Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1875-6921
  • E-ISSN: 1875-6913

Abstract

Introduction

Colorectal cancer (CRC) remains a pervasive and lethal cancer type worldwide, significantly impinging on patients' lives and burdening society economically. Current treatments like surgery, chemotherapy, and radiotherapy have significant limitations, including high rates of recurrence after surgery and drug resistance. This underscores the urgent need for new biomarkers and therapeutic targets. This study aims to explore the expression levels of REEP2 (Receptor Expression-Enhancing Protein 2) and its potential association with CRC.

Methods

Utilizing public datasets from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), we conducted a comprehensive analysis including differential expression assessment, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, as well as Kaplan-Meier survival analysis.

Results and Discussion

Our findings reveal a significant decrease in REEP2 expression levels in CRC tissues compared to normal tissues ( < 0.001). The receiver operating characteristic (ROC) curve analysis further underscores this observation with an area under the curve (AUC) of 0.889 (CI=0.855–0.923), highlighting its potential as a diagnostic biomarker. Furthermore, our differential expression analysis identified 1,131 differentially expressed genes (DEGs) linked to REEP2, predominantly enriched in nucleosome and calcium signaling pathways. Kaplan-Meier analysis indicates that lower REEP2 expression is linked to improved overall survival, with a hazard ratio (HR) of 1.48 (=0.029). Additionally, we observed a correlation between REEP2 expression and the infiltration of immune cells, as well as several clinical characteristics, such as patient age and TNM staging.

Conclusion

In conclusion, our research suggests that REEP2 could serve as a valuable biomarker for the diagnosis and potential treatment of CRC, which warrants further investigation into its potential application in treatment.

Loading

Article metrics loading...

/content/journals/cppm/10.2174/0118756921370999250712062850
2025-07-23
2026-01-18
Loading full text...

Full text loading...

References

  1. DekkerE. TanisPJ. VleugelsJL.A. KasiPM. WallaceMB. Colorectal cancer.Lancet20193941020714678010.1016/S0140‑6736(19)32319‑0 31631858
    [Google Scholar]
  2. MahmoudN.N. Colorectal cancer.Surg. Oncol. Clin. N. Am.20223121274110.1016/j.soc.2021.12.001 35351269
    [Google Scholar]
  3. HaraldsdottirS. EinarsdottirHM. SmaradottirA. GunnlaugssonA. HalfdanarsonTR. Colorectal cancer.Review.Laeknabladid201410027582 24639430
    [Google Scholar]
  4. KlimeckL. HeisserT. HoffmeisterM. BrennerH. Colorectal cancer: A health and economic problem.Best Pract. Res. Clin. Gastroenterol.20236610183910.1016/j.bpg.2023.101839 37852707
    [Google Scholar]
  5. PlanckM. AndersonH. BladströmA. MöllerT. WenngrenE. OlssonH. Increased cancer risk in offspring of women with colorectal carcinoma: A Swedish register-based cohort study.Cancer2000894741910.1002/1097‑0142(20000815)89:4<741:AID‑CNCR4>3.0.CO;2‑W 10951335
    [Google Scholar]
  6. ShenZ. YeY. BinL et al. Metabolic syndrome is an important factor for the evolution of prognosis of colorectal cancer: survival, recurrence, and liver metastasis.Am. J. Surg.20102001596310.1016/j.amjsurg.2009.05.005 20074697
    [Google Scholar]
  7. RöckenC. Predictive biomarkers in gastric cancer.J. Cancer Res. Clin. Oncol.2023149146748110.1007/s00432‑022‑04408‑0 36260159
    [Google Scholar]
  8. HuangH. Matrix Metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: Recent advances.Sensors20181810324910.3390/s18103249 30262739
    [Google Scholar]
  9. PerezS.M. BrintonL.T. KellyK.A. Plectin in cancer: From biomarker to therapeutic target.Cells2021109224610.3390/cells10092246 34571895
    [Google Scholar]
  10. MaoY. XieH. LvM,et al The landscape of objective response rate of anti-PD-1/L1 monotherapy across 31 types of cancer: A system review and novel biomarker investigating.Cancer Immunol. Immunother.202372724839810.1007/s00262‑023‑03441‑3 37022474
    [Google Scholar]
  11. BoehmBE. YorkME. PetrovicsG. KohaarI. ChesnutGT. Biomarkers of aggressive prostate cancer at diagnosis.Int. J. Mol. Sci.2023243218510.3390/ijms24032185 36768533
    [Google Scholar]
  12. WangN. FangJ.Y. Fusobacterium nucleatum, a key pathogenic factor and microbial biomarker for colorectal cancer.Trends Microbiol.202331215917210.1016/j.tim.2022.08.010 36058786
    [Google Scholar]
  13. ColemanD. KuwadaS. miRNA as a biomarker for the early detection of colorectal cancer.Genes202415333810.3390/genes15030338 38540397
    [Google Scholar]
  14. LadabaumU. MannalitharaA. WengY,et al Comparative effectiveness and cost-effectiveness of colorectal cancer screening with blood-based biomarkers (Liquid Biopsy) vs fecal tests or colonoscopy.Gastroenterology202416723789110.1053/j.gastro.2024.03.011 38552670
    [Google Scholar]
  15. LugliA. ZlobecI. BergerMD. KirschR. NagtegaalID. Tumour budding in solid cancers.Nat. Rev. Clin. Oncol.20211821011510.1038/s41571‑020‑0422‑y 32901132
    [Google Scholar]
  16. MallaM. LoreeJM. KasiPM. ParikhAR. Using circulating tumor DNA in colorectal cancer: Current and evolving practices.J. Clin. Oncol.2022402428465710.1200/JCO.21.02615 35839443
    [Google Scholar]
  17. MüllerD. GyőrffyB. DNA methylation-based diagnostic, prognostic, and predictive biomarkers in colorectal cancer.Biochim. Biophys. Acta Rev. Cancer20221877318872210.1016/j.bbcan.2022.188722 35307512
    [Google Scholar]
  18. ZhangZ. LiuX. YangX,et al Identification of faecal extracellular vesicles as novel biomarkers for the non‐invasive diagnosis and prognosis of colorectal cancer.J. Extracell. Vesicles20231211230010.1002/jev2.12300 36604402
    [Google Scholar]
  19. FanS. LiuH. LiL. The REEP family of proteins: Molecular targets and role in pathophysiology.Pharmacol. Res.202218510647710.1016/j.phrs.2022.106477 36191880
    [Google Scholar]
  20. ShibataY. MazurEE,Pan B, et al PanB. The membrane curvature-inducing REEP1-4 proteins generate an ER-derived vesicular compartment.Nat. Commun.2024151865510.1038/s41467‑024‑52901‑6 39368994
    [Google Scholar]
  21. ZhangX. LiuL. LiuX. Chidamide suppresses adipogenic differentiation of bone marrow derived mesenchymal stem cells via increasing REEP2 expression.iScience202326310622110.1016/j.isci.2023.106221 36879811
    [Google Scholar]
  22. HurtC.M. BjörkS. HoV.K. GilsbachR. HeinL. AngelottiT. REEP1 and REEP2 proteins are preferentially expressed in neuronal and neuronal-like exocytotic tissues.Brain Res.20141545122210.1016/j.brainres.2013.12.008 24355597
    [Google Scholar]
  23. IlegemsE. IwatsukiK. KokrashviliZ. BenardO. NinomiyaY. MargolskeeR.F. REEP2 enhances sweet receptor function by recruitment to lipid rafts.J. Neurosci.20103041137741378310.1523/JNEUROSCI.0091‑10.2010 20943918
    [Google Scholar]
  24. WangY. PengL. WangF. M6A-mediated molecular patterns and tumor microenvironment infiltration characterization in nasopharyngeal carcinoma.Cancer Biol. Ther.2024251233359010.1080/15384047.2024.2333590 38532632
    [Google Scholar]
  25. ChangH. RhaS.Y. JeungH.C. Identification of genes related to a synergistic effect of taxane and suberoylanilide hydroxamic acid combination treatment in gastric cancer cells.J. Cancer Res. Clin. Oncol.2010136121901191310.1007/s00432‑010‑0849‑0 20217129
    [Google Scholar]
  26. OlszewskiS. DeeneyJ.T. SchuppinG.T. WilliamsK.P. CorkeyB.E. RhodesC.J. Rab3A effector domain peptides induce insulin exocytosis via a specific interaction with a cytosolic protein doublet.J. Biol. Chem.199426945279872799110.1016/S0021‑9258(18)46884‑6 7961732
    [Google Scholar]
  27. BjörkS. HurtC.M. HoV.K. AngelottiT. REEPs are membrane shaping adapter proteins that modulate specific g protein-coupled receptor trafficking by affecting ER cargo capacity.PLoS One2013810e7636610.1371/journal.pone.0076366 24098485
    [Google Scholar]
  28. SaitoH. KubotaM. RobertsR.W. ChiQ. MatsunamiH. RTP family members induce functional expression of mammalian odorant receptors.Cell2004119567969110.1016/j.cell.2004.11.021 15550249
    [Google Scholar]
  29. WangN. ShibataY. PauloJ.A. GygiS.P. RapoportT.A. A conserved membrane curvature-generating protein is crucial for autophagosome formation in fission yeast.Nat. Commun.2023141476510.1038/s41467‑023‑40530‑4 37553386
    [Google Scholar]
  30. BurkeB. PREEParing for mitosis.Dev. Cell201326322122210.1016/j.devcel.2013.07.018 23948250
    [Google Scholar]
  31. YalçınB. ZhaoL. StofankoM. Modeling of axonal endoplasmic reticulum network by spastic paraplegia proteins.eLife20176e2388210.7554/eLife.23882 28742022
    [Google Scholar]
  32. AngelottiT. Exploring the eukaryotic Yip and REEP/Yop superfamily of membrane-shaping adapter proteins (MSAPs): A cacophony or harmony of structure and function?Front. Mol. Biosci.2022991284810.3389/fmolb.2022.912848 36060263
    [Google Scholar]
  33. XiangY. LyuR. HuJ. Oligomeric scaffolding for curvature generation by ER tubule-forming proteins.Nat. Commun.2023141261710.1038/s41467‑023‑38294‑y 37147312
    [Google Scholar]
  34. ArgasinskaJ. RanaA.A. GilchristM.J. LachaniK. YoungA. SmithJ.C. Loss of REEP4 causes paralysis of the Xenopus embryo.Int. J. Dev. Biol.2009531374310.1387/ijdb.072542ja 19123125
    [Google Scholar]
  35. BeetzC. SchüleR. DeconinckT. REEP1 mutation spectrum and genotype/phenotype correlation in hereditary spastic paraplegia type 31.Brain200813141078108610.1093/brain/awn026 18321925
    [Google Scholar]
  36. CastermansD. VermeeschJ.R. FrynsJ.P. Identification and characterization of the TRIP8 and REEP3 genes on chromosome 10q21.3 as novel candidate genes for autism.Eur. J. Hum. Genet.200715442243110.1038/sj.ejhg.5201785 17290275
    [Google Scholar]
  37. ChatilaA.T. NguyenM.T.T. KrillT. RoarkR. BilalM. ReepG. Natural history, pathophysiology and evaluation of gastroesophageal reflux disease.Dis. Mon.202066110084810.1016/j.disamonth.2019.02.001 30803725
    [Google Scholar]
  38. ArnoG. AgrawalS.A. EblimitA. Mutations in REEP6 cause autosomal-recessive Retinitis pigmentosa.Am. J. Hum. Genet.20169961305131510.1016/j.ajhg.2016.10.008 27889058
    [Google Scholar]
  39. CassS. HamiltonC. MillerA. Novel ex vivo model to examine the mechanism and relationship of esophageal microbiota and disease.Biomedicines20219214210.3390/biomedicines9020142 33540531
    [Google Scholar]
  40. BauerM. PelkmansL. A new paradigm for membrane‐organizing and ‐shaping scaffolds.FEBS Lett.2006580235559556410.1016/j.febslet.2006.08.077 16996501
    [Google Scholar]
  41. ZouC.X. DuL.L. REEPing the harvest of reticulophagy and nucleophagy.Autophagy20242051197119810.1080/15548627.2023.2300915 38163952
    [Google Scholar]
  42. OlivaM.K. Pérez-MorenoJ.J. O’ShaughnessyJ. WardillT.J. O’KaneC.J. Endoplasmic reticulum lumenal indicators in Drosophila reveal effects of hsp-related mutations on endoplasmic reticulum calcium dynamics.Front. Neurosci.20201481610.3389/fnins.2020.00816 32903680
    [Google Scholar]
  43. WangN. RapoportT.A. Reconstituting the reticular ER network – mechanistic implications and open questions.J. Cell Sci.20191324jcs22761110.1242/jcs.227611
    [Google Scholar]
  44. WangN. ClarkL.D. GaoY. KozlovM.M. ShemeshT. RapoportT.A. Mechanism of membrane-curvature generation by ER-tubule shaping proteins.Nat. Commun.202112156810.1038/s41467‑020‑20625‑y 33495454
    [Google Scholar]
  45. ZouC.X. MaZ.H. JiangZ.D. The ortholog of human REEP1-4 is required for autophagosomal enclosure of ER-phagy/nucleophagy cargos in fission yeast.PLoS Biol.20232111e300237210.1371/journal.pbio.3002372 37939137
    [Google Scholar]
  46. ZhengP. ChenQ. TianX. DNA damage triggers tubular endoplasmic reticulum extension to promote apoptosis by facilitating ER-mitochondria signaling.Cell Res.201828883385410.1038/s41422‑018‑0065‑z 30030520
    [Google Scholar]
  47. NanH. TakakiR. HataT. KohK. TakiyamaY. A Nepalese family with an REEP2 mutation: Clinical and genetic study.J. Hum. Genet.202166774975210.1038/s10038‑020‑00882‑x 33526816
    [Google Scholar]
  48. NakanoK. Yanobu-TakanashiR. ShimizuY. Genetic locus responsible for diabetic phenotype in the insulin hyposecretion (ihs) mouse.PLoS One2020156e023413210.1371/journal.pone.0234132 32502168
    [Google Scholar]
  49. EstevesT. DurrA. MundwillerE. Loss of association of REEP2 with membranes leads to hereditary spastic paraplegia.Am. J. Hum. Genet.201494226827710.1016/j.ajhg.2013.12.005 24388663
    [Google Scholar]
  50. HuH. SunS.C. Ubiquitin signaling in immune responses.Cell Res.201626445748310.1038/cr.2016.40 27012466
    [Google Scholar]
  51. RuszczakZ. CiborskaL. CzarneckiM. BednarowiczG. (Humoral and cellular immune response in psoriasis).Z. Hautkr.1986616366376 3705661
    [Google Scholar]
  52. FuZ. LaiY. WangQ. LinF. FangJ. LRG1 predicts the prognosis and is associated with immune infiltration in thyroid cancer: a bioinformatics study.Endocr. Connect.20231311310.1530/EC‑23‑0418 37991216
    [Google Scholar]
  53. DongX.L. The correlation between REEP6 and prognosis and immune infiltration in colorectal cancer: A bioinformatics analysis.Research Square202410.21203/rs.3.rs‑4562301/v1
    [Google Scholar]
  54. LiuJ. LichtenbergT. HoadleyK.A. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics.Cell20181732400416.e1110.1016/j.cell.2018.02.052 29625055
    [Google Scholar]
  55. BokR.A. SmallE.J. Bloodborne biomolecular markers in prostate cancer development and progression.Nat. Rev. Cancer200221291892610.1038/nrc951 12459730
    [Google Scholar]
  56. YuH. HemminkiA. SundquistK. HemminkiK. Familial associations of colon and rectal cancers with other cancers.Dis. Colon Rectum201962218919510.1097/DCR.0000000000001262 30640834
    [Google Scholar]
  57. van de VeldeC.J.H. BoelensP.G. TanisP.J. Experts reviews of the multidisciplinary consensus conference colon and rectal cancer 2012.Eur. J. Surg. Oncol.201440445446810.1016/j.ejso.2013.10.013 24268926
    [Google Scholar]
  58. LuB. ShiJ. ChengT. Chemokine ligand 14 correlates with immune cell infiltration in the gastric cancer microenvironment in predicting unfavorable prognosis.Front. Pharmacol.202415139765610.3389/fphar.2024.1397656 38887558
    [Google Scholar]
/content/journals/cppm/10.2174/0118756921370999250712062850
Loading
/content/journals/cppm/10.2174/0118756921370999250712062850
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): biomarker; Colorectal cancer; immune microenvironment; prognosis; REEP2; TCGA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test