Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Mutations that impair regular cell growth and division are the root cause of breast cancer, a complicated genetic disorder. Our knowledge of the disease's molecular foundation has significantly increased as a result of recent genomics developments. This study intends to clarify important driver mutations linked to breast cancer, classify them according to their penetrance, and investigate the consequences for risk evaluation and targeted treatments. A review of recent research was conducted to identify important genetic mutations linked to breast cancer, such as high, moderate, and low penetrance genes. Furthermore, the part epigenetic modifications play in the development of cancer was investigated. Because of their functions in DNA repair and cell cycle regulation, high-penetrance genes like PTEN, TP53, and BRCA1/2 have been connected to an increased risk of breast cancer. The intricacy of the disease is further increased by low penetrance variations and moderate penetrance genes like CHEK2 and BRIP1. The study highlights the significance of understanding these genetic alterations to customize screening and treatment strategies. Furthermore, epigenetic mechanisms like DNA methylation and histone modifications are essential for regulating gene expression and fostering tumor growth. The knowledge gathered from genomic and epigenetic research is essential for refining the estimation of breast cancer risk and creating focused treatment strategies. A comprehensive understanding of these molecular mechanisms will improve clinical outcomes in the treatment of breast cancer by allowing patients to receive more effective care and treatment options.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921389643250731042712
2025-08-13
2026-01-18
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. ŁukasiewiczS. CzeczelewskiM. FormaA. BajJ. SitarzR. StanisławekA. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review.Cancers20211317428710.3390/cancers13174287 34503097
    [Google Scholar]
  3. McAleerS. A history of cancer and its treatment: Presidential Address to the Ulster Medical Society. 7th October 2021.Ulster Med. J.2022913124129 36474852
    [Google Scholar]
  4. OnitiloA.A. EngelJ.M. GreenleeR.T. MukeshB.N. Breast cancer subtypes based on ER/PR and Her2 expression: comparison of clinicopathologic features and survival.Clin. Med. Res.200971-241310.3121/cmr.2008.825 19574486
    [Google Scholar]
  5. WeiS. Hormone receptors in breast cancer: An update on the uncommon subtypes.Pathol. Res. Pract.202325015479110.1016/j.prp.2023.154791 37672851
    [Google Scholar]
  6. GolubnitschajaO. DebaldM. YeghiazaryanK. Breast cancer epidemic in the early twenty-first century: Evaluation of risk factors, cumulative questionnaires and recommendations for preventive measures.Tumour Biol.20163710129411295710.1007/s13277‑016‑5168‑x 27448308
    [Google Scholar]
  7. MartinA.M. WeberB.L. Genetic and hormonal risk factors in breast cancer.J. Natl. Cancer Inst.200092141126113510.1093/jnci/92.14.1126 10904085
    [Google Scholar]
  8. RoheelA. KhanA. AnwarF. Global epidemiology of breast cancer based on risk factors: A systematic review.Front. Oncol.202313124009810.3389/fonc.2023.1240098 37886170
    [Google Scholar]
  9. Casás-SelvesM. DeGregoriJ. How cancer shapes evolution, and how evolution shapes cancer.Evolution20114462463410.1007/s12052‑011‑0373‑y 23705033
    [Google Scholar]
  10. HamdanD. NguyenT.T. LeboeufC. MelesS. JaninA. BousquetG. Genomics applied to the treatment of breast cancer.Oncotarget201910464786480110.18632/oncotarget.27102 31413819
    [Google Scholar]
  11. ShiovitzS. KordeL.A. Genetics of breast cancer: A topic in evolution.Ann. Oncol.20152671291129910.1093/annonc/mdv022 25605744
    [Google Scholar]
  12. MaxwellK.N. NathansonK.L. Common breast cancer risk variants in the post-COGS era: A comprehensive review.Breast Cancer Res.201315621210.1186/bcr3591 24359602
    [Google Scholar]
  13. MavaddatN. AntoniouA.C. EastonD.F. Garcia-ClosasM. Genetic susceptibility to breast cancer.Mol. Oncol.20104317419110.1016/j.molonc.2010.04.011 20542480
    [Google Scholar]
  14. PetrucelliN. DalyM.B. PalT. GeneReviews.SeattleUniversity of Washington1993
    [Google Scholar]
  15. LiedeA. KarlanB.Y. NarodS.A. Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: A review of the literature.J. Clin. Oncol.200422473574210.1200/JCO.2004.05.055 14966099
    [Google Scholar]
  16. LiM.L. GreenbergR.A. Links between genome integrity and BRCA1 tumor suppression.Trends Biochem. Sci.2012371041842410.1016/j.tibs.2012.06.007 22836122
    [Google Scholar]
  17. GorodetskaI. KozeretskaI. DubrovskaA. BRCA Genes: The role in genome stability, cancer stemness and therapy resistance.J. Cancer20191092109212710.7150/jca.30410 31205572
    [Google Scholar]
  18. PetrucelliN. DalyM.B. FeldmanG.L. Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2.Genet. Med.201012524525910.1097/GIM.0b013e3181d38f2f 20216074
    [Google Scholar]
  19. SmithE.C. An overview of hereditary breast and ovarian cancer syndrome.J. Midwifery Womens Health201257657758410.1111/j.1542‑2011.2012.00199.x 23050669
    [Google Scholar]
  20. MullanP.B. QuinnJ.E. HarkinD.P. The role of BRCA1 in transcriptional regulation and cell cycle control.Oncogene200625435854586310.1038/sj.onc.1209872 16998500
    [Google Scholar]
  21. PetrocelliT. SlingerlandJ.M. PTEN deficiency: A role in mammary carcinogenesis.Breast Cancer Res.20013635636010.1186/bcr322 11737885
    [Google Scholar]
  22. SinghG. OdriozolaL. GuanH. KennedyC.R. ChanA.M. Characterization of a novel PTEN mutation in MDA-MB-453 breast carcinoma cell line.BMC Cancer201111149010.1186/1471‑2407‑11‑490 22103913
    [Google Scholar]
  23. PradellaL.M. EvangelistiC. LigorioC. A novel deleterious PTEN mutation in a patient with early-onset bilateral breast cancer.BMC Cancer20141417010.1186/1471‑2407‑14‑70 24498881
    [Google Scholar]
  24. Comprehensive molecular portraits of human breast tumours.Nature20124907418617010.1038/nature11412 23000897
    [Google Scholar]
  25. ShahbandiA. NguyenH.D. JacksonJ.G. TP53 mutations and outcomes in breast cancer: Reading beyond the headlines.Trends Cancer2020629811010.1016/j.trecan.2020.01.007 32061310
    [Google Scholar]
  26. HosseiniM.S. Current insights and future directions of Li-Fraumeni syndrome.Discov Oncol202415156110.1007/s12672‑024‑01435‑w 39404911
    [Google Scholar]
  27. FengY. SpeziaM. HuangS. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis.Genes Dis.2018527710610.1016/j.gendis.2018.05.001 30258937
    [Google Scholar]
  28. AhmadiS.E. RahimianE. RahimiS. From regulation to deregulation of p53 in hematologic malignancies: Implications for diagnosis, prognosis and therapy.Biomark. Res.202412113710.1186/s40364‑024‑00676‑9 39538363
    [Google Scholar]
  29. GirardiA. MagnoniF. ViciniE. CDH1 germline mutations in families with hereditary lobular breast cancer.Eur. J. Cancer Prev.202231327427810.1097/CEJ.0000000000000688 33990097
    [Google Scholar]
  30. SchraderK.A. MasciariS. BoydN. Hereditary diffuse gastric cancer: Association with lobular breast cancer.Fam. Cancer200871738210.1007/s10689‑007‑9172‑6 18046629
    [Google Scholar]
  31. RubtsovaS.N. ZhitnyakI.Y. GloushankovaN.A. Dual role of E-cadherin in cancer cells.Tissue Barriers2022104200542010.1080/21688370.2021.2005420 34821540
    [Google Scholar]
  32. van RoyF. BerxG. The cell-cell adhesion molecule E-cadherin.Cell. Mol. Life Sci.200865233756378810.1007/s00018‑008‑8281‑1 18726070
    [Google Scholar]
  33. LialiosP. AlimpertiS. Role of E-cadherin in epithelial barrier dysfunction: Implications for bacterial infection, inflammation, and disease pathogenesis.Front. Cell. Infect. Microbiol.202515150663610.3389/fcimb.2025.1506636 40007608
    [Google Scholar]
  34. CorsoG. MontagnaG. FigueiredoJ. Hereditary gastric and breast cancer syndromes related to CDH1 germline mutation: A multidisciplinary clinical review.Cancers2020126159810.3390/cancers12061598 32560361
    [Google Scholar]
  35. ApostolouP. PapasotiriouI. Current perspectives on CHEK2 mutations in breast cancer.Breast Cancer2017933133510.2147/BCTT.S111394 28553140
    [Google Scholar]
  36. CybulskiC. HuzarskiT. ByrskiT. Estrogen receptor status in CHEK2‐positive breast cancers: Implications for chemoprevention.Clin. Genet.2009751727810.1111/j.1399‑0004.2008.01111.x 19021634
    [Google Scholar]
  37. AnY. GaoD. HeY. Guarding against digestive-system cancers: Unveiling the role of Chk2 as a potential therapeutic target.Genes Dis.202512110119110.1016/j.gendis.2023.101191 39524544
    [Google Scholar]
  38. BoonenR.A.C.M. VreeswijkM.P.G. van AttikumH. CHEK2 variants: Linking functional impact to cancer risk.Trends Cancer20228975977010.1016/j.trecan.2022.04.009 35643632
    [Google Scholar]
  39. KhanU. KhanM.S. Prognostic value estimation of BRIP1 in breast cancer by exploiting transcriptomics data through bioinformatics approaches.Bioinform. Biol. Insights2021151177932221105589210.1177/11779322211055892 34840500
    [Google Scholar]
  40. KumaraswamyE. ShiekhattarR. Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase.Mol. Cell. Biol.200727196733674110.1128/MCB.00961‑07 17664283
    [Google Scholar]
  41. SealS. ThompsonD. RenwickA. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles.Nat. Genet.200638111239124110.1038/ng1902 17033622
    [Google Scholar]
  42. Weber-LassalleN. HaukeJ. RamserJ. BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer.Breast Cancer Res.2018201710.1186/s13058‑018‑0935‑9 29368626
    [Google Scholar]
  43. StucciL.S. InternòV. TucciM. The ATM gene in breast cancer: Its relevance in clinical practice.Genes202112572710.3390/genes12050727 34068084
    [Google Scholar]
  44. BroeksA. UrbanusJ.H.M. FlooreA.N. ATM-heterozygous germline mutations contribute to breast cancer-susceptibility.Am. J. Hum. Genet.200066249450010.1086/302746 10677309
    [Google Scholar]
  45. SecaM. NarodS.A. Breast cancer and ATM mutations: Treatment implications.Hered. Cancer Clin. Pract.20242212610.1186/s13053‑024‑00300‑9 39543654
    [Google Scholar]
  46. JerzakK.J. MancusoT. EisenA. Ataxia-telangiectasia gene (ATM) mutation heterozygosity in breast cancer: A narrative review.Curr. Oncol.201825217618010.3747/co.25.3707 29719442
    [Google Scholar]
  47. InskipH.M. KinlenL.J. TaylorA.M.R. WoodsC.G. ArlettC.F. Risk of breast cancer and other cancers in heterozygotes for ataxia-telangiectasia.Br. J. Cancer1999797-81304130710.1038/sj.bjc.6690209 10098776
    [Google Scholar]
  48. TossA. PonzoniO. RiccòB. Management of PALB2 ‐associated breast cancer: A literature review and case report.Clin. Case Rep.2023118e774710.1002/ccr3.7747 37621724
    [Google Scholar]
  49. RashidM.U. KhanF.A. MuhammadN. LoyaA. HamannU. Prevalence of PALB2 germline mutations in early-onset and familial breast/ovarian cancer patients from Pakistan.Cancer Res. Treat.2019513992100010.4143/crt.2018.356 30309218
    [Google Scholar]
  50. KwongA. ShinV.Y. HoC.Y.S. Germline PALB2 mutation in high-risk chinese breast and/or ovarian cancer patients.Cancers20211316419510.3390/cancers13164195 34439348
    [Google Scholar]
  51. MasanamM.K. PitcherC.W. SogunroO. StarksL.K. MurrayA.B. BoisvertM.E. Risk-reducing surgery in PALB2 mutations carriers with breast cancer: A case series and literature review.Transl. Breast Cancer Res.2022337710.21037/tbcr‑22‑33 38751533
    [Google Scholar]
  52. CortesiL. PiombinoC. TossA. Germline mutations in other homologous recombination repair-related genes than BRCA1/2: Predictive or prognostic factors?J. Pers. Med.202111424510.3390/jpm11040245 33800556
    [Google Scholar]
  53. BossoG. CipressaF. MoroniM.L. NBS1 interacts with HP1 to ensure genome integrity.Cell Death Dis.2019101295110.1038/s41419‑019‑2185‑x 31836699
    [Google Scholar]
  54. WilliamsR.S. WilliamsJ.S. TainerJ.A. Mre11–Rad50–Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. This paper is one of a selection of papers published in this Special Issue, entitled 28th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal’s usual peer review process.Biochem. Cell Biol.200785450952010.1139/O07‑069 17713585
    [Google Scholar]
  55. BogdanovaN. FeshchenkoS. SchürmannP. Nijmegen breakage syndrome mutations and risk of breast cancer.Int. J. Cancer2008122480280610.1002/ijc.23168 17957789
    [Google Scholar]
  56. SeemanováE. JarolimP. SeemanP. Cancer risk of heterozygotes with the NBN founder mutation.J. Natl. Cancer Inst.200799241875188010.1093/jnci/djm251 18073374
    [Google Scholar]
  57. SerraH. Da InesO. DegrooteF. GallegoM.E. WhiteC.I. Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination.PLoS Genet.2013911e100397110.1371/journal.pgen.1003971 24278037
    [Google Scholar]
  58. RehW.A. NairnR.S. LoweryM.P. VasquezK.M. The homologous recombination protein RAD51D protects the genome from large deletions.Nucleic Acids Res.20174541835184710.1093/nar/gkw1204 27924006
    [Google Scholar]
  59. SullivanM.R. BernsteinK.A. RAD-ical new insights into RAD51 regulation.Genes201891262910.3390/genes9120629 30551670
    [Google Scholar]
  60. ManahanE.R. KuererH.M. SebastianM. Consensus guidelines on genetic testing for hereditary breast cancer from the American Society of Breast Surgeons.Ann. Surg. Oncol.201926103025303110.1245/s10434‑019‑07549‑8 31342359
    [Google Scholar]
  61. LedwońJ.K. HennigE.E. MaryanN. Common low-penetrance risk variants associated with breast cancer in Polish women.BMC Cancer201313151010.1186/1471‑2407‑13‑510 24171766
    [Google Scholar]
  62. RobertsE. HowellS. EvansD.G. Polygenic risk scores and breast cancer risk prediction.Breast202367717710.1016/j.breast.2023.01.003 36646003
    [Google Scholar]
  63. ByrnesG.B. SoutheyM.C. HopperJ.L. Are the so-called low penetrance breast cancer genes, ATM, BRIP1, PALB2 and CHEK2, high risk for women with strong family histories?Breast Cancer Res.200810320810.1186/bcr2099 18557994
    [Google Scholar]
  64. SiddiquiS. ChattopadhyayS. AkhtarM.S. A study on genetic variants of Fibroblast growth factor receptor 2 (FGFR2) and the risk of breast cancer from North India.PLoS One2014910e11042610.1371/journal.pone.0110426 25333473
    [Google Scholar]
  65. CampbellT.M. CastroM.A.A. de SantiagoI. FGFR2 risk SNPs confer breast cancer risk by augmenting oestrogen responsiveness.Carcinogenesis201637874175010.1093/carcin/bgw065 27236187
    [Google Scholar]
  66. LeiH. DengC.X. Fibroblast growth factor receptor 2 signaling in breast cancer.Int. J. Biol. Sci.20171391163117110.7150/ijbs.20792 29104507
    [Google Scholar]
  67. YueS. LiY. ChenX. FGFR-TKI resistance in cancer: Current status and perspectives.J. Hematol. Oncol.20211412310.1186/s13045‑021‑01040‑2 33568192
    [Google Scholar]
  68. SeksenyanA. KadavalloreA. WaltsA.E. TOX3 is expressed in mammary ER+ epithelial cells and regulates ER target genes in luminal breast cancer.BMC Cancer20151512210.1186/s12885‑015‑1018‑2 25632947
    [Google Scholar]
  69. SmythC. ŠpakulováI. Cotton-BarrattO. Quantifying the cumulative effect of low‐penetrance genetic variants on breast cancer risk.Mol. Genet. Genomic Med.20153318218810.1002/mgg3.129 26029704
    [Google Scholar]
  70. PhamT.T. AngusS.P. JohnsonG.L. MAP3K1: Genomic alterations in cancer and function in promoting cell survival or apoptosis.Genes Cancer2013411-1241942610.1177/1947601913513950 24386504
    [Google Scholar]
  71. KyriakisJ.M. AvruchJ. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation.Physiol. Rev.200181280786910.1152/physrev.2001.81.2.807 11274345
    [Google Scholar]
  72. Jongstra-BilenJ. JongstraJ. Leukocyte-specific protein 1 (LSP1): A regulator of leukocyte emigration in inflammation.Immunol. Res.2006351-2657410.1385/IR:35:1:65 17003510
    [Google Scholar]
  73. HossainM. QadriS.M. XuN. Endothelial LSP1 modulates extravascular neutrophil chemotaxis by regulating nonhematopoietic vascular PECAM-1 expression.J. Immunol.201519552408241610.4049/jimmunol.1402225 26238489
    [Google Scholar]
  74. GrisanzioC. FreedmanM.L. Chromosome 8q24-associated cancers and MYC.Genes Cancer20101655555910.1177/1947601910381380 21779458
    [Google Scholar]
  75. HuppiK. PittJ.J. WahlbergB.M. CaplenN.J. The 8q24 gene desert: An oasis of non-coding transcriptional activity.Front. Genet.201236910.3389/fgene.2012.00069 22558003
    [Google Scholar]
  76. Homer-BouthietteC. ZhaoY. ShunkwilerL.B. Deletion of the murine ortholog of the 8q24 gene desert has anti-cancer effects in transgenic mammary cancer models.BMC Cancer2018181123310.1186/s12885‑018‑5109‑8 30526553
    [Google Scholar]
  77. ChoiS.W. MakT.S.H. O’ReillyP.F. Tutorial: A guide to performing polygenic risk score analyses.Nat. Protoc.20201592759277210.1038/s41596‑020‑0353‑1 32709988
    [Google Scholar]
  78. QassimA. SouzeauE. HollittG. HassallM.M. SiggsO.M. CraigJ.E. Risk stratification and clinical utility of polygenic risk scores in ophthalmology.Transl. Vis. Sci. Technol.20211061410.1167/tvst.10.6.14 34111261
    [Google Scholar]
  79. BalchC. MontgomeryJ.S. PaikH.I. New anti-cancer strategies: Epigenetic therapies and biomarkers.Front. Biosci.2005101-31897193110.2741/1668 15769674
    [Google Scholar]
  80. BergerS.L. KouzaridesT. ShiekhattarR. ShilatifardA. An operational definition of epigenetics.Genes Dev.200923778178310.1101/gad.1787609 19339683
    [Google Scholar]
  81. CavalliG. HeardE. Advances in epigenetics link genetics to the environment and disease.Nature2019571776648949910.1038/s41586‑019‑1411‑0 31341302
    [Google Scholar]
  82. D’UrsoA. BricknerJ.H. Mechanisms of epigenetic memory.Trends Genet.201430623023610.1016/j.tig.2014.04.004 24780085
    [Google Scholar]
  83. FelsenfeldG. A brief history of epigenetics.Cold Spring Harb. Perspect. Biol.201461a018200a010.1101/cshperspect.a018200 24384572
    [Google Scholar]
  84. LattanzioL. Epigenetics and DNA methylation in cancer.World J. Transl. Med.2015411110.5528/wjtm.v4.i1.11
    [Google Scholar]
  85. BureI.V. NemtsovaM.V. KuznetsovaE.B. Histone modifications and non-coding RNAs: Mutual epigenetic regulation and role in pathogenesis.Int. J. Mol. Sci.20222310580110.3390/ijms23105801 35628612
    [Google Scholar]
  86. SaxonovS. BergP. BrutlagD.L. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters.Proc. Natl. Acad. Sci. USA200610351412141710.1073/pnas.0510310103 16432200
    [Google Scholar]
  87. BhootraS. JillN. ShanmugamG. RakshitS. SarkarK. DNA methylation and cancer: Transcriptional regulation, prognostic, and therapeutic perspective.Med. Oncol.20234027110.1007/s12032‑022‑01943‑1 36602616
    [Google Scholar]
  88. FloresK.B. WolschinF. AmdamG.V. The role of methylation of DNA in environmental adaptation.Integr. Comp. Biol.201353235937210.1093/icb/ict019 23620251
    [Google Scholar]
  89. AttwoodJ.T. YungR.L. RichardsonB.C. DNA methylation and the regulation of gene transcription.Cell. Mol. Life Sci.200259224125710.1007/s00018‑002‑8420‑z 11915942
    [Google Scholar]
  90. HanL. ZhengS. SunS. HuangT.H. ZhaoZ. Advanced Intelligent Computing Theories and Applications.Springer Berlin Heidelberg2010621527728410.1007/978‑3‑642‑14922‑1_35
    [Google Scholar]
  91. MooreL.D. LeT. FanG. DNA methylation and its basic function.Neuropsychopharmacology2013381233810.1038/npp.2012.112 22781841
    [Google Scholar]
  92. HolmK. StaafJ. LaussM. An integrated genomics analysis of epigenetic subtypes in human breast tumors links DNA methylation patterns to chromatin states in normal mammary cells.Breast Cancer Res.20161812710.1186/s13058‑016‑0685‑5 26923702
    [Google Scholar]
  93. LakshminarasimhanR. LiangG. DNA Methyltransferases—Role and Function.Springer International Publishing20169451517210.1007/978‑3‑319‑43624‑1_7
    [Google Scholar]
  94. HonG.C. HawkinsR.D. CaballeroO.L. Global DNA hypomethylation coupled to repressive chromatin domain formation and gene silencing in breast cancer.Genome Res.201222224625810.1101/gr.125872.111 22156296
    [Google Scholar]
  95. CasalinoL. VerdeP. Multifaceted roles of DNA methylation in neoplastic transformation, from tumor suppressors to EMT and metastasis.Genes202011892210.3390/genes11080922 32806509
    [Google Scholar]
  96. KouzaridesT. Chromatin modifications and their function.Cell2007128469370510.1016/j.cell.2007.02.005 17320507
    [Google Scholar]
  97. ZhaoZ. ShilatifardA. Epigenetic modifications of histones in cancer.Genome Biol.201920124510.1186/s13059‑019‑1870‑5 31747960
    [Google Scholar]
  98. AudiaJ.E. CampbellR.M. Histone modifications and cancer.Cold Spring Harb. Perspect. Biol.201684a01952110.1101/cshperspect.a019521 27037415
    [Google Scholar]
  99. ShanmugamM.K. ArfusoF. ArumugamS. Role of novel histone modifications in cancer.Oncotarget2018913114141142610.18632/oncotarget.23356 29541423
    [Google Scholar]
  100. DupontC. ArmantD. BrennerC. Epigenetics: Definition, mechanisms and clinical perspective.Semin. Reprod. Med.200927535135710.1055/s‑0029‑1237423 19711245
    [Google Scholar]
  101. ZhangZ.J. MaS.L. miRNAs in breast cancer tumorigenesis.(Review)Oncol. Rep.201227490391010.3892/or.2011.1611 22200848
    [Google Scholar]
  102. WongJ.S. CheahY.K. Potential miRNAs for miRNA-based therapeutics in breast cancer.Noncoding RNA2020632910.3390/ncrna6030029 32668603
    [Google Scholar]
  103. DumitrescuR.G. Cancer Epigenetics for Precision Medicine.Springer New York20181856193410.1007/978‑1‑4939‑8751‑1_2
    [Google Scholar]
  104. De SilvaS. TennekoonK.H. KarunanayakeE.H. Overview of the genetic basis toward early detection of breast cancer.Breast Cancer201911718010.2147/BCTT.S185870 30718964
    [Google Scholar]
  105. PalT. VadaparampilS.T. Genetic risk assessments in individuals at high risk for inherited breast cancer in the breast oncology care setting.Cancer Contr.201219425526610.1177/107327481201900402 23037493
    [Google Scholar]
  106. DalyM.B. PalT. MaxwellK.N. NCCN guidelines® insights: Genetic/familial high-risk assessment: Breast, ovarian, and pancreatic, version 2.2024.J. Natl. Compr. Canc. Netw.202321101000101010.6004/jnccn.2023.0051 37856201
    [Google Scholar]
  107. SinghR. MoY.Y. Role of microRNAs in breast cancer.Cancer Biol. Ther.201314320121210.4161/cbt.23296 23291983
    [Google Scholar]
  108. IorioM.V. FerracinM. LiuC.G. MicroRNA gene expression deregulation in human breast cancer.Cancer Res.200565167065707010.1158/0008‑5472.CAN‑05‑1783 16103053
    [Google Scholar]
  109. Le-PetrossH. StaffordR.J. BedrosianI. GarveyP.B. WoodwardW.A. Moulder-ThompsonS.L. Oncologic Imaging: A Multidisciplinary Approach.Elsevier201247950710.1016/B978‑1‑4377‑2232‑1.00027‑9
    [Google Scholar]
  110. BaylinS.B. JonesP.A. Epigenetic determinants of cancer.Cold Spring Harb. Perspect. Biol.201689a01950510.1101/cshperspect.a019505 27194046
    [Google Scholar]
  111. SzczepanekJ. SkorupaM. Jarkiewicz-TretynJ. CybulskiC. TretynA. Harnessing epigenetics for breast cancer therapy: The role of DNA methylation, histone modifications, and microRNA.Int. J. Mol. Sci.2023248723510.3390/ijms24087235 37108398
    [Google Scholar]
  112. SinghD.N. DaripelliS. Elamin BusharaM.O. PolevoyG.G. PrasannaM. Genetic testing for successive cancer treatment.Cureus20231512e4988910.7759/cureus.49889 38179395
    [Google Scholar]
  113. LynchJ.A. VenneV. BerseB. Genetic tests to identify risk for breast cancer.Semin. Oncol. Nurs.201531210010710.1016/j.soncn.2015.02.007 25951739
    [Google Scholar]
  114. BreastH. SyndromeO.C. Hereditary breast and ovarian cancer syndrome.Gynecol. Oncol.2009113161110.1016/j.ygyno.2009.02.017 19309638
    [Google Scholar]
  115. JacksonS.A. DavisA.A. LiJ. Characteristics of individuals with breast cancer rearrangements in BRCA1 and BRCA2.Cancer2014120101557156410.1002/cncr.28577 24522996
    [Google Scholar]
  116. ElliottE. SpeareV. CogganJ. Paired tumor sequencing and germline testing in breast cancer management: An experience of a single academic center.Cancer Rep.202036e128710.1002/cnr2.1287 32881420
    [Google Scholar]
  117. AntoniouA.C. CasadeiS. HeikkinenT. Breast-cancer risk in families with mutations in PALB2.N. Engl. J. Med.2014371649750610.1056/NEJMoa1400382 25099575
    [Google Scholar]
  118. CampeauP.M. FoulkesW.D. TischkowitzM.D. Hereditary breast cancer: New genetic developments, new therapeutic avenues.Hum. Genet.20081241314210.1007/s00439‑008‑0529‑1 18575892
    [Google Scholar]
  119. LaDucaH. StuenkelA.J. DolinskyJ.S. Utilization of multigene panels in hereditary cancer predisposition testing: Analysis of more than 2,000 patients.Genet. Med.2014161183083710.1038/gim.2014.40 24763289
    [Google Scholar]
  120. WeitzelJ.N. LagosV.I. CullinaneC.A. Limited family structure and BRCA gene mutation status in single cases of breast cancer.JAMA2007297232587259510.1001/jama.297.23.2587 17579227
    [Google Scholar]
  121. TanM.H. MesterJ.L. NgeowJ. RybickiL.A. OrloffM.S. EngC. Lifetime cancer risks in individuals with germline PTEN mutations.Clin. Cancer Res.201218240040710.1158/1078‑0432.CCR‑11‑2283 22252256
    [Google Scholar]
  122. GageM. WattendorfD. HenryL.R. Translational advances regarding hereditary breast cancer syndromes.J. Surg. Oncol.2012105544445110.1002/jso.21856 22441895
    [Google Scholar]
  123. NepaliK. LiouJ.P. Recent developments in epigenetic cancer therapeutics: Clinical advancement and emerging trends.J. Biomed. Sci.20212812710.1186/s12929‑021‑00721‑x 33840388
    [Google Scholar]
  124. CatanaA. ApostuA.P. AntemieR.G. Multi gene panel testing for hereditary breast cancer - Is it ready to be used?Med. Pharm. Rep.201992322022510.15386/mpr‑1083 31460501
    [Google Scholar]
  125. DworkinA.M. HuangT.H.M. TolandA.E. Epigenetic alterations in the breast: Implications for breast cancer detection, prognosis and treatment.Semin. Cancer Biol.200919316517110.1016/j.semcancer.2009.02.007 19429480
    [Google Scholar]
  126. BediagaN.G. Acha-SagredoA. GuerraI. DNA methylation epigenotypes in breast cancer molecular subtypes.Breast Cancer Res.2010125R7710.1186/bcr2721 20920229
    [Google Scholar]
  127. BrownL.J. Achinger-KaweckaJ. PortmanN. ClarkS. StirzakerC. LimE. Epigenetic therapies and biomarkers in breast cancer.Cancers202214347410.3390/cancers14030474 35158742
    [Google Scholar]
  128. ChenJ. HaanpääM.K. GruberJ.J. JägerN. FordJ.M. SnyderM.P. High-resolution bisulfite-sequencing of peripheral blood DNA methylation in early-onset and familial risk breast cancer patients.Clin. Cancer Res.201925175301531410.1158/1078‑0432.CCR‑18‑2423 31175093
    [Google Scholar]
  129. PidsleyR. ZotenkoE. PetersT.J. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling.Genome Biol.201617120810.1186/s13059‑016‑1066‑1 27717381
    [Google Scholar]
  130. YeJ. WuM. HeL. ChenP. LiuH. YangH. Glutathione-S-transferase p1 gene promoter methylation in cell-free DNA as a diagnostic and prognostic tool for prostate cancer: A systematic review and meta-analysis.Int. J. Endocrinol.202320231910.1155/2023/7279243 36747996
    [Google Scholar]
  131. GiannopoulouL. CheboutiI. PavlakisK. Kasimir-BauerS. LianidouE.S. RASSF1A promoter methylation in high-grade serous ovarian cancer: A direct comparison study in primary tumors, adjacent morphologically tumor cell-free tissues and paired circulating tumor DNA.Oncotarget2017813214292144310.18632/oncotarget.15249 28206954
    [Google Scholar]
  132. ZhaoY. O’KeefeC.M. HsiehK. Multiplex digital methylation‐specific PCR for noninvasive screening of lung cancer.Adv. Sci.20231016220651810.1002/advs.202206518 37039321
    [Google Scholar]
  133. ZhuL. LiX. YuanY. DongC. YangM. APC promoter methylation in gastrointestinal cancer.Front. Oncol.20211165322210.3389/fonc.2021.653222 33968756
    [Google Scholar]
  134. González-MartínezS. KajabovaV.H. Pérez-MiesB. CDH1 methylation analysis in invasive lobular breast carcinomas with and without gene mutation.Virchows Arch.2024485229129710.1007/s00428‑024‑03814‑8 38713384
    [Google Scholar]
  135. OubaddouY. OukabliM. FennicheS. BRCA1 promoter hypermethylation in malignant breast tumors and in the histologically normal adjacent tissues to the tumors: Exploring its potential as a biomarker and its clinical significance in a translational approach.Genes2023149168010.3390/genes14091680 37761820
    [Google Scholar]
  136. SpiegelJ.O. Van HoutenB. DurrantJ.D. PARP1: Structural insights and pharmacological targets for inhibition.DNA Repair202110310312510.1016/j.dnarep.2021.103125 33940558
    [Google Scholar]
  137. MigliettaF. CinquiniM. DieciM.V. PARP-inhibitors for BRCA1/2-related advanced HER2-negative breast cancer: A meta-analysis and GRADE recommendations by the Italian Association of Medical Oncology.Breast20226629330410.1016/j.breast.2022.10.014 36379199
    [Google Scholar]
  138. JinB. RobertsonK.D. Epigenetic Alterations in Oncogenesis.Springer New York201375432910.1007/978‑1‑4419‑9967‑2_1
    [Google Scholar]
  139. LiY. TollefsbolT.O. Impact on DNA methylation in cancer prevention and therapy by bioactive dietary components.Curr. Med. Chem.201017202141215110.2174/092986710791299966 20423306
    [Google Scholar]
  140. HuC. LiuX. ZengY. LiuJ. WuF. DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: Mechanism and clinical application.Clin. Epigenetics202113116610.1186/s13148‑021‑01154‑x 34452630
    [Google Scholar]
  141. CostaP.M.S. SalesS.L.A. PinheiroD.P. Epigenetic reprogramming in cancer: From diagnosis to treatment.Front. Cell Dev. Biol.202311111680510.3389/fcell.2023.1116805 36866275
    [Google Scholar]
  142. LehmannU. Epigenetic therapies in triple-negative breast cancer: Concepts, visions, and challenges.Cancers20241612216410.3390/cancers16122164 38927870
    [Google Scholar]
  143. ChristmanJ.K. 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy.Oncogene200221355483549510.1038/sj.onc.1205699 12154409
    [Google Scholar]
  144. GoffinJ. EisenhauerE. DNA methyltransferase inhibitors—state of the art.Ann. Oncol.200213111699171610.1093/annonc/mdf314 12419742
    [Google Scholar]
  145. BuocikovaV. TyciakovaS. PilalisE. Decitabine-induced DNA methylation-mediated transcriptomic reprogramming in human breast cancer cell lines; The impact of DCK overexpression.Front. Pharmacol.20221399175110.3389/fphar.2022.991751 36278182
    [Google Scholar]
  146. GaillardS.L. ZahurakM. SharmaA. A phase 1 trial of the oral DNA methyltransferase inhibitor CC‐486 and the histone deacetylase inhibitor romidepsin in advanced solid tumors.Cancer2019125162837284510.1002/cncr.32138 31012962
    [Google Scholar]
  147. FlothoC. ClausR. BatzC. The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells.Leukemia20092361019102810.1038/leu.2008.397 19194470
    [Google Scholar]
  148. KaranD. SinghM. DubeyS. Van VeldhuizenP.J. SaunthararajahY. DNA methyltransferase 1 targeting using guadecitabine inhibits prostate cancer growth by an apoptosis-independent pathway.Cancers20231510276310.3390/cancers15102763 37345101
    [Google Scholar]
  149. ZhaoQ. FanJ. HongW. LiL. WuM. Inhibition of cancer cell proliferation by 5-fluoro-2′-deoxycytidine, a DNA methylation inhibitor, through activation of DNA damage response pathway.Springerplus2012116510.1186/2193‑1801‑1‑65 23397046
    [Google Scholar]
  150. WyczechowskaD. Fabianowska-MajewskaK. The effects of cladribine and fludarabine on DNA methylation in K562 cells.Biochem. Pharmacol.200365221922510.1016/S0006‑2952(02)01486‑7 12504797
    [Google Scholar]
  151. Ruiz-MagañaM.J. Martínez-AguilarR. LucendoE. Campillo-DavoD. Schulze-OsthoffK. Ruiz-RuizC. The antihypertensive drug hydralazine activates the intrinsic pathway of apoptosis and causes DNA damage in leukemic T cells.Oncotarget2016716218752188610.18632/oncotarget.7871 26942461
    [Google Scholar]
  152. XieQ. BaiQ. ZouL.Y. Genistein inhibits DNA methylation and increases expression of tumor suppressor genes in human breast cancer cells.Genes Chromosomes Cancer201453542243110.1002/gcc.22154 24532317
    [Google Scholar]
  153. ZhangZ. WangG. LiY. Recent progress in DNA methyltransferase inhibitors as anticancer agents.Front. Pharmacol.202213107265110.3389/fphar.2022.1072651 37077808
    [Google Scholar]
  154. LinJ. HaffnerM.C. ZhangY. Disulfiram is a DNA demethylating agent and inhibits prostate cancer cell growth.Prostate201171433334310.1002/pros.21247 20809552
    [Google Scholar]
  155. ChakraborttyA. PattonD.J. SmithB.F. AgarwalP. miRNAs: Potential as biomarkers and therapeutic targets for cancer.Genes2023147137510.3390/genes14071375 37510280
    [Google Scholar]
  156. ShindeS.S. AhmedS. MalikJ.A. Therapeutic delivery of tumor suppressor mirnas for breast cancer treatment.Biology202312346710.3390/biology12030467 36979159
    [Google Scholar]
  157. KimA. MoK. KwonH. Epigenetic regulation in breast cancer: Insights on epidrugs.Epigenomes202371610.3390/epigenomes7010006 36810560
    [Google Scholar]
  158. DaiW. QiaoX. FangY. Epigenetics-targeted drugs: Current paradigms and future challenges.Signal Transduct. Target. Ther.20249133210.1038/s41392‑024‑02039‑0 39592582
    [Google Scholar]
  159. GeM. LuoJ. WuY. ShenG. KuangX. The biological essence of synthetic lethality: Bringing new opportunities for cancer therapy.MedComm Oncol.202431e7010.1002/mog2.70
    [Google Scholar]
  160. SettonJ. ZindaM. RiazN. Synthetic lethality in cancer therapeutics: The next generation.Cancer Discov.20211171626163510.1158/2159‑8290.CD‑20‑1503 33795234
    [Google Scholar]
  161. FadulS.M. ArshadA. MehmoodR. CRISPR-based epigenome editing: Mechanisms and applications.Epigenomics202315211137115510.2217/epi‑2023‑0281 37990877
    [Google Scholar]
  162. TahaE.A. LeeJ. HottaA. Delivery of CRISPR-Cas tools for in vivo genome editing therapy: Trends and challenges.J. Control. Release202234234536110.1016/j.jconrel.2022.01.013 35026352
    [Google Scholar]
  163. OrsiniA. DiquigiovanniC. BonoraE. Omics technologies improving breast cancer research and diagnostics.Int. J. Mol. Sci.202324161269010.3390/ijms241612690 37628869
    [Google Scholar]
  164. NevedomskayaE. HaendlerB. From omics to multi-omics approaches for in-depth analysis of the molecular mechanisms of prostate cancer.Int. J. Mol. Sci.20222311628110.3390/ijms23116281 35682963
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921389643250731042712
Loading
/content/journals/cppm/10.2174/0118756921389643250731042712
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): BRCA1/2; Breast cancer; epigenetics; genetics; PTEN; TP53
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test