Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

The precision, speed, and efficiency of healthcare solutions are being improved by artificial intelligence (AI), which is drastically changing the pharmaceutical manufacturing and customized medicine industries. The many ways that AI is transforming drug development, optimization, diagnostics, and patient-specific therapy approaches are examined in this paper. In order to forecast medication responses, find new treatment targets, and reduce side effects, artificial intelligence (AI) systems examine enormous datasets, such as genetic profiles, electronic medical records, and empirical data. AI greatly cuts down on development time and expense in pharmaceutical research by enabling structure-based virtual screening, drug discovery, and repurposing of already-approved medications. While systems like IBM Watson and medicine improve clinical decision-making and predictive analytics, tools like AlphaFold and Deep Docking are leading the way in protein structure prediction and molecular interaction modelling. AI enables early illness identification, real-time wearable monitoring, and genomics-driven therapeutic customisation in personalized medicine. Through automation, quality control, and predictive maintenance, AI also improves pharmaceutical production, guaranteeing constant product quality and regulatory compliance. Notwithstanding its promise, issues, including algorithmic bias, data privacy, regulatory validation, and the requirement for explainable AI, still exist. To effectively utilize AI's disruptive potential in healthcare, these obstacles must be removed. Recent clinical trials and scientific advances are also highlighted in the paper, including virtual clinical simulations, AI-powered diagnostics, and COVID-19 drug development supported by AI. All things considered, artificial intelligence is not only simplifying pharmaceutical procedures but also opening the door to more efficient, individualized, and easily available healthcare. By making treatments safer, quicker, and more individualized for each patient, its ongoing integration holds the potential to completely transform international health systems.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921395626250905121219
2025-09-17
2026-01-18
Loading full text...

Full text loading...

References

  1. FletcherA. Why computer AI will never do what we imagine it can.Narrative202230111413710.1353/nar.2022.0006
    [Google Scholar]
  2. Du-HarpurX. WattF.M. LuscombeN.M. LynchM.D. What is AI? Applications of artificial intelligence to dermatology.Br. J. Dermatol.2020183342343010.1111/bjd.1888031960407
    [Google Scholar]
  3. WangP. What do you mean by “AI”?InAGI20081711362373
    [Google Scholar]
  4. BlackJ.S. van EschP. AI-enabled recruiting: What is it and how should a manager use it?Bus. Horiz.202063221522610.1016/j.bushor.2019.12.001
    [Google Scholar]
  5. AllenG. Understanding AI technology. Joint Artificial Intelligence Center (JAIC).Pentagon United States2020212432
    [Google Scholar]
  6. SarkerI.H. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems.SN Computer Science20223215810.1007/s42979‑022‑01043‑x35194580
    [Google Scholar]
  7. McCormickK.A.I. From GI to Z: A generational guide to technology.1985Available from: https://opentextbooks. clemson.edu/sts1010fidlerfall2022/chapter/a-i-technology/
  8. MallikarjunaradhyaV. PothukuchiA.S. KotaL.V. An overview of the strategic advantages of AI-powered threat intelligence in the cloud.J. Sci. Technol.20234411210.55662/JST.2023.4401
    [Google Scholar]
  9. WaisiM. Advantages and disadvantages of AI-based trading and investing versus traditional methods.
    [Google Scholar]
  10. StadlmannC. ZehetnerA. Comparing AI-based and traditional prospect generating methods.J. Promot. Manage.202228216017410.1080/10496491.2021.1987973
    [Google Scholar]
  11. KallaD. KurakuS. Advantages, disadvantages and risks associated with ChatGPT and AI on cybersecurity.J. Emerg. Technol. Innov. Res.20231010
    [Google Scholar]
  12. KolluriS. LinJ. LiuR. ZhangY. ZhangW. Machine learning and artificial intelligence in pharmaceutical research and development: A review.AAPS J.20222411910.1208/s12248‑021‑00644‑334984579
    [Google Scholar]
  13. BhattamisraS.K. BanerjeeP. GuptaP. MayurenJ. PatraS. CandasamyM. Artificial intelligence in pharmaceutical and healthcare research.Big Data Cogn Comput2023711010.3390/bdcc7010010
    [Google Scholar]
  14. Blanco-GonzálezA. CabezónA. Seco-GonzálezA. The role of AI in drug discovery: Challenges, opportunities, and strategies.Pharmaceuticals202316689110.3390/ph1606089137375838
    [Google Scholar]
  15. LuM. YinJ. ZhuQ. Artificial intelligence in pharmaceutical sciences.Engineering202327376910.1016/j.eng.2023.01.014
    [Google Scholar]
  16. RazaM.A. AzizS. NoreenM. Artificial intelligence (AI) in pharmacy: An overview of innovations.Innov. Pharm.20221321310.24926/iip.v13i2.483936654703
    [Google Scholar]
  17. BonioloF. DorigattiE. OhnmachtA.J. SaurD. SchubertB. MendenM.P. Artificial intelligence in early drug discovery enabling precision medicine.Expert Opin. Drug Discov.2021169991100710.1080/17460441.2021.191809634075855
    [Google Scholar]
  18. TiwariP.C. PalR. ChaudharyM.J. NathR. Artificial intelligence revolutionizing drug development: Exploring opportunities and challenges.Drug Dev. Res.20238481652166310.1002/ddr.2211537712494
    [Google Scholar]
  19. MakK.K. WongY.H. PichikaM.R. Artificial intelligence in drug discovery and development.Drug discovery and evaluation: Safety and pharmacokinetic assays.Springer202313810.1007/978‑3‑030‑73317‑9_92‑
    [Google Scholar]
  20. Gorostiola GonzálezM. JanssenA.P.A. IJzermanA.P. HeitmanL.H. van WestenG.J.P. Oncological drug discovery: AI meets structure-based computational research.Drug Discov. Today20222761661167010.1016/j.drudis.2022.03.00535301149
    [Google Scholar]
  21. TripathiM.K. NathA. SinghT.P. EthayathullaA.S. KaurP. Evolving scenario of big data and Artificial Intelligence (AI) in drug discovery.Mol. Divers.20212531439146010.1007/s11030‑021‑10256‑w34159484
    [Google Scholar]
  22. WorkmanP. AntolinA.A. Al-LazikaniB. Transforming cancer drug discovery with big data and AI.Expert Opin. Drug Discov.201914111089109510.1080/17460441.2019.163741431284790
    [Google Scholar]
  23. LiuS. LinY.S. Deep learning in drug discovery: Current landscape and future prospects.Jpn J Res20245410.33425/2690‑8077.1116
    [Google Scholar]
  24. DengJ. YangZ. OjimaI. SamarasD. WangF. Artificial intelligence in drug discovery: Applications and techniques.Brief. Bioinform.2022231bbab43010.1093/bib/bbab43034734228
    [Google Scholar]
  25. DaraS. DhamercherlaS. JadavS.S. BabuC.H.M. AhsanM.J. Machine learning in drug discovery: A review.Artif. Intell. Rev.20225531947199910.1007/s10462‑021‑10058‑434393317
    [Google Scholar]
  26. VijayanR.S.K. KihlbergJ. CrossJ.B. PoongavanamV. Enhancing preclinical drug discovery with artificial intelligence.Drug Discov. Today202227496798410.1016/j.drudis.2021.11.02334838731
    [Google Scholar]
  27. VisanA.I. NegutI. Integrating artificial intelligence for drug discovery in the context of revolutionizing drug delivery.Life202414223310.3390/life1402023338398742
    [Google Scholar]
  28. MohammedZ. AI-driven drug target identification for therapeutic development.J Deep Learn Genomic Data Anal20244194103
    [Google Scholar]
  29. PunF.W. OzerovI.V. ZhavoronkovA. AI-powered therapeutic target discovery.Trends Pharmacol. Sci.202344956157210.1016/j.tips.2023.06.01037479540
    [Google Scholar]
  30. GallegoV. NaveiroR. RocaC. Ríos InsuaD. CampilloN.E. AI in drug development: A multidisciplinary perspective.Mol. Divers.20212531461147910.1007/s11030‑021‑10266‑834251580
    [Google Scholar]
  31. SureshT. KaliappanS. AliH.M. KumarB.V. AI-driven drug discovery and therapeutic target identification for rare genetic diseases.International Conference on Advancements in Smart, Secure and Intelligent Computing (ASSIC)Bhubaneswar, India27-29 January20241610.1109/ASSIC60049.2024.10507989
    [Google Scholar]
  32. MaiaE.H.B. AssisL.C. de OliveiraT.A. da SilvaA.M. TarantoA.G. Structure-based virtual screening: From classical to artificial intelligence.Front Chem.2020834310.3389/fchem.2020.0034332411671
    [Google Scholar]
  33. ParvatikarP.P. PatilS. KhaparkhuntikarK. Artificial intelligence: Machine learning approach for screening large database and drug discovery.Antiviral Res.202322010574010.1016/j.antiviral.2023.10574037935248
    [Google Scholar]
  34. ZhangL. AiH.X. LiS.M. Virtual screening approach to identifying influenza virus neuraminidase inhibitors using molecular docking combined with machine-learning-based scoring function.Oncotarget2017847831428315410.18632/oncotarget.2091529137330
    [Google Scholar]
  35. HattT. Causal AI in care.Dimensions of intelligent analytics for smart digital health solutions.Chapman and Hall/CRC2024
    [Google Scholar]
  36. TaimoorN RehmanS. Reliable and resilient AI and IoT-based personalised healthcare services: A survey.IEEE Access20221053556310.1109/ACCESS.2021.3137364
    [Google Scholar]
  37. MumtazH. SaqibM. JabeenS. MuneebM. MughalW. SohailH. SafdarM. MehmoodQ. KhanM.A. IsmailS.M. Exploring alternative approaches to precision medicine through genomics and artificial intelligence–a systematic review.Frontiers in Medicine202310122716810.3389/fmed.2023.1227168
    [Google Scholar]
  38. CirilloD. ValenciaA. Big data analytics for personalized medicine.Curr. Opin. Biotechnol.20195816116710.1016/j.copbio.2019.03.00430965188
    [Google Scholar]
  39. KrzyszczykP. AcevedoA. DavidoffE.J. The growing role of precision and personalized medicine for cancer treatment.Technol201863-47910010.1142/S233954781830002030713991
    [Google Scholar]
  40. Ghaffar NiaN. KaplanogluE. NasabA. Evaluation of artificial intelligence techniques in disease diagnosis and prediction.Discov Artif Intell202331510.1007/s44163‑023‑00049‑540478140
    [Google Scholar]
  41. KumarY. KoulA. SinglaR. IjazM.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda.J. Ambient Intell. Humaniz. Comput.20231478459848610.1007/s12652‑021‑03612‑z35039756
    [Google Scholar]
  42. PatelV. ShahM. Artificial intelligence and machine learning in drug discovery and development.Intell Med20222313414010.1016/j.imed.2021.10.001
    [Google Scholar]
  43. ChavaliD. DhimanV.K. KatariS.C. AI-powered virtual health assistants: Transforming patient engagement through virtual nursing.Int. J. Pharma Sci.20242613624
    [Google Scholar]
  44. ShadR. PotterK. AI-powered chatbots and virtual assistants in enhancing business efficiency.Artif. Intell.2024
    [Google Scholar]
  45. WangS.H. GovindarajV.V. GórrizJ.M. ZhangX. ZhangY.D. COVID-19 classification by FGCNet with deep feature fusion from graph convolutional network and convolutional neural network.Inf. Fusion20216720822910.1016/j.inffus.2020.10.00433052196
    [Google Scholar]
  46. TangS. ChenR. LinM. Accelerating autodock vina with gpus.Molecules2022279304110.3390/molecules2709304135566391
    [Google Scholar]
  47. KhokhlovI. KrasnovL. FedorovM.V. SosninS. Image2SMILES: Transformer‐based molecular optical recognition engine.Chem. Methods202221e20210006910.1002/cmtd.202100069
    [Google Scholar]
  48. CoxP.B. GuptaR. Contemporary computational applications and tools in drug discovery.ACS Med. Chem. Lett.20221371016102910.1021/acsmedchemlett.1c0066235859884
    [Google Scholar]
  49. SchwallerP. StrobeltH. LainoT. HooverB. IBM RXN for Chemistry: Unveiling the grammar of the organic chemistry language.2021Available from: https://research. ibm.com/blog/rxnmapper-chemistry-grammar
  50. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  51. DuY. JamasbA.R. GuoJ. Machine learning-aided generative molecular design.Nat. Mach. Intell.2024658960410.1038/s42256‑024‑00843‑5
    [Google Scholar]
  52. ShakiAmilrkhanloo M. JahaniD. ChahrdoriM. Artificial intelligence in pharmaceuticals: Exploring applications and legal challenges.Pharm Biomed Res202410111010.32598/PBR.10.1.1257.1
    [Google Scholar]
  53. DaveP. HowA.I. How AI can revolutionize the pharmaceutical industry.J. Drug Deliv. Ther.202414617918310.22270/jddt.v14i6.6657
    [Google Scholar]
  54. AlshawwaS.Z. KassemA.A. FaridR.M. MostafaS.K. LabibG.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence.Pharmaceutics202214488310.3390/pharmaceutics1404088335456717
    [Google Scholar]
  55. ShiammalaP.N. DuraimutharasanN.K.B. VaseeharanB. Exploring the artificial intelligence and machine learning models in the context of drug design difficulties and future potential for the pharmaceutical sectors.Methods2023219829410.1016/j.ymeth.2023.09.01037778659
    [Google Scholar]
  56. KhatibM.M.E. AhmedG. Robotic pharmacies potential and limitations of artificial intelligence: A case study.Int J Bus Innov Res202023329831210.1504/IJBIR.2020.110972
    [Google Scholar]
  57. MakK.K. PichikaM.R. Artificial intelligence in drug development: Present status and future prospects.Drug Discov. Today201924377378010.1016/j.drudis.2018.11.01430472429
    [Google Scholar]
  58. RantanenJ. KhinastJ. The future of pharmaceutical manufacturing sciences.J. Pharm. Sci.2015104113612363810.1002/jps.2459426280993
    [Google Scholar]
  59. MehtaA. NiazM. AdetoroA. NwagwuU. Advancements in manufacturing technology for the biotechnology industry: The role of artificial intelligence and emerging trends.Int J Chem Math Phys202482121810.22161/ijcmp.8.2.3
    [Google Scholar]
  60. Noorbakhsh-SabetN. ZandR. ZhangY. AbediV. Artificial intelligence transforms the future of health care.Am. J. Med.2019132779580110.1016/j.amjmed.2019.01.01730710543
    [Google Scholar]
  61. HölblM. KomparaM. KamišalićA. Nemec ZlatolasL. A systematic review of the use of blockchain in healthcare.Symmetry2018101047010.3390/sym10100470
    [Google Scholar]
  62. McGhinT. ChooK.K.R. LiuC.Z. HeD. Blockchain in healthcare applications: Research challenges and opportunities.J. Netw. Comput. Appl.2019135627510.1016/j.jnca.2019.02.027
    [Google Scholar]
  63. HasselgrenA. KralevskaK. GligoroskiD. PedersenS.A. FaxvaagA. Blockchain in healthcare and health sciences—A scoping review.Int. J. Med. Inform.202013410404010.1016/j.ijmedinf.2019.10404031865055
    [Google Scholar]
  64. NamasudraS. DekaG.C. Applications of in healthcare.SingaporeSpringer2021
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921395626250905121219
Loading
/content/journals/cppm/10.2174/0118756921395626250905121219
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test