Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

The gene is a voltage-gated calcium channel involved in regulating calcium entry into the cells. The gene is associated with various types of diseases like cancer, schizophrenia, bipolar disease, anxiety, phantom tooth pain, and diabetic peripheral neuropathy.

Aim

This study aimed to investigate the missense single nucleotide polymorphism associated with the human gene using bioinformatics tools.

Objective

The study focused on understanding the structural and functional distribution of high-risk nsSNPs of the gene using several bioinformatics tools.

Methods

Retrieval of missense SNP of gene from NCBI and Uniprot database. Recognition of deleterious nsSNPs using SIFT, Polyphen v2, PROVEAN, Panther, PhD-SNP, and SNPs & GO. Structural stability was detected with the help of I-Mutant and MUPro. GeneMANIA and STRING gave details regarding the gene-gene and protein-protein interactions. Another functional characterization was predicted using SOPMA, AlphaFold, and NetPhos 3.1.

Results and Discussion

The functional analysis identified 14 nsSNPs to be deleterious from 1824 non-synonymous missense SNP. The identified nsSNPs, namely, rs34534613, rs79891110, rs80315385, rs199473391, rs199586997, rs200935321, rs368861681, rs369421219, rs370634418, rs376872233, rs377564636, rs200325545, rs267603426, and rs372495864 were subjected to various structural and functional characterization using I-Mutant 2.0, MUPro, GeneMANIA, STRING, SOPMA, AlphaFold and NetPhos 3.1.

Conclusion

Our study recognized 14 nsSNPs to be detrimental to the structure and function of the gene. The identified nsSNPs may aid in serving as a potential therapeutic target for disease diagnosis.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921355525250311040459
2025-01-01
2025-10-18
Loading full text...

Full text loading...

References

  1. BergerS.M. BartschD. The role of L-type voltage-gated calcium channels CaV1.2 and CaV1.3 in normal and pathological brain function.Cell Tissue Res.2014357246347610.1007/s00441‑014‑1936‑324996399
    [Google Scholar]
  2. ZamponiG.W. StriessnigJ. KoschakA. DolphinA.C. SibleyD.R. The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential.Pharmacol. Rev.201567482187010.1124/pr.114.00965426362469
    [Google Scholar]
  3. HeroldK.G. HusseyJ.W. DickI.E. CACNA1C related channelopathies.Handb. Exp. Pharmacol.202327915918110.1007/164_2022_62436598608
    [Google Scholar]
  4. JiangM. SwannJ.W. A role for L-type calcium channels in the maturation of parvalbumin-containing hippocampal interneurons.Neuroscience2005135383985010.1016/j.neuroscience.2005.06.07316154277
    [Google Scholar]
  5. MaH. CohenS. LiB. TsienR.W. Exploring the dominant role of CaV1 channels in signalling to the nucleus.Biosci. Rep.201333116.e0000910.1042/BSR2012009923088728
    [Google Scholar]
  6. StriessnigJ. PinggeraA. KaurG. BockG. TulucP. L‐type Ca2+ channels in heart and brain.Wiley Interdiscip. Rev. Membr. Transp. Signal.201432153810.1002/wmts.10224683526
    [Google Scholar]
  7. NieF. WangX. ZhaoP. Genetic analysis of SNPs in CACNA1C and ANK3 gene with schizophrenia: A comprehensive meta‐analysis.Am. J. Med. Genet. B. Neuropsychiatr. Genet.2015168863764810.1002/ajmg.b.3234826227746
    [Google Scholar]
  8. LazaryJ. EszlariN. KrikoE. Genetic analyses of the endocannabinoid pathway in association with affective phenotypic variants.Neurosci. Lett.202174413560010.1016/j.neulet.2020.13560033421489
    [Google Scholar]
  9. MatzaD. FlavellR.A. Roles of CaV channels and AHNAK1 in T cells: The beauty and the beast.Immunol. Rev.2009231125726410.1111/j.1600‑065X.2009.00805.x19754902
    [Google Scholar]
  10. DavenportB. LiY. HeizerJ.W. SchmitzC. PerraudA.L. Signature channels of excitability no more: L-type channels in immune cells.Front. Immunol.2015637510.3389/fimmu.2015.0037526257741
    [Google Scholar]
  11. WangC.Y. LaiM.D. PhanN.N. SunZ. LinY.C. Meta-analysis of public microarray datasets reveals voltage-gated calcium gene signatures in clinical cancer patients.PLoS One2015107e012576610.1371/journal.pone.012576626147197
    [Google Scholar]
  12. HsuC.Y. LeeK.T. SunT.Y. Wwox and its binding proteins in neurodegeneration.Cells2021107178110.3390/cells1007178134359949
    [Google Scholar]
  13. Scotti-MuzziE. ChileT. ValladaH. OtaduyM.C.G. Soeiro-de-SouzaM.G. Association between CACNA1C gene rs100737 polymorphism and glutamatergic neurometabolites in bipolar disorder.Eur. Neuropsychopharmacol.202259263510.1016/j.euroneuro.2022.04.00135544990
    [Google Scholar]
  14. LiuY. WuX. XiaX. YaoJ. WangB. The genome-wide supported CACNA1C gene polymorphisms and the risk of schizophrenia: An updated meta-analysis.BMC Med. Genet.202021115910.1186/s12881‑020‑01084‑032770953
    [Google Scholar]
  15. MoonA.L. HaanN. WilkinsonL.S. ThomasK.L. HallJ. CACNA1C: Association with psychiatric disorders, behavior, and neurogenesis.Schizophr. Bull.201844595896510.1093/schbul/sby09629982775
    [Google Scholar]
  16. TiwariS. ZhangY. HellerJ. AbernethyD.R. SoldatovN.M. Atherosclerosis-related molecular alteration of the human CaV1.2 calcium channel α1C subunit.Proc. Natl. Acad. Sci. USA200610345170241702910.1073/pnas.060653910317071743
    [Google Scholar]
  17. SimN.L. KumarP. HuJ. HenikoffS. SchneiderG. NgP.C. SIFT web server: Predicting effects of amino acid substitutions on proteins.Nucleic Acids Res.201240W1W452-710.1093/nar/gks53922689647
    [Google Scholar]
  18. Zamenhof S MutationsAm. J. Med.196334560962610.1016/0002‑9343(63)90102‑514003161
    [Google Scholar]
  19. ChoiY. ChanA.P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels.Bioinformatics201531162745274710.1093/bioinformatics/btv19525851949
    [Google Scholar]
  20. CapriottiE. CalabreseR. CasadioR. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information.Bioinformatics200622222729273410.1093/bioinformatics/btl42316895930
    [Google Scholar]
  21. CalabreseR. CapriottiE. FariselliP. MartelliP.L. CasadioR. Functional annotations improve the predictive score of human disease-related mutations in proteins.Hum. Mutat.20093081237124410.1002/humu.2104719514061
    [Google Scholar]
  22. MiH GuoN KejariwalA ThomasPD PANTHER version 6: Protein sequence and function evolution data with expanded representation of biological pathways.Nucleic Acids Res200735DatabaseD247D25210.1093/nar/gkl86917130144
    [Google Scholar]
  23. SidhicN. SubbiahU. In silico analysis of non-synonymous snps in the human WWOX gene.Curr. Pharmacogenomics Person. Med.2024211385010.2174/0118756921312973240517112757
    [Google Scholar]
  24. CapriottiE FariselliP CasadioR. I-Mutant2.0: Predicting stability changes upon mutation from the protein sequence or structure.Nucleic Acids Res33Web ServerW306W31010.1093/nar/gki375159804782005
    [Google Scholar]
  25. ChengJ. RandallA. BaldiP. Prediction of protein stability changes for single‐site mutations using support vector machines.Proteins20066241125113210.1002/prot.2081016372356
    [Google Scholar]
  26. Warde-FarleyD The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function.Nucleic Acids Res201038Web Server issueW214W22010.1093/nar/gkq537
    [Google Scholar]
  27. SzklarczykD. GableA.L. LyonD. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets.Nucleic Acids Res.201947D1D607D61310.1093/nar/gky113130476243
    [Google Scholar]
  28. GeourjonC. DeléageG. SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments.Bioinformatics199511668168410.1093/bioinformatics/11.6.6818808585
    [Google Scholar]
  29. JumperJ. EvansR. PritzelA. Highly accurate protein structure prediction with AlphaFold.Nature2021596787358358910.1038/s41586‑021‑03819‑234265844
    [Google Scholar]
  30. BlomN. GammeltoftS. BrunakS. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites.J. Mol. Biol.199929451351136210.1006/jmbi.1999.331010600390
    [Google Scholar]
  31. PengC. DingY. YiX. Association study of CACNA1C polymorphisms with large artery atherosclerotic stroke in Chinese Han population.Neurol. Res.20184081610.1080/01616412.2018.146130729683785
    [Google Scholar]
  32. WangZ. FuY. JiangF. Further evidence and meta-analysis support association of a single nucleotide polymorphism rs4765905 in CACNA1C with schizophrenia.Schizophr. Res.202224345445510.1016/j.schres.2022.01.05235221147
    [Google Scholar]
  33. IslamM.J. KhanA.M. ParvesM.R. HossainM.N. HalimM.A. Prediction of deleterious non-synonymous SNPS of human stk11 gene by combining algorithms, molecular docking, and molecular dynamics simulation.Sci. Rep.2019911642610.1038/s41598‑019‑52308‑031712642
    [Google Scholar]
  34. RizoJ. XuJ. The synaptic vesicle release machinery.Annu. Rev. Biophys.201544133936710.1146/annurev‑biophys‑060414‑03405726098518
    [Google Scholar]
  35. ZhangZ. WangY. ZhangQ. The effects of CACNA1C gene polymorphism on prefrontal cortex in both schizophrenia patients and healthy controls.Schizophr. Res.201920419320010.1016/j.schres.2018.09.00730268820
    [Google Scholar]
  36. BackesH. DietscheB. NagelsA. Genetic variation in CACNA1C affects neural processing in major depression.J. Psychiatr. Res.201453384610.1016/j.jpsychires.2014.02.00324612926
    [Google Scholar]
  37. GonzalezS. XuC. RamirezM. Suggestive evidence for association between L‐type voltage‐gated calcium channel (CACNA1C) gene haplotypes and bipolar disorder in Latinos: A family‐based association study.Bipolar Disord.201315220621410.1111/bdi.1204123437964
    [Google Scholar]
  38. ZamponiG.W. BourinetE. NelsonD. NargeotJ. SnutchT.P. Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit.Nature1997385661544244610.1038/385442a09009192
    [Google Scholar]
  39. SzymanowiczO. DrużdżA. SłowikowskiB. A review of the CACNA gene family: Its role in neurological disorders.Diseases20241259010.3390/diseases1205009038785745
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921355525250311040459
Loading
/content/journals/cppm/10.2174/0118756921355525250311040459
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test