at different concentrations in TNBC-treated and untreated cells. The 2DE and LC-MS/MS analysis were used for protein identification of differentially expressed proteins. Furthermore, the quantitation of gene expression was demonstrated using RT-qPCR. TIMER, HPA, and UALCAN databases were utilized for further analysis.

Results

Differentially expressed proteins and genes after ML364 treatment in TNBC were found to be linked with the USP2 (ubiquitin specific peptidase 2)-mediated pathway. Our results demonstrate that differentially identified proteins, including PPA1, TRIM68, and FBXO46, could be a potential prognostic biomarker for TNBC. Further analysis through the UALCAN and HPA databases shows the high expression of these proteins in primary breast tumors, which is in contrast to normal. The induction of ML364 significantly reduced the expression of PPA1, TRIM68, and FBXO46 proteins and induced cell cytotoxicity in TNBC cells.

Conclusion

This study provides an understanding of the USP2-mediated signaling pathway in TNBC, emphasizing the role of USP2 and its substrates with apoptotic genes. Our results offer insight into the USP2-mediated cellular mechanism after ML364 treatment in TNBC that could be a potential therapeutic candidate.

Loading

Article metrics loading...

/content/journals/cpps/10.2174/0113892037334325241014053319
2025-01-01
2025-09-04
Loading full text...

Full text loading...

References

  1. XuY. GongM. WangY. YangY. LiuS. ZengQ. Global trends and forecasts of breast cancer incidence and deaths.Sci. Data202310133410.1038/s41597‑023‑02253‑537244901
    [Google Scholar]
  2. SmolarzB. NowakA.Z. RomanowiczH. Breast cancer—epidemiology, classification, pathogenesis and treatment review of literature.Cancers20221410256910.3390/cancers1410256935626173
    [Google Scholar]
  3. BasmadjianR.B. ChowK. KimD. KenneyM. LukmanjiA. O’SullivanD.E. XuY. QuanM.L. CheungW.Y. LupichukS. BrennerD.R. The association between early-onset diagnosis and clinical outcomes in triple-negative breast cancer: A systematic review and meta-analysis.Cancers2023157192310.3390/cancers1507192337046584
    [Google Scholar]
  4. AlmansourN.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence.Front. Mol. Biosci.2022983641710.3389/fmolb.2022.83641735145999
    [Google Scholar]
  5. HussainS. DurraniF. KhanA. Frequency and clinicopathologic characteristics of triple-negative breast cancer among breast cancer patients presenting to medical oncology department, hayatabad medical complex peshawar, Pakistan.Cureus2023152e3458110.7759/cureus.34581
    [Google Scholar]
  6. BashirI. FalahS.Q. ShamsA. Triple negative receptor status in patients diagnosed with carcinoma breast.Pak. J. Med. Health Sci.202216253053210.53350/pjmhs22162530
    [Google Scholar]
  7. WangL. ZhangS. WangX. The metabolic mechanisms of breast cancer metastasis.Front. Oncol.20211060241610.3389/fonc.2020.60241633489906
    [Google Scholar]
  8. HanD. WangL. JiangS. YangQ. The ubiquitin–proteasome system in breast cancer.Trends Mol. Med.202329859962110.1016/j.molmed.2023.05.00637328395
    [Google Scholar]
  9. KongL. JinX. Dysregulation of deubiquitination in breast cancer.Gene202490214817510.1016/j.gene.2024.14817538242375
    [Google Scholar]
  10. QuQ. MaoY. XiaoG. FeiX. WangJ. ZhangY. LiuJ. ChengG. ChenX. WangJ. ShenK. USP2 promotes cell migration and invasion in triple negative breast cancer cell lines.Tumour Biol.20153675415542310.1007/s13277‑015‑3207‑725687182
    [Google Scholar]
  11. SyedN. IlyasA. IdreesF. ZarinaZ. HashimZ. Inhibition of USP2 induces apoptosis through down regulation of fatty acid synthase and cyclin D1 in triple negative breast cancer.Curr. Proteomics202017542543210.2174/1570164617666191008093522
    [Google Scholar]
  12. ZhangZ. LiuW. BaoX. SunT. WangJ. LiM. LiuC. USP39 facilitates breast cancer cell proliferation through stabilization of FOXM1.Am. J. Cancer Res.20221283644366136119839
    [Google Scholar]
  13. HuangM.L. ShenG.T. LiN.L. Emerging potential of ubiquitin-specific proteases and ubiquitin-specific proteases inhibitors in breast cancer treatment.World J. Clin. Cases20221032116901170110.12998/wjcc.v10.i32.1169036405275
    [Google Scholar]
  14. LakshmananM. BughaniU. DuraisamyS. DiwanM. DastidarS. RayA. Molecular targeting of E3 ligases – A therapeutic approach for cancer.Expert Opin. Ther. Targets200812785587010.1517/14728222.12.7.85518554154
    [Google Scholar]
  15. ShiD. GrossmanS.R. Ubiquitin becomes ubiquitous in cancer.Cancer Biol. Ther.201010873774710.4161/cbt.10.8.1341720930542
    [Google Scholar]
  16. BaiX. TangJ. TRIM proteins in breast cancer: Function and mechanism.Biochem. Biophys. Res. Commun.2023640263110.1016/j.bbrc.2022.11.10336495607
    [Google Scholar]
  17. KitamuraH. HashimotoM. USP2-related cellular signaling and consequent pathophysiological outcomes.Int. J. Mol. Sci.2021223120910.3390/ijms2203120933530560
    [Google Scholar]
  18. AntaoA.M. TyagiA. KimK.S. RamakrishnaS. Advances in deubiquitinating enzyme inhibition and applications in cancer therapeutics.Cancers2020126157910.3390/cancers1206157932549302
    [Google Scholar]
  19. ZhuM. WangH. DingY. YangY. XuZ. ShiL. ZhangN. Ribonucleotide reductase holoenzyme inhibitor COH29 interacts with deubiquitinase ubiquitin-specific protease 2 and downregulates its substrate protein cyclin D1.FASEB J.2022365e2232910.1096/fj.202101914RR35476303
    [Google Scholar]
  20. ShanJ. ZhaoW. GuW. Suppression of cancer cell growth by promoting cyclin D1 degradation.Mol. Cell200936346947610.1016/j.molcel.2009.10.01819917254
    [Google Scholar]
  21. MenendezJ.A. LupuR. Fatty acid synthase (FASN) as a therapeutic target in breast cancer.Expert Opin. Ther. Targets201721111001101610.1080/14728222.2017.138108728922023
    [Google Scholar]
  22. AlhoshaniA. AlatawiF.O. Al-AnaziF.E. AttafiI.M. ZeidanA. AgouniA. El GamalH.M. ShamoonL.S. KhalafS. KorashyH.M. BCL2 inhibitor venetoclax induces autophagy-associated cell death, cell cycle arrest, and apoptosis in human breast cancer cells.OncoTargets Ther.202013133571337010.2147/OTT.S28151933414642
    [Google Scholar]
  23. MerinoD. LokS.W. VisvaderJ.E. LindemanG.J. Targeting BCL2 to enhance vulnerability to therapy in estrogen receptor-positive breast cancer.Oncogene201635151877188710.1038/onc.2015.28726257067
    [Google Scholar]
  24. ZhangY. LiuJ-L. WangJ. KRAS gene silencing inhibits the activation of PI3K-Akt-mTOR signaling pathway to regulate breast cancer cell epithelial-mesenchymal transition, proliferation and apoptosis.Eur. Rev. Med. Pharmacol. Sci.20202463085309610.26355/eurrev_202003_2067332271426
    [Google Scholar]
  25. KwonS.K. SaindaneM. BaekK.H. p53 stability is regulated by diverse deubiquitinating enzymes.Biochim. Biophys. Acta Rev. Cancer20171868240441110.1016/j.bbcan.2017.08.00128801249
    [Google Scholar]
  26. TahaneyW.M. QianJ. PowellR. MoyerC.L. MaY. NguyenN. HillJ. StephanC. MazumdarA. DaviesP.J. BrownP.H. Abstract GS1-09: Inhibition of GPX4 induces preferential death of p53-mutant triple-negative breast cancer cells.Cancer Res.202282GS1-0910.1158/1538‑7445.SABCS21‑GS1‑09
    [Google Scholar]
  27. ZhangZ. XueS. GaoY. LiY. ZhouZ. WangJ. LiZ. LiuZ. Small molecule targeting FOXM1 DNA binding domain exhibits anti-tumor activity in ovarian cancer.Cell Death Discov.20228128010.1038/s41420‑022‑01070‑w35680842
    [Google Scholar]
  28. AhluwaliaP. MondalA.K. BloomerC. FulzeleS. JonesK. AnanthS. GahlayG.K. HeneidiS. RojianiA.M. KotaV. KolheR. Identification and clinical validation of a novel 4 gene-signature with prognostic utility in colorectal cancer.Int. J. Mol. Sci.20192015381810.3390/ijms2015381831387239
    [Google Scholar]
  29. ChopparaS. GangaS. ManneR. DuttaP. SinghS. SantraM.K. The SCFFBXO46 ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence.J. Biol. Chem.201829342162911630610.1074/jbc.RA118.00535430171069
    [Google Scholar]
  30. MishraD.R. ChaudharyS. KrishnaB.M. MishraS.K. Identification of critical elements for regulation of inorganic pyrophosphatase (PPA1) in MCF7 breast cancer cells.PLoS One2015104e012486410.1371/journal.pone.012486425923237
    [Google Scholar]
  31. NiuH. ZhuJ. QuQ. ZhouX. HuangX. DuZ. Crystallographic and modeling study of the human inorganic pyrophosphatase 1: A potential anti-cancer drug target.Proteins202189785386510.1002/prot.2606433583053
    [Google Scholar]
  32. NingL. HuoQ. XieN. Comprehensive analysis of the expression and prognosis for tripartite motif-containing genes in breast cancer.Front. Genet.20221387632510.3389/fgene.2022.87632535928444
    [Google Scholar]
  33. TanZ. LiuX. YuE. WangH. TangL. WangH. FuC. Lentivirus-mediated RNA interference of tripartite motif 68 inhibits the proliferation of colorectal cancer cell lines SW1116 and HCT116 in vitro. Oncol. Lett.20171342649265510.3892/ol.2017.578728454446
    [Google Scholar]
  34. ChristensonJ.L. ButterfieldK.T. SpoelstraN.S. NorrisJ.D. JosanJ.S. PollockJ.A. McDonnellD.P. KatzenellenbogenB.S. KatzenellenbogenJ.A. RicherJ.K. MMTV-PyMT and derived met-1 mouse mammary tumor cells as models for studying the role of the androgen receptor in triple-negative breast cancer progression.Horm. Cancer201782697710.1007/s12672‑017‑0285‑628194662
    [Google Scholar]
  35. XuM. YuanY. YanP. JiangJ. MaP. NiuX. MaS. CaiH. YangK. Prognostic significance of androgen receptor expression in triple negative breast cancer: A systematic review and meta-analysis.Clin. Breast Cancer2020204e385e39610.1016/j.clbc.2020.01.00232139270
    [Google Scholar]
  36. WangX. XuY. XuK. ChenY. XiaoX. GuanX. BCL11A confers cell invasion and migration in androgen receptor‑positive triple‑negative breast cancer.Oncol. Lett.20201942916292410.3892/ol.2020.1138332218847
    [Google Scholar]
  37. SzklarczykD. GableA.L. LyonD. JungeA. WyderS. Huerta-CepasJ. SimonovicM. DonchevaN.T. MorrisJ.H. BorkP. JensenL.J. MeringC. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
/content/journals/cpps/10.2174/0113892037334325241014053319
Loading
/content/journals/cpps/10.2174/0113892037334325241014053319
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test