Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, with emerging evidence highlighting neuroinflammation as a critical driver of disease progression. Activated microglia and astrocytes exacerbate neuronal damage, necessitating innovative therapeutic approaches beyond traditional amyloid- and tau-targeted strategies. Gene therapy has recently gained attention for its potential to modulate neuroinflammatory pathways and improve treatment efficacy.

Methods

This review synthesizes current literature on gene therapy applications for neuroinflammation in AD. Key methodologies include an analysis of CRISPR-Cas9, RNA interference, and viral vector-based delivery systems. Studies focusing on the modulation of pro-inflammatory mediators such as cytokines, chemokines, and immune receptors were assessed to determine therapeutic feasibility and efficacy.

Results

Gene therapy interventions demonstrate promising capabilities in regulating neuroinflammatory responses, with several strategies successfully targeting inflammatory mediators implicated in AD pathogenesis. Additionally, experimental approaches indicate that gene therapy may enhance amyloid-beta clearance through immune modulation, offering a dual therapeutic benefit. However, challenges remain in optimizing delivery mechanisms, ensuring treatment safety, and validating long-term efficacy.

Discussion

The growing interest in gene therapy for AD underscores its potential to address neuroinflammation a previously underexplored therapeutic target. While technological advancements continue to refine delivery systems, further research is necessary to enhance translational feasibility. Ethical and safety considerations surrounding gene editing warrant comprehensive evaluation before clinical implementation. Future research should prioritize optimizing CNS delivery and long-term monitoring of gene-modified cells to ensure treatment stability.

Conclusion

Gene therapy presents a novel approach for modulating neuroinflammation in AD, offering potential benefits beyond conventional treatments. Continued advancements in gene-editing techniques and targeted delivery systems will be critical in overcoming existing barriers and maximizing therapeutic outcomes in neurodegenerative disease management.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921377967250714173056
2025-07-31
2026-01-18
Loading full text...

Full text loading...

References

  1. JichaG.A. CarrS.A. Conceptual evolution in Alzheimer’s disease: Implications for understanding the clinical phenotype of progressive neurodegenerative disease.J. Alzheimers Dis.201019125327210.3233/JAD‑2010‑123720061643
    [Google Scholar]
  2. FarlowM.R.A.D. Continuum.Lifelong Learn Neurol2007132396810.1212/01.CON.0000267235.69379.07
    [Google Scholar]
  3. BhushanI. KourM. KourG. GuptaS. SharmaS. YadavA. Alzheimer’s disease: Causes & treatment – A review.Ann Biotechnol201811100210.33582/2637‑4927/1002
    [Google Scholar]
  4. VickersJ. DicksonT.C. AdlardP.A. SaundersH.L. KingC.E. McCormackG. The cause of neuronal degeneration in Alzheimer’s disease.Prog. Neurobiol.200060213916510.1016/S0301‑0082(99)00023‑410639052
    [Google Scholar]
  5. BorstK. DumasA.A. PrinzM. Microglia: Immune and non-immune functions.Immunity202154102194220810.1016/j.immuni.2021.09.01434644556
    [Google Scholar]
  6. DoensD. FernándezP.L. Microglia receptors and their implications in the response to amyloid for Alzheimer’s disease pathogenesis.J. Neuroinflammation20141114810.1186/1742‑2094‑11‑48
    [Google Scholar]
  7. ProkopS. MillerK.R. HeppnerF.L. Microglia actions in Alzheimer’s disease.Acta Neuropathol.2013126446147710.1007/s00401‑013‑1182‑x24224195
    [Google Scholar]
  8. KrabbeG. HalleA. MatyashV. Functional impairment of microglia coincides with Beta-amyloid deposition in mice with Alzheimer-like pathology.PLoS One201384e6092110.1371/journal.pone.006092123577177
    [Google Scholar]
  9. KalariaR.N. Microglia and Alzheimer’s disease.Curr. Opin. Hematol.199961152410.1097/00062752‑199901000‑000049915549
    [Google Scholar]
  10. VerkhratskyA. OlabarriaM. NoristaniH.N. YehC.Y. RodriguezJ.J. Astrocytes in Alzheimer’s disease.Neurotherapeutics20107439941210.1016/j.nurt.2010.05.01720880504
    [Google Scholar]
  11. ChunH. ImH. KangY.J. Severe reactive astrocytes precipitate pathological hallmarks of Alzheimer’s disease via H2O2 production.Nat. Neurosci.202023121555156610.1038/s41593‑020‑00735‑y33199896
    [Google Scholar]
  12. SarkarS. BiswasS.C. Astrocyte subtype-specific approach to Alzheimer’s disease treatment.Neurochem. Int.202114510495610.1016/j.neuint.2021.10495633503465
    [Google Scholar]
  13. BowirratA. Immunosenescence and aging: Neuroinflammation is a prominent feature of AD and is a likely contributor to neurodegenerative disease pathogenesis.J. Pers. Med.20221211181710.3390/jpm1211181736579548
    [Google Scholar]
  14. O’ConnorD.M. BoulisN.M. Gene therapy for neurodegenerative diseases.Trends Mol. Med.201521850451210.1016/j.molmed.2015.06.00126122838
    [Google Scholar]
  15. Eskandari-SedighiG. JungJ. Macauley MS. CD33 isoforms in microglia and AD: Friend and foe.Mol. Aspects Med.20239010111110.1016/j.mam.2022.10111135940942
    [Google Scholar]
  16. ZhaoL. CD33 in AD–biology, pathogenesis, and therapeutics: A mini-review.Gerontology201965432333110.1159/00049259630541012
    [Google Scholar]
  17. LiuY. ChengX. LiH. Non-coding RNAs as novel regulators of neuroinflammation in AD.Front. Immunol.20221390807610.3389/fimmu.2022.90807635720333
    [Google Scholar]
  18. ChenH. ZengY. WangD. Neuroinflammation of microglial regulation in Alzheimer’s disease: Therapeutic approaches.Molecules2024297147810.3390/molecules2907147838611758
    [Google Scholar]
  19. MaC-G. WuY-G. SongL-J. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer’s disease.Neural Regen. Res.202318594795410.4103/1673‑5374.35574736254973
    [Google Scholar]
  20. PiemonteseL. LoiodiceF. ChavesS. SantosM.A. The therapy of AD: Towards a new generation of drugsIn: Frontiers in Clinical Drug Research - Alzheimer Disorders.Bentham Books20198338010.2174/9789811401893119080004
    [Google Scholar]
  21. MoralesI. FaríasG.A. CortesN. MaccioniR.B. Neuroinflammation and neurodegeneration.ItechOpen201610.5772/64545
    [Google Scholar]
  22. KhanS. BarveK.H. KumarM.S. Recent advancements in pathogenesis, diagnostics and treatment of AD.Curr. Neuropharmacol.202018111106112510.2174/1570159X1866620052814242932484110
    [Google Scholar]
  23. Thu Thuy NguyenV. EndresK. Targeting gut microbiota to alleviate neuroinflammation in Alzheimer’s disease.Adv. Drug Deliv. Rev.202218811441810.1016/j.addr.2022.11441835787390
    [Google Scholar]
  24. WangW.Y. TanM.S. YuJ.T. TanL. Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease.Ann. Transl. Med.201531013610.3978/j.issn.2305‑5839.2015.03.4926207229
    [Google Scholar]
  25. VermaY. SachdevaH. KalraS. Unveiling the complex role of NF-KB in AD: Insights into brain inflammation and potential therapeutic targets.Chelonian Conserv. Biol.2023182230245
    [Google Scholar]
  26. OuyangQ. MengY. ZhouW. TongJ. ChengZ. ZhuQ. New advances in brain-targeting nano-drug delivery systems for Alzheimer’s disease.J. Drug Target.2022301618110.1080/1061186X.2021.192705533983096
    [Google Scholar]
  27. BairamianD. ShaS. RolhionN. Microbiota in neuroinflammation and synaptic dysfunction: A focus on Alzheimer’s disease.Mol. Neurodegener.20221711910.1186/s13024‑022‑00522‑235248147
    [Google Scholar]
  28. SharmanM.J. VerdileG. KirubakaranS. Targeting inflammatory pathways in AD: A focus on natural products and phytomedicines.CNS Drugs201933545748010.1007/s40263‑019‑00619‑130900203
    [Google Scholar]
  29. RealeM. CostantiniE. Cholinergic modulation of the immune system in neuroinflammatory diseases.Diseases2021922910.3390/diseases902002933921376
    [Google Scholar]
  30. ShenZ. YangX. LanY. ChenG. The neuro-inflammatory microenvironment: An important regulator of stem cell survival in AD.J. Alzheimers Dis.202498374175410.3233/JAD‑23115938489182
    [Google Scholar]
  31. MotaI.F.L. de LimaL.S. SantanaB.M. innovative therapeutic approaches based on peptides and nanoparticles.Neuroscientist2023291789610.1177/1073858421101640934018874
    [Google Scholar]
  32. 2020
  33. WuS. ChenN. WangC. Frontiers and hotspots evolution in anti-inflammatory studies for Alzheimer’s disease.Behav. Brain Res.202447211517810.1016/j.bbr.2024.11517839098396
    [Google Scholar]
  34. SayedN. AllawadhiP. KhuranaA. Gene therapy: Comprehensive overview and therapeutic applications.Life Sci.202229412037510.1016/j.lfs.2022.12037535123997
    [Google Scholar]
  35. SeowY. WoodM.J. Biological gene delivery vehicles: Beyond viral vectors.Mol. Ther.200917576777710.1038/mt.2009.4119277019
    [Google Scholar]
  36. NaldiniL. Ex vivo gene transfer and correction for cell-based therapies.Nat. Rev. Genet.201112530131510.1038/nrg298521445084
    [Google Scholar]
  37. StewartM.P. ShareiA. DingX. SahayG. LangerR. JensenK.F. In vitro and ex vivo strategies for intracellular delivery.Nature2016538762418319210.1038/nature1976427734871
    [Google Scholar]
  38. CaplanA.I. Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics.Tissue Eng.2005117-81198121110.1089/ten.2005.11.119816144456
    [Google Scholar]
  39. MajewskiM. BetzO. OchsnerP.E. LiuF. PorterR.M. EvansC.H. Ex vivo adenoviral transfer of bone morphogenetic protein 12 (BMP-12) cDNA improves Achilles tendon healing in a rat model.Gene Ther.200815161139114610.1038/gt.2008.4818432278
    [Google Scholar]
  40. BunnellB.A. MorganR.A. Gene therapy for infectious diseases.Clin. Microbiol. Rev.1998111425610.1128/CMR.11.1.429457428
    [Google Scholar]
  41. RubanyiG.M. The future of human gene therapy.Mol. Aspects Med.200122311314210.1016/S0098‑2997(01)00004‑811470139
    [Google Scholar]
  42. GonçalvesG.A.R. PaivaR.M.A. Gene therapy: Advances, challenges and perspectives.Einstein201715336937510.1590/s1679‑45082017rb402429091160
    [Google Scholar]
  43. FulopT. TripathiS. RodriguesS. Targeting impaired antimicrobial immunity in the brain for the treatment of AD.Neuropsychiatr. Dis. Treat.2021171311133910.2147/NDT.S26491033976546
    [Google Scholar]
  44. PatelA.G. NeheteP.N. KrivoshikS.R. Innate immunity stimulation via CpG oligodeoxynucleotides ameliorates Alzheimer’s disease pathology in aged squirrel monkeys.Brain202114472146216510.1093/brain/awab12934128045
    [Google Scholar]
  45. WoltersE.C. StrekalovaT. de MunterJ.P.J.M. KramerB.W. Naive BM-derived stem cells (Neuro-Cells) may modify acute and chronic neurodegenerative disorders by modulating macrophage behaviors.Ageing Neurodegener Dis202113102051710.20517/and.2021.04
    [Google Scholar]
  46. MironJ. PicardC. FrappierJ. DeaD. ThérouxL. PoirierJ. TLR4 gene expression and pro-inflammatory cytokines in AD and in response to hippocampal deafferentation in rodents.J. Alzheimers Dis.20186341547155610.3233/JAD‑17116029782315
    [Google Scholar]
  47. CacabelosR. CacabelosP. TorrellasC. TelladoI. CarrilJ.C. Pharmacogenomics of Alzheimer’s disease: Novel therapeutic strategies for drug development.Methods in Molecular. Biology.2014117532355610.1007/978‑1‑4939‑0956‑8_1325150875
    [Google Scholar]
  48. MullardA. Microglia-targeted candidates push the Alzheimer drug envelope.Nat. Rev. Drug Discov.201817530330510.1038/nrd.2018.6529700495
    [Google Scholar]
  49. GhoshS. DurgvanshiS. AgarwalS. RaghunathM. SinhaJ.K. Current status of drug targets and emerging therapeutic strategies in the management of AD.Curr. Neuropharmacol.202018988390310.2174/1570159X1866620042901182332348223
    [Google Scholar]
  50. AliR. SenS. HameedR. NazirA. VermaS. Strategies for gaseous neuromodulator release in chemical neuroscience: Experimental approaches and translational validation.J. Control. Release202436513216010.1016/j.jconrel.2023.11.01437972768
    [Google Scholar]
  51. van BokhovenP. de WildeA. VermuntL. The Alzheimer’s disease drug development landscape.Alzheimers Res. Ther.202113118610.1186/s13195‑021‑00927‑z34763720
    [Google Scholar]
  52. HolmesA. FingerC. Morales-ScheihingD. LeeJ. McCulloughL.D. Gut dysbiosis and age-related neurological diseases; An innovative approach for therapeutic interventions.Transl. Res.2020226395610.1016/j.trsl.2020.07.01232755639
    [Google Scholar]
  53. JhaM. SukK. Management of glia-mediated neuroinflammation and related patents.Recent Pat. Inflamm. Allergy Drug Discov.20148211812410.2174/1872213X0866614061910591524948194
    [Google Scholar]
  54. HuynhQ.S. ElangovanS. HolsingerR.M.D. Non-pharmacological therapeutic options for the treatment of Alzheimer’s disease.Int. J. Mol. Sci.202223191103710.3390/ijms23191103736232336
    [Google Scholar]
  55. YoshikawaS. TaniguchiK. SawamuraH. IkedaY. TsujiA. MatsudaS. A new concept of associations between gut microbiota, immunity and central nervous system for the innovative treatment of neurodegenerative disorders.Metabolites20221211105210.3390/metabo1211105236355135
    [Google Scholar]
  56. De MarchiF. MuniticI. VidaticL. Overlapping neuroimmune mechanisms and therapeutic targets in neurodegenerative disorders.Biomedicines20231110279310.3390/biomedicines1110279337893165
    [Google Scholar]
  57. QianX. LiuX. ChenG. ChenS. TangH. Injection of amyloid- to lateral ventricle induces gut microbiota dysbiosis in association with inhibition of cholinergic anti-inflammatory pathways in Alzheimer’s disease.J. Neuroinflammation202219123610.1186/s12974‑022‑02599‑436171620
    [Google Scholar]
  58. AndradeV. Guzmán-MartínezL. PulgarK.V. MaccioniR.B. Neuroimmune dynamics in Alzheimer’s disease progression.IntechOpen201710.5772/intechopen.68941
    [Google Scholar]
  59. ValiukasZ. EphraimR. TangalakisK. DavidsonM. ApostolopoulosV. FeehanJ. Immunotherapies for AD—a review.Vaccines2022109152710.3390/vaccines1009152736146605
    [Google Scholar]
  60. SinghA. DeshpandeP. GogiaN. Exploring the efficacy of natural products in alleviating Alzheimer’s disease.Neural Regen. Res.20191481321132910.4103/1673‑5374.25350930964049
    [Google Scholar]
  61. Lepiarz-RabaI. HidayatT. HannanA.J. JawaidA. Potential Alzheimer’s disease drug targets identified through microglial biology research.Expert Opin. Drug Discov.202419558760210.1080/17460441.2024.233521038590098
    [Google Scholar]
  62. AndradeV. Guzmán-MartínezL. CortésN. MaccioniR.B. The promise for AD treatment: Bioactive compounds.Natural medicines.CRC Press2019261276
    [Google Scholar]
  63. NuzzoD. PiconeP. CaruanaL. Inflammatory mediators as biomarkers in brain disorders.Inflammation201437363964810.1007/s10753‑013‑9780‑224292800
    [Google Scholar]
  64. PalaniyandiT.B K. PrabhakaranP. Nanosensors for the diagnosis and therapy of neurodegenerative disorders and inflammatory bowel disease.Acta Histochem.2023125215199710.1016/j.acthis.2023.15199736682145
    [Google Scholar]
  65. Rajah KumaranK. YunusaS. PerimalE. WahabH. MüllerC.P. HassanZ. Insights into the pathophysiology of AD and potential therapeutic targets: A current perspective.J. Alzheimers Dis.202391250753010.3233/JAD‑22066636502321
    [Google Scholar]
  66. SongC. ShiJ. ZhangP. Immunotherapy for Alzheimer’s disease: Targeting and beyond.Transl. Neurodegener.20221111810.1186/s40035‑022‑00292‑335300725
    [Google Scholar]
  67. PatelM. The brain-gut axis in AD.Advances in AD2023123293710.4236/aad.2023.123003
    [Google Scholar]
  68. KaushalM.A. PatelN.A. XavierG. PrajapatiB.G. Roles of nano medicine in diagnosis of AD.In: Alzheimer’s Disease and Advanced Drug Delivery Strategies.Academic Press202411513810.1016/B978‑0‑443‑13205‑6.00017‑0
    [Google Scholar]
  69. SerafiniM.M. CatanzaroM. RosiniM. RacchiM. LanniC. Curcumin in Alzheimer’s disease: Can we think to new strategies and perspectives for this molecule?Pharmacol. Res.201712414615510.1016/j.phrs.2017.08.00428811228
    [Google Scholar]
  70. de CastroA.A. da CunhaE.F.F. PereiraA.F. Insights into the drug repositioning applied to the AD treatment and future perspectives.Curr. Alzheimer Res.201815121161117810.2174/156720501566618081315070330101709
    [Google Scholar]
  71. TrojanE BryniarskaN Leśkiewicz M, et al The contribution of formyl peptide receptor dysfunction to the course of neuroinflammation: A potential role in the brain pathology.Curr. Neuropharmacol.202018322924910.2174/1570159X1766619101917024431629396
    [Google Scholar]
  72. XueY. NieD. WangL.J. Microglial polarization: Novel therapeutic strategy against ischemic stroke.Aging Dis.202112246647910.14336/AD.2020.070133815877
    [Google Scholar]
  73. CalvelloR. CianciulliA. PorroC. Formyl peptide receptor (FPR) 1 modulation by resveratrol in an LPS-induced neuroinflammatory animal model.Nutrients2021135141810.3390/nu1305141833922475
    [Google Scholar]
  74. Dabouri FarimaniF. HosseiniM. AmirahmadiS. Cedrol supplementation ameliorates memory deficits by regulating neuro-inflammation and cholinergic function in lipopolysaccharide–induced cognitive impairment in rats.Heliyon2024109e3035610.1016/j.heliyon.2024.e3035638707398
    [Google Scholar]
  75. MitraS. Special Issue ‘Advances in Neurodegenerative Diseases Research and Therapy 2.0’.Int. J. Mol. Sci.2024259470910.3390/ijms2509470938731928
    [Google Scholar]
  76. DasR. RaufA. AkhterS. Role of withaferin A and its derivatives in the management of AD: Recent trends and future perspectives.Molecules20212612369610.3390/molecules2612369634204308
    [Google Scholar]
  77. YangG. HuY. QinX. Micheliolide attenuates neuroinflammation to improve cognitive impairment of Alzheimer’s disease by inhibiting NF- and PI3K/Akt signaling pathways.Heliyon202397e1784810.1016/j.heliyon.2023.e17848
    [Google Scholar]
  78. TikhonovaM.A. AmstislavskayaT.G. HoY.J. Neuroprotective effects of ceftriaxone involve the reduction of A burden and neuroinflammatory response in a mouse model of AD.Front. Neurosci.20211573678610.3389/fnins.2021.73678634658774
    [Google Scholar]
  79. KrishtalJ. BraginaO. MetslaK. PalumaaP. TõuguV. In situ fibrillizing amyloid-beta 1-42 induces neurite degeneration and apoptosis of differentiated SH-SY5Y cells.PLoS One20171210e018663610.1371/journal.pone.018663629065138
    [Google Scholar]
  80. MeiZ. YanP. SituB. MouY. LiuP. Cryptotanshinione inhibits aggregation and protects damage from in SH-SY5Y cells.Neurochem. Res.201237362262810.1007/s11064‑011‑0652‑622102154
    [Google Scholar]
  81. LiuY. XiaX. ZhengM. ShiB. Bio–nano toolbox for precision Alzheimer’s disease gene therapy.Adv. Mater.20243629231435410.1002/adma.202314354
    [Google Scholar]
  82. DunbarC.E. HighK.A. JoungJ.K. KohnD.B. OzawaK. SadelainM. Gene therapy comes of age.Science20183596372eaan467210.1126/science.aan467229326244
    [Google Scholar]
  83. HarperJ.C. GeraedtsJ. BorryP. Current issues in medically assisted reproduction and genetics in Europe: Research, clinical practice, ethics, legal issues and policy.Eur. J. Hum. Genet.201321S2S1S2110.1038/ejhg.2013.21924225486
    [Google Scholar]
  84. FriedmannT. Progress toward human gene therapy.Science198924449101275128110.1126/science.26602592660259
    [Google Scholar]
  85. AsaroP.M. Transforming society by transforming technology: The science and politics of participatory design.Account. Manag. Inf. Technol.200010425729010.1016/S0959‑8022(00)00004‑7
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921377967250714173056
Loading
/content/journals/cppm/10.2174/0118756921377967250714173056
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test