Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

Cancer is a dreadful illness caused by uncontrolled cell growth. Several studies have demonstrated that the overexpression of growth factors and receptors, the triggering of oncogenes, and the deactivation of tumor suppressor genes are the primary reasons for aggressive and resistant forms of cancer. The epidermal growth factor receptor (EGFR) is one such receptor that is targeted by medications to treat cancer. In this work, we attempted to create novel compounds that will function as EGFR inhibitors by using the molecular structure of 4-amino-7-methoxy quinazoline as a template.

Methodology

A covalent molecular docking investigation was carried out by introducing several functional groups to the template of 4-amino-7-methoxy quinazoline, and evaluating the binding capacity of all ligands to the target domains. Using ADME analysis and DFT study, the potential of proposed compounds for additional and experiments was assessed.

Results

Based on the generated results, the addition of N- (pyrimidin-4-yl) acrylamide at C-4 and the addition of (E)-N-methyl-4-(piperidin-1-yl) but-2-enamide at C-6 of 4-amino-7-methoxy quinazoline enhanced the binding affinity of the designed compound to the targeted protein efficiently.

Discussion

The findings we reported demonstrated that the virtually designed S10 could block EGFR; hence, this S10 molecule is a noteworthy inhibitor of EGFR TK.

Conclusion

Thus, the proposed compound S10 quinazoline derivative has the potential to be a lead compound for future preclinical development, providing a viable therapeutic approach for targeting EGFR-driven cancer with overcoming resistance mechanisms.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921378095250702035913
2025-01-01
2025-10-18
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.2024743229263
    [Google Scholar]
  2. SungH. FerlayJ. SiegelR.L. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  3. WangS. SongY. YanF. LiuD. Mechanisms of resistance to third-generation EGFR tyrosine kinase inhibitors.Front. Med.201610438338810.1007/s11684‑016‑0488‑127770386
    [Google Scholar]
  4. DayyaniF. GallickG.E. LogothetisC.J. CornP.G. Novel therapies for metastatic castrate-resistant prostate cancer.J. Natl. Cancer Inst.2011103221665167510.1093/jnci/djr36221917607
    [Google Scholar]
  5. YouW.K. SenninoB. WilliamsonC.W. VEGF and c-Met blockade amplify angiogenesis inhibition in pancreatic islet cancer.Cancer Res.201171144758476810.1158/0008‑5472.CAN‑10‑252721613405
    [Google Scholar]
  6. ShindeS.S. SarkateA.P. RathodS.S. Synthesis, biological evaluation, and computational studies of thiazolyl hydrazone derivatives as triple mutant allosteric EGFR inhibitors.J. Chin. Chem. Soc.202471770672010.1002/jccs.202400084
    [Google Scholar]
  7. HoelderS. ClarkeP.A. WorkmanP. Discovery of small molecule cancer drugs: Successes, challenges and opportunities.Mol. Oncol.20126215517610.1016/j.molonc.2012.02.00422440008
    [Google Scholar]
  8. LemmonM.A. SchlessingerJ. Cell signaling by receptor tyrosine kinases.Cell201014171117113410.1016/j.cell.2010.06.01120602996
    [Google Scholar]
  9. WieduwiltM.J. MoasserM.M. The epidermal growth factor receptor family: Biology driving targeted therapeutics.Cell. Mol. Life Sci.200865101566158410.1007/s00018‑008‑7440‑818259690
    [Google Scholar]
  10. SharmaS.V. BellD.W. SettlemanJ. HaberD.A. Epidermal growth factor receptor mutations in lung cancer.Nat. Rev. Cancer20077316918110.1038/nrc208817318210
    [Google Scholar]
  11. WangS. SongY. LiuD. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance.Cancer Lett.2017385515410.1016/j.canlet.2016.11.00827840244
    [Google Scholar]
  12. WeeP. WangZ. Epidermal growth factor receptor cell proliferation signaling pathways.Cancers2017955210.3390/cancers905005228513565
    [Google Scholar]
  13. SeverR. BruggeJ.S. Genetic and epigenetic mechanisms of cancer progression.Cold Spring Harb. Perspect. Med.20155a00609810.1101/cshperspect.a00609825833940
    [Google Scholar]
  14. ActivityA LikelinessD QuinolineOF In silico T, Against D, Receptors C. Anticancer activity and drug likeness of quinoline through in silico docking against cervical and liver cancer.20163839310.5281/zenodo.157164
    [Google Scholar]
  15. WestoverD ZugazagoitiaJ ChoBC LovlyCM Paz-AresL Mechanisms of acquired resistance to first- and secondgeneration EGFR tyrosine kinase inhibitors.Ann Oncol201829Suppl. 1i10i1910.1093/annonc/mdx70329462254
    [Google Scholar]
  16. SolassolI. PinguetF. QuantinX. FDA- and EMA-approved tyrosine kinase inhibitors in advanced EGFR-mutated non-small cell lung cancer: Safety, tolerability, plasma concentration monitoring, and management.Biomolecules201991166810.3390/biom911066831671561
    [Google Scholar]
  17. PaulM.K. MukhopadhyayA.K. Tyrosine kinase – Role and significance in Cancer.Int. J. Med. Sci.20041210111510.7150/ijms.1.10115912202
    [Google Scholar]
  18. El-ZahabiM.A. BamanieF.H. GhareebS. Design, synthesis, molecular modeling and anti-hyperglycemic evaluation of quinazoline-sulfonylurea hybrids as peroxisome proliferator-activated receptor gamma (PPARγ) and sulfonylurea receptor (SUR) agonists.Int. J. Mol. Sci.20222317960510.3390/ijms2317960536077003
    [Google Scholar]
  19. KumarA SharmaS Archana Some new 2,3,6-trisubstituted quinazolinones as potent anti-inflammatory, analgesic and COX-II inhibitors.Bioorg. Med. Chem.200311235293529910.1016/S0968‑0896(03)00501‑714604693
    [Google Scholar]
  20. LiE. LinQ. MengY. 2,4-Disubstituted quinazolines targeting breast cancer cells via EGFR-PI3K.Eur. J. Med. Chem.2019172364710.1016/j.ejmech.2019.03.03030939352
    [Google Scholar]
  21. HuS. JiangC. GaoM. Discovery and development of quinazoline compounds as irreversible pan-fibroblast growth factor receptor inhibitors with potent antitumor activities.J. Mol. Struct.2024129913722410.1016/j.molstruc.2023.137224
    [Google Scholar]
  22. Sunil KumarA. KudvaJ. LahtinenM. PeuronenA. SadashivaR. NaralD. Synthesis, characterization, crystal structures and biological screening of 4-amino quinazoline sulfonamide derivatives.J. Mol. Struct.20191190293610.1016/j.molstruc.2019.04.050
    [Google Scholar]
  23. HasanvandZ. Oghabi BakhshaieshT. PeytamF. Imidazo[1,2-a]quinazolines as novel, potent EGFR-TK inhibitors: Design, synthesis, bioactivity evaluation, and in silico studies.Bioorg. Chem.202313310638310.1016/j.bioorg.2023.10638336764231
    [Google Scholar]
  24. MasonJ.S. BortolatoA. WeissD.R. DeflorianF. TehanB. MarshallF.H. High end GPCR design: Crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks.In Silico Pharmacol.2013112310.1186/2193‑9616‑1‑23
    [Google Scholar]
  25. KarnikK.S. SarkateA.P. TiwariS.V. AzadR. WakteP.S. Free energy perturbation guided synthesis with biological evaluation of substituted quinoline derivatives as small molecule L858R/T790M/C797S mutant EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC).Bioorg. Chem.202111510522610.1016/j.bioorg.2021.10522634364055
    [Google Scholar]
  26. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  27. ForliS. HueyR. PiqueM.E. SannerM.F. GoodsellD.S. OlsonA.J. Computational protein–ligand docking and virtual drug screening with the AutoDock suite.Nat. Protoc.201611590591910.1038/nprot.2016.05127077332
    [Google Scholar]
  28. SeeligerD. de GrootB.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina.J. Comput. Aided Mol. Des.201024541742210.1007/s10822‑010‑9352‑620401516
    [Google Scholar]
  29. GoteS. ThapaS. DubeyS. NargundS.L. BiradarM.S. Computational investigation of quinazoline derivatives as Keap1 inhibitors for Alzheimer’s disease.Inform Med Unlocked20234110133410.1016/j.imu.2023.101334
    [Google Scholar]
  30. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings.Adv. Drug Deliv. Rev.20126441710.1016/j.addr.2012.09.01911259830
    [Google Scholar]
  31. RathodS. ShindeS. ChoudhariP. SarkateA. ChaudhariS. ShinganA. Exploring binding potential of two new indole alkaloids from Nauclea officinalis against third and fourth generation EGFR: Druglikeness, in silico ADMET, docking, DFT, molecular dynamics simulation, and MMGBSA study.Nat. Prod. Res.20241810.1080/14786419.2023.230167838206888
    [Google Scholar]
  32. Swiss ADMEAvailable from: http://Www.Swissadme.Ch
  33. KilbileJ.T. TamboliY. AnsariS.A. Synthesis, biological evaluation, and computational studies of 6-Fluoro-3-(Piperidin-4-Yl)-1, 2-Benzisoxazole Sulfonamide conjugates.Polycycl. Aromat. Compd.202318121
    [Google Scholar]
  34. NeeseF. Software update: The ORCA program system—Version 5.0.Wiley Interdiscip. Rev. Comput. Mol. Sci.2022125e160610.1002/wcms.1606
    [Google Scholar]
  35. NeeseF. WennmohsF. BeckerU. RiplingerC. The ORCA quantum chemistry program package.J. Chem. Phys.20201522222410810.1063/5.000460832534543
    [Google Scholar]
  36. ShindeS.S. KilbileJ.T. ThapaS. BiradarM.S. BhusariS.S. WakteP.S. Design, synthesis, in silico studies, and anticancer activity of novel nitrobenzene thiazolyl hydrazones against the EGFR.Russ. J. Bioorganic Chem.20245062483249810.1134/S1068162024060190
    [Google Scholar]
  37. RathodS. DeyS. ChoudhariP. High-throughput computational screening for identification of potential hits against bacterial Acriflavine resistance protein B (AcrB) efflux pump.J. Biomol. Struct. Dyn.202411710.1080/07391102.2024.230293638264919
    [Google Scholar]
  38. ShindeS.S. PaduleK.B. SawantS.L. SarkateA.P. Systems approach for identifying drug targets by computational approaches.Systems Biology Approaches: Prevention, Diagnosis, and Understanding Mechanisms of Complex Diseases.SingaporeSpringer202425727010.1007/978‑981‑99‑9462‑5_10
    [Google Scholar]
  39. SnyderH.D. KucukkalT.G. Computational chemistry activities with avogadro and ORCA.J. Chem. Educ.20219841335134110.1021/acs.jchemed.0c00959
    [Google Scholar]
  40. BakaleR.D. PhatakP.S. RathodS.S. In vitro and in silico exploration of newly synthesized triazolyl-isonicotinohydrazides as potent antitubercular agents.J. Biomol. Struct. Dyn.202312038079301
    [Google Scholar]
  41. RochlaniS. BhatiaM. RathodS. ChoudhariP. DhavaleR. Exploration of limonoids for their broad spectrum antiviral potential via DFT, molecular docking and molecular dynamics simulation approach.Nat. Prod. Res.202438589189610.1080/14786419.2023.220239837074699
    [Google Scholar]
  42. CrucianiG. CarosatiE. De BoeckB. MetaSite: Understanding metabolism in human cytochromes from the perspective of the chemist.J. Med. Chem.200548226970697910.1021/jm050529c16250655
    [Google Scholar]
  43. MekniN. CoronnelloC. LangerT. RosaM.D. PerriconeU. Support vector machine as a supervised learning for the prioritization of novel potential SARS-CoV-2 main protease inhibitors.Int. J. Mol. Sci.20212214771410.3390/ijms2214771434299333
    [Google Scholar]
  44. PaduleK. ShindeS. ChitlangeS. GiramP. NagoreD. The advancement of herbal-based nanomedicine for hair.Cosmetics20229611810.3390/cosmetics9060118
    [Google Scholar]
  45. BhosleM.R. KhillareL.D. MaliJ.R. SarkateA.P. LokwaniD.K. TiwariS.V. DIPEAc promoted one-pot synthesis of dihydropyrido[2,3- d:6,5- d ′]dipyrimidinetetraone and pyrimido[4,5- d]pyrimidine derivatives as potent tyrosinase inhibitors and anticancer agents: In vitro screening, molecular docking and ADMET predictions.New J. Chem.20184223186211863210.1039/C8NJ04622K
    [Google Scholar]
  46. ShindeS.S. Computational and synthetic approach with biological evaluation of substituted thiazole derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in non-small cell lung cancer (NSCLC).Preprint2024121
    [Google Scholar]
  47. AngelisI.D. TurcoL. Caco-2 cells as a model for intestinal absorption.Curr. Protoc. Toxicol.2011471610.1002/0471140856.tx2006s4721400683
    [Google Scholar]
  48. LokwaniD. AzadR. SarkateA. ReddannaP. ShindeD. Structure based library design (SBLD) for new 1,4-dihydropyrimidine scaffold as simultaneous COX-1/COX-2 and 5-LOX inhibitors.Bioorg. Med. Chem.201523154533454310.1016/j.bmc.2015.06.00826122769
    [Google Scholar]
  49. ElkaeedE.B. YousefR.G. ElkadyH. Design, synthesis, docking, DFT, MD simulation studies of a new nicotinamide-based derivative: In vitro anticancer and VEGFR-2 inhibitory effects.Molecules20222714460610.3390/molecules2714460635889478
    [Google Scholar]
  50. RahatI. YadavP. SinghalA. Polymer lipid hybrid nanoparticles for phytochemical delivery: Challenges, progress, and future prospects.Beilstein J. Nanotechnol.2024151473149710.3762/bjnano.15.11839600519
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921378095250702035913
Loading
/content/journals/cppm/10.2174/0118756921378095250702035913
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test