Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

The introduction of artificial intelligence (AI) into dermatology has transformed customized skincare by using data-driven insights to improve treatment efficacy and accuracy. This study investigates the effects of artificial intelligence-enhanced skincare on skin microbiome diversity and pharmacogenomic accuracy, with a focus on its transformational potential in dermatological applications. The skin microbiome, an important regulator of skin health, varies greatly across people and impacts disorders including acne, eczema, and rosacea. AI-powered study of microbiome composition enables the development of customized skincare solutions that restore microbial equilibrium, improving treatment outcomes. Furthermore, pharmacogenomics—the study of genetic differences impacting medicine and skincare component responses—enables highly personalised skincare treatments that reduce side effects while increasing therapeutic benefits. AI-powered tools, such as machine learning algorithms and deep learning models, provide real-time skin evaluations, allowing for ongoing improvement of skincare regimens based on dynamic biological and environmental elements. Furthermore, AI accelerates the creation of smart biomaterials that optimise component penetration and bioavailability, hence increasing precision dermatology. Personalized skincare solutions may be tailored to an individual's unique skin profile by combining genetic insights, microbiome research, and AI-powered predictive modeling, resulting in higher treatment success. While AI-enhanced dermatology has enormous promise, issues like as data privacy, algorithm bias, and legal barriers must be addressed in order to assure ethical and successful deployment. This paper emphasizes the potential of AI in dermatology, proposing a collaborative strategy combining AI, microbiome research, and pharmacogenomics to transform customized skincare.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921368686250621143748
2025-01-01
2025-09-02
Loading full text...

Full text loading...

References

  1. RossA.A. Rodrigues HoffmannA. NeufeldJ.D. The skin microbiome of vertebrates.Microbiome2019717910.1186/s40168‑019‑0694‑631122279
    [Google Scholar]
  2. Santiago-RodriguezT.M. The skin microbiome: Current techniques, challenges, and future directions.Microorganisms2023115122210.3390/microorganisms1105122237317196
    [Google Scholar]
  3. BoxbergerM. CenizoV. CassirN. La ScolaB. Challenges in exploring and manipulating the human skin microbiome.Microbiome20219112510.1186/s40168‑021‑01062‑534053468
    [Google Scholar]
  4. DrénoB. DagnelieM.A. KhammariA. CorvecS. The skin microbiome: A new actor in inflammatory acne.Am. J. Clin. Dermatol.202021(Suppl 1)182410.1007/s40257‑020‑00531‑132910436
    [Google Scholar]
  5. UdayBhosale Empowering consumers: The evolving paradigm of customization in personal care products.Curr. Cosmet. Sci.20232e20102322248210.2174/0126667797265268231011103859
    [Google Scholar]
  6. EunjeongP. A critical popularization of customized curation services for cosmetics in the Republic of Korea.J. Cosmet. Dermatol.20222131534010.1111/jocd.15340
    [Google Scholar]
  7. MeloulJ. An apparatus and method for producing personalized cosmetic products.Patent WO2009090634A22009
    [Google Scholar]
  8. StefanoM. Process for the production of a personalised cosmetic.Patent WO2013113856A12013
    [Google Scholar]
  9. DirksingR.S. Method for providing personalized cosmetics.Patent US6516245B12003
  10. SrinivasA. Method and apparatus for providing personalized cosmetics.Patent WO2001091601A32001
    [Google Scholar]
  11. Skin care compositions.Patent AU726435-B22000
    [Google Scholar]
  12. CarlosO-V. Article and method for selection of individualized personal care products.Patent TW200412233A2003
    [Google Scholar]
  13. BrianD. Methods and system for providing personalized preparations.Patent EP1301102A22003
    [Google Scholar]
  14. AyanlowoOlusola Pattern of Skin disorders across age groups.Res. J. Health Sci.2017531485810.4314/rejhs.v5i3.4
    [Google Scholar]
  15. MarkiewiczE. IdowuO.C. Evaluation of personalized skincare through in-silico gene interactive networks and cellular responses to UVR and oxidative stress.Clin. Cosmet. Investig. Dermatol.2022152221224310.2147/CCID.S38379036284733
    [Google Scholar]
  16. LidjajaL.N. Arie Kusumawardani Ivani Vrenda Alia Analysis of risk factors and body mass index against degrees of severity of psoriasis vulgaris.BioSci. Med. J. Biomed. Transl. Res.20248105214522210.37275/bsm.v8i10.1104
    [Google Scholar]
  17. ShresthaR. BasukalaM. Occupational dermatosis.Nep Med J201811242810.3126/nmj.v1i1.20395
    [Google Scholar]
  18. HarshitaMathur Exploring the application of Artificial Intelligence in cosmetics and beauty industry.Curr. Cosmet. Sci20243e28022422749310.2174/0126667797280144240221055142
    [Google Scholar]
  19. HaykalD. GaribyanL. FlamentF. CartierH. Hybrid cosmetic dermatology: AI generated horizon.Skin Res. Technol.2024305e1372110.1111/srt.13721
    [Google Scholar]
  20. PandyaJ. The study of artificial marketing tools used in the Indian cosmetic industry and its impact on consumer behaviour.J Informatics Educ Res20244111010.52783/jier.v4i1.640
    [Google Scholar]
  21. TranHa. Personalized cosmetic system.Patent 20200321074A1 US2020
  22. GeorgievskayaA. TlyachevT. DankoD. ChekanovK. CorstjensH. How artificial intelligence adopts human biases: The case of cosmetic skincare industry.AI Ethics20255110511510.1007/s43681‑023‑00378‑2
    [Google Scholar]
  23. SuchethanaH.C. Cosmetic suggestions based on skin condition.Indian Sci. J. Res. Eng. Manag.20243351110.55041/ijsem
    [Google Scholar]
  24. ShanmughamBhuvana Cosmetic suggestion system using convolution neural network.2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC)Coimbatore, India, 17-19 August 2022, pp. 1084-108910.1109/ICESC54411.2022.9885369
    [Google Scholar]
  25. O’HigginsB. FatorachianH. Consumer trust in artificial intelligence in the UK and Ireland’s personal care and cosmetics sector.2025121246976510.1080/23311975.2025.2469765
    [Google Scholar]
  26. KavyashreeN. Artificial Intelligence based smart cosmetics suggestion system based on skin condition.2022 International Conference on Automation, Computing and Renewable Systems (ICACRS)Pudukkottai, India, 13-15 December 2022, pp. 797-801.10.1109/ICACRS55517.2022.10029120
    [Google Scholar]
  27. ChoiE. LeeM-J. A study on personalized beauty care for the elderly using an AI-based digital skin analysis system. Issue 2J. Korean Soc. Cosmetol.20243036637610.52660/JKSC.2024.30.2.366
    [Google Scholar]
  28. KimBo Ri KimMin Jae KooJieun ChoiHwa-Jung PaikKyung Ho KwonSoon Hyo ChoiHye-Ryung HuhChang Hun ShinJung Won Dong-sunPark NaJung-Im Artificial intelligence-based prescription of personalized scalp cosmetics improved the scalp condition: Efficacy results from 100 participants.J Dermatol Treat2024351233790810.1080/09546634.2024.233790838616301
    [Google Scholar]
  29. AdawiyahS.R. PurwandariB. EitiveniI. PurwaningsihE.H. The influence of AI and AR technology in personalized recommendations on customer usage intention: A case study of cosmetic products on shopee.Appl. Sci.20241413578610.3390/app14135786
    [Google Scholar]
  30. SharmaS.K.R. GaurS. Optimizing nutritional outcomes: The role of AI in personalized diet planning.International Journal for Research Publication and Seminar202415210711610.36676/jrps.v15.i2.15
    [Google Scholar]
  31. AzzimaniK. BihriH. DahmiA. AzzouziS. CharafM.E. An AI based approach for personalized nutrition and food menu planning.2022 IEEE 3rd International Conference on Electronics, Control, Optimization and Computer Science (ICECOCS)Fez, Morocco, 01-02 December 2022, pp. 1-510.1109/ICECOCS55148.2022.9983099
    [Google Scholar]
  32. MoghriM. DragoiE. SalehabadiA. ShuklaD. VasseghianY. Effect of various formulation ingredients on thermal characteristics of PVC/clay nanocomposite foams: Experimental and modeling.e-Polymers201717211912810.1515/epoly‑2016‑0151
    [Google Scholar]
  33. WangJ. ChandraA. FarhadD. The Role of Data Mining in Organizational Cognition.Data Warehousing and MiningIGI Global200710.4018/978‑1‑59904‑951‑9.ch138
    [Google Scholar]
  34. ConteE. GaniR. Chemical-based formulation design: Virtual experimentation.Abstract from 21st European Symposium on Computer Aided Process Engineering201129158892
    [Google Scholar]
  35. DangetiA. DeekshiG.B. KrishnaveniV. Revolutionizing drug formulation: Harnessing artificial intelligence and machine learning for enhanced stability, formulation optimization, and accelerated development.Int J Pharm Sci Med202388182910.47760/ijpsm.2023.v08i08.003
    [Google Scholar]
  36. LiangE. WangZ. LiX. WangS. HanX. ChenD. ZhengA. 3D printing technology based on versatile gelatin-carrageenan gel system for drug formulations.Pharmaceutics2023154121810.3390/pharmaceutics1504121837111703
    [Google Scholar]
  37. AundhiaC. ParmarG. TaleleC. ShahN. TaleleD. Impact of Artificial Intelligence on drug development and delivery.Curr. Top. Med. Chem.202424Advance online publication10.2174/011568026632452224072505363439136506
    [Google Scholar]
  38. PyterafJ. PacławskiA. JamrózW. MendykA. PaluchM. JachowiczR. Application and multi-stage optimization of daylight polymer 3D printing of personalized medicine products.Pharmaceutics202214484310.3390/pharmaceutics1404084335456677
    [Google Scholar]
  39. SalehiS. KhanS. AvontoC. ChittiboyinaA.G. KhanI.A. Prediction of skin sensitization potential of chemicals present in cosmetic products by human cell line activation test (h-CLAT).Planta Med.2016825PB4210.1055/s‑0036‑1578690
    [Google Scholar]
  40. DingW. FanL. TianY. HeC. Study of the protective effects of cosmetic ingredients on the skin barrier, based on the expression of barrier-related genes and cytokines.Mol. Biol. Rep.202249298999510.1007/s11033‑021‑06918‑534799820
    [Google Scholar]
  41. D’UrsoF. BroccoloF. Applications of artificial intelligence in microbiome analysis and probiotic interventions: An overview and perspective based on the current state of the art.Appl. Sci.20241419862710.3390/app14198627
    [Google Scholar]
  42. SpadaF. BarnesT.M. GreiveK.A. Skin hydration is significantly increased by a cream formulated to mimic the skin’s own natural moisturizing systems.Clin. Cosmet. Investig. Dermatol.20181149149710.2147/CCID.S17769730410378
    [Google Scholar]
  43. MooreE. BalzJ.P. NortonK. Influence of cosmetics with complex hydration retention formulations on skin.Int. J. Cosmet. Sci.202143425025710.1111/ics.12691
    [Google Scholar]
  44. MartinsenØ.G. GrimnesS. Long-term effect of some skin moisturizers.J. Cosmet. Dermatol.20087426327010.1111/j.1473‑2165.2008.00409.x19146602
    [Google Scholar]
  45. GoyalN. JeroldF. Biocosmetics: technological advances and future outlook.Environ. Sci. Pollut. Res. Int.20213010251482516910.1007/s11356‑021‑17567‑334825334
    [Google Scholar]
  46. GregorS. BairM. KleinschmidtS. Dermatological treatments and microbiome restoration strategies.Microorganisms2022108192910.3390/microorganisms10081929
    [Google Scholar]
  47. LeeH.J. KimM. Skin barrier function and the microbiome.Int. J. Mol. Sci.202223211307110.3390/ijms23211307136361857
    [Google Scholar]
  48. HeS. LinY. ZhangZ. A study of molecular approaches in anti-aging cosmetics.Skin Pharmacol. Physiol.2023331728410.1159/000512380
    [Google Scholar]
  49. BauerM. SheferN. The effect of skin care cosmetics containing prebiotics on skin barrier function and microbiome balance.J. Cosmet. Dermatol.20212072324233110.1111/jocd.14222
    [Google Scholar]
  50. ShenZ. LiJ. ZhaoY. Influence of the human skin microbiome on ageing and cosmetics formulations.Aging Cell2023221e1378210.1111/acel.13782
    [Google Scholar]
  51. MoreiraT. AsnicarF. Advances in the research of the human skin microbiome: Assessment and potential therapies.Microorganisms2023117147810.3390/microorganisms11071478
    [Google Scholar]
  52. HagerD. DuanX. LiS. Price vs value: Evaluation of personalized skincare.J. Cosmet. Sci.202374211012310.1016/j.jcs.2023.03.004
    [Google Scholar]
  53. ReyesJ. HeimbachT. LeeC. The impact of consumer preferences on beauty and skincare products.J. Cosmet. Dermatol.202322345947210.1111/jocd.15201
    [Google Scholar]
  54. HallierA. MillerM. ChalasaniP. Skin barrier strengthening: The role of modern cosmetic formulations.J. Cosmet. Sci.202273658960410.1111/jcs.13632
    [Google Scholar]
  55. HeinrichK. HeinrichU. TronnierH. Influence of different cosmetic formulations on the human skin barrier.Skin Pharmacol Physiol201427314114710.1159/00035491924434680
    [Google Scholar]
  56. MulderI. FrancoisL. A study of advanced cosmetic formulations improving barrier function and hydration.Int. J. Cosmet. Sci.2023451566510.1111/ics.12850
    [Google Scholar]
  57. JamesonP. ChoiY. The role of ceramides in cosmetic formulations for barrier repair.Cosmetic Chemistry Journal202331412313410.1007/s00321‑022‑04721‑6
    [Google Scholar]
  58. DavidsonR. ThomasK. Formulation development: Ceramides in skin barrier restoration.Cosmet. Sci. Technol.202419221122310.1007/s00123‑024‑02091‑8
    [Google Scholar]
  59. StarkeyL. JonesR. The potential of lycopene as an antioxidant in dermatology and skincare.J. Dermatol. Sci.202248110111010.1016/j.jdermsci.2022.01.015
    [Google Scholar]
  60. AlexanderT. SinclairW. The role of antioxidants in personalized skincare treatments.Dermatol. Res. Pract.20232023490123410.1155/2023/901234
    [Google Scholar]
  61. HallidayP. SilvaC. Niacinamide’s anti-inflammatory effects and barrier repair benefits in skincare.Int. J. Cosmet. Sci.202345210011510.1111/ics.12849
    [Google Scholar]
  62. RobinsonD. HarrisP. Mechanisms of niacinamide in skin barrier improvement.Skin Pharmacol. Physiol.2024351304010.1159/000530030
    [Google Scholar]
  63. PatelR. D’SouzaJ. The effects of zinc in acne reduction: A personalized approach.J. Dermatol.2023150890091210.1111/jder.16230
    [Google Scholar]
  64. ZhaoL. HanJ. Personalized approaches in acne treatment: Targeted formulations for skin microbiome balance.Dermatol. Res. Pract.2023512091410.1155/2023/5120914
    [Google Scholar]
  65. XuG. LiY. Personalized approaches for hyperpigmentation treatment.Pigment Cell Melanoma Res.2023361556410.1111/pcmr.13147
    [Google Scholar]
  66. DukeK. BrownH. The topical use of vitamin C for hyperpigmentation improvement in personalized cosmetics.Int. J. Cosmet. Sci.2022442899710.1111/ics.12657
    [Google Scholar]
  67. LeeS. ParkJ. Anti-inflammatory effects of chamomile extract in sensitive skincare.Clin. Dermatol.202348323324510.1016/j.jclin.derm.2022.11.009
    [Google Scholar]
  68. GohJ. LiewS. The effect of licorice root extract on rosacea treatment in personalized formulations.Dermatol. Res. Pract.2022761230910.1155/2022/7612309
    [Google Scholar]
  69. RozasM. BrilletF. CallewaertC. PaetzoldB. MinION™ nanopore sequencing of skin microbiome 16S and 16S-23S rRNA gene amplicons.Front. Cell. Infect. Microbiol.20221180647610.3389/fcimb.2021.80647635071053
    [Google Scholar]
  70. TaylorE.E. YuS. Role of the skin microbiome in dermatology and cosmetic science.Microorganisms202311467210.3390/microorganisms1104067237110445
    [Google Scholar]
  71. AlexanderT. JohnsonR. Skin probiotics: Role in treating acne and eczema.Dermatol. Res. Pract.202315672310.1155/2023/156723
    [Google Scholar]
  72. GonzalezP. RosasM. Prebiotic skincare: Its role in microbiome balance.Int. J. Cosmet. Sci.2024461506310.1111/ics.12938
    [Google Scholar]
  73. HuoD. WangX. A new era in healthcare: The integration of artificial intelligence and microbial.Med. Novel Technol. Devices20242331910031910.1016/j.medntd.2024.100319
    [Google Scholar]
  74. BalzerL. HofmannR. Impact of small sample sizes on microbiome analysis: Challenges and solutions.J. Microbiome202214322323410.1186/s40168‑022‑01192‑7
    [Google Scholar]
  75. MurrayJ. GrangerS. The effects of short vs. long-duration studies on skincare and microbiome health.J. Cosmet. Dermatol.20235221723010.1155/2023/751234
    [Google Scholar]
  76. NeytalP MajiN MajiS Advances in cosmetic products towards a new future. In: Preserving Health, Preserving Earth. World Sustainability SeriesSpringerCham202419321410.1007/978‑3‑031‑60545‑1_12
    [Google Scholar]
  77. EllisJ.R. PowellE.J. TomasovicL.M. MarcheskieR.L. GirishV. WarmanA. SivaloganathanD. Changes in the skin microbiome following dermatological procedures: A scoping review.Appl. Microbiol.20244297298510.3390/applmicrobiol4020066
    [Google Scholar]
  78. ChoiH.Y. LeeY.J. KimC.M. LeeY.M. Revolutionizing cosmetic ingredients: Harnessing the power of antioxidants, probiotics, plant extracts, and peptides in personal and skin care products.Cosmetics202411515710.3390/cosmetics11050157
    [Google Scholar]
  79. FlemingJ. LieuY. The influence of AI-driven skincare and recent advances in dermatology.Front. Cell Dev. Biol.20231278934510.3389/fcell.2023.789345
    [Google Scholar]
  80. JohnsonR. MartinS. Privacy and security concerns in AI-driven personalized skincare.J. Ethical Dermatol. Res.20238211010.1155/2023/812378
    [Google Scholar]
  81. WongsawanC. BowdenT. Lack of longitudinal studies on the long-term impact of AI-driven personalized cosmetics.J. Long-Term Care2024103812813710.3390/longterm.10038
    [Google Scholar]
  82. HamiltonK. MillsS. Long-term impact of personalized cosmetics on skin microbiome diversity and skin health.Dermatol. Res. Pract.202381231710.1155/2023/812317
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921368686250621143748
Loading
/content/journals/cppm/10.2174/0118756921368686250621143748
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test