Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

Triple-negative breast cancer (TNBC), an aggressive and difficult-to-treat subtype with a grim outlook, relies heavily on chemotherapy due to the lack of molecular targets. In this study, we sought to uncover potential therapeutic targets by analysing differential gene expression between TNBC and normal breast tissue.

Methods

Microarray data from the Gene Expression Omnibus (GEO) database was analysed to identify differentially expressed genes. It revealed 514 upregulated and 336 downregulated genes between TNBC and normal breast tissue. A subsequent protein-protein interaction (PPI) network, visualized through Cytoscape, highlighted critical hub genes linked to the progression of TNBC. Survival analysis linked their overexpression to poor patient outcomes, underscoring it as a key driver of TNBC progression. Following the identification of genes, virtual screening and MMGBSA (Molecular Mechanics Generalized Born Surface Area) studies were conducted, which led to the identification of potential molecules that can target the protein.

Results

Critical hub genes associated with TNBC progression were identified, and their overexpression was linked to poor survival outcomes. Virtual screening and MMGBSA studies led to the discovery of potential molecules targeting the identified protein.

Conclusion

The findings of this study pave the way for further exploration for improving TNBC outcomes by targeting the key genes involved in TNBC progression and providing potential molecular targets for therapeutic intervention.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921361716250311084315
2025-03-26
2026-01-18
Loading full text...

Full text loading...

References

  1. ZhuS. WuY. SongB. Recent advances in targeted strategies for triple-negative breast cancer.J. Hematol. Oncol.202316110010.1186/s13045‑023‑01497‑3 37641116
    [Google Scholar]
  2. MehrotraR. YadavK. Breast cancer in India: Present scenario and the challenges ahead.World J. Clin. Oncol.202213320921810.5306/wjco.v13.i3.209 35433294
    [Google Scholar]
  3. LeeS.B. PanJ. XiongD. Striking efficacy of a vaccine targeting TOP2A for triple-negative breast cancer immunoprevention.NPJ Precis. Oncol.20237110810.1038/s41698‑023‑00461‑1 37880313
    [Google Scholar]
  4. SukumarJ. GastK. QuirogaD. LustbergM. WilliamsN. Triple-negative breast cancer: Promising prognostic biomarkers currently in development.Expert Rev. Anticancer Ther.202121213514810.1080/14737140.2021.1840984 33198517
    [Google Scholar]
  5. AysolaK. DesaiA. WelchC. Triple negative breast cancer: An overview.Hered Genet Curr Res20132013110.4172/2161‑1041.S2‑001
    [Google Scholar]
  6. ShaoF. SunH. DengC.X. Potential therapeutic targets of triple-negative breast cancer based on its intrinsic subtype.Oncotarget2017842733297334410.18632/oncotarget.20274 29069872
    [Google Scholar]
  7. MasciD. NaroC. PuxedduM. Recent Advances in drug discovery for triple-negative breast cancer treatment.Molecules20232822751310.3390/molecules28227513 38005235
    [Google Scholar]
  8. LiY. ZhangH. MerkherY. Recent advances in therapeutic strategies for triple-negative breast cancer.J. Hematol. Oncol.202215112110.1186/s13045‑022‑01341‑0 36038913
    [Google Scholar]
  9. OuY. WangM. XuQ. SunB. JiaY. Small molecule agents for triple negative breast cancer: Current status and future prospects.Transl. Oncol.20244110189310.1016/j.tranon.2024.101893 38290250
    [Google Scholar]
  10. JainB. RajU. VaradwajP.K. Drug target interplay: A network-based analysis of human diseases and the drug targets.Curr. Top. Med. Chem.20181813105310.2174/1568026618666180719160922
    [Google Scholar]
  11. ZengX. ShiG. HeQ. ZhuP. Screening and predicted value of potential biomarkers for breast cancer using bioinformatics analysis.Sci. Rep.20211112079910.1038/s41598‑021‑00268‑9 34675265
    [Google Scholar]
  12. ChenD.L. CaiJ.H. WangC.C.N. Identification of key prognostic genes of triple negative breast cancer by LASSO-based machine learning and bioinformatics analysis.Genes202213590210.3390/genes13050902 35627287
    [Google Scholar]
  13. PradhanR. DeyA. TaliyanR. PuriA. KharavtekarS. DubeyS.K. Recent advances in targeted nanocarriers for the management of triple negative breast cancer.Pharmaceutics202315124610.3390/pharmaceutics15010246 36678877
    [Google Scholar]
  14. BarrettT. WilhiteS.E. LedouxP. NCBI GEO: Archive for functional genomics data sets—update.Nucleic Acids Res.201241D1D991D99510.1093/nar/gks1193 23193258
    [Google Scholar]
  15. SzklarczykD. GableA.L. LyonD. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky1131 30476243
    [Google Scholar]
  16. SzklarczykD. MorrisJ.H. CookH. The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible.Nucleic Acids Res.201745D36210.1093/nar/gkw937
    [Google Scholar]
  17. ShannonP. MarkielA. OzierO. Cytoscape: A software environment for integrated models of biomolecular interaction networks.Genome Res.200313112498250410.1101/gr.1239303 14597658
    [Google Scholar]
  18. ChinC.H. ChenS.H. WuH.H. HoC.W. KoM.T. LinC.Y. cytoHubba: Identifying hub objects and sub-networks from complex interactome.BMC Syst. Biol.20148S4Suppl. 4S1110.1186/1752‑0509‑8‑S4‑S11 25521941
    [Google Scholar]
  19. TangZ. LiC. KangB. GaoG. LiC. ZhangZ. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses.Nucleic Acids Res.201745W1W98W10210.1093/nar/gkx247 28407145
    [Google Scholar]
  20. GyörffyB. LanczkyA. EklundA.C. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients.Breast Cancer Res. Treat.2010123372573110.1007/s10549‑009‑0674‑9 20020197
    [Google Scholar]
  21. GyőrffyB. Integrated analysis of public datasets for the discovery and validation of survival-associated genes in solid tumors.Innovation20245310062510.1016/j.xinn.2024.100625 38706955
    [Google Scholar]
  22. LuX.Q. ZhangJ.Q. ZhangS.X. Identification of novel hub genes associated with gastric cancer using integrated bioinformatics analysis.BMC Cancer202121169710.1186/s12885‑021‑08358‑7 34126961
    [Google Scholar]
  23. BermanH.M. WestbrookJ. FengZ. The protein data Bank.Nucleic Acids Res.200028123524210.1093/nar/28.1.235 10592235
    [Google Scholar]
  24. CoxonC.R. AnscombeE. HarnorS.J. Cyclin-Dependent Kinase (CDK) inhibitors: Structure–activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines.J. Med. Chem.20176051746176710.1021/acs.jmedchem.6b01254 28005359
    [Google Scholar]
  25. HalgrenT.A. Identifying and characterizing binding sites and assessing druggability.J. Chem. Inf. Model.200949237738910.1021/ci800324m 19434839
    [Google Scholar]
  26. Schrödinger Release 2024-3: SiteMap, Schrödinger, LLC, New York2024Avaiable fromhttps://www. schrodinger.com/life-science/download/release-notes/release-2024-3/
  27. Specs: Compound Management services and Research Compounds for the Life Science industryAvaiable from:https://www.specs.net/
  28. YangY. YaoK. RepaskyM.P. Efficient exploration of chemical space with docking and deep learning.J. Chem. Theory Comput.202117117106711910.1021/acs.jctc.1c00810 34592101
    [Google Scholar]
  29. Schrödinger Release 2024-3: Glide, Schrödinger, LLC, New York 20242024Avaiable from:https://www.schrodinger. com/life-science/download/release-notes/release-2024-3/
  30. FriesnerR.A. BanksJ.L. MurphyR.B. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  31. FriesnerR.A. MurphyR.B. RepaskyM.P. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o 17034125
    [Google Scholar]
  32. GenhedenS. RydeU. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.Expert Opin. Drug Discov.201510544946110.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  33. XiaoX. ZhangZ. LuoR. Identification of potential oncogenes in triple negative breast cancer based on bioinformatics analyses.Oncol. Lett.202121536310.3892/ol.2021.12624 33747220
    [Google Scholar]
  34. MuratoreM. KomaiA.M. Theoretical study of the adiponectin receptors: Binding site characterization and molecular dynamics of possible ligands for drug design.SN Applied Sciences20202453310.1007/s42452‑020‑2333‑z
    [Google Scholar]
  35. PérotS. SperandioO. MitevaM.A. CamprouxA.C. VilloutreixB.O. Druggable pockets and binding site centric chemical space: A paradigm shift in drug discovery.Drug Discov. Today20101515-1665666710.1016/j.drudis.2010.05.015 20685398
    [Google Scholar]
  36. ZagamiP. CareyL.A. Triple negative breast cancer: Pitfalls and progress.NPJ Breast Cancer2022819510.1038/s41523‑022‑00468‑0 35987766
    [Google Scholar]
  37. HwangS.Y. ParkS. KwonY. Recent therapeutic trends and promising targets in triple negative breast cancer.Pharmacol. Ther.2019199305710.1016/j.pharmthera.2019.02.006 30825473
    [Google Scholar]
  38. GavetO. PinesJ. Progressive activation of CyclinB1-Cdk1 coordinates entry to mitosis.Dev. Cell201018453354310.1016/j.devcel.2010.02.013 20412769
    [Google Scholar]
  39. LiM.X. JinL.T. WangT.J. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.OncoTargets Ther.2018114105411210.2147/OTT.S166567 30140156
    [Google Scholar]
  40. NakayamaY. YamaguchiN. Role of Cyclin B1 levels in DNA damage and DNA damage-induced senescence.In: Jeon KW, Ed. Int Rev Cell Mol Biol. Academic Press201310.1016/B978‑0‑12‑407695‑2.00007‑X30530337
    [Google Scholar]
  41. HaywardD. Alfonso-PérezT. CundellM.J. CDK1-CCNB1 creates a spindle checkpoint–permissive state by enabling MPS1 kinetochore localization.J. Cell Biol.201921841182119910.1083/jcb.201808014 30674582
    [Google Scholar]
  42. FangL. DuW.W. AwanF.M. DongJ. YangB.B. The circular RNA circ-Ccnb1 dissociates Ccnb1/Cdk1 complex suppressing cell invasion and tumorigenesis.Cancer Lett.201945921622610.1016/j.canlet.2019.05.036 31199987
    [Google Scholar]
  43. ChaiN. XieH. YinJ. FOXM1 promotes proliferation in human hepatocellular carcinoma cells by transcriptional activation of CCNB1.Biochem. Biophys. Res. Commun.2018500492492910.1016/j.bbrc.2018.04.201 29705704
    [Google Scholar]
  44. ZhouL. LiJ. ZhaoY.P. The prognostic value of Cyclin B1 in pancreatic cancer.Med. Oncol.201431910710.1007/s12032‑014‑0107‑4 25106528
    [Google Scholar]
  45. LiuB. LiuY. WangY. CyclinB1 deubiquitination by USP14 regulates cell cycle progression in breast cancer.Pathol. Res. Pract.20192151015259210.1016/j.prp.2019.152592 31474315
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921361716250311084315
Loading
/content/journals/cppm/10.2174/0118756921361716250311084315
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test