Current Pharmaceutical Design - Volume 31, Issue 27, 2025
Volume 31, Issue 27, 2025
-
-
Exploring Hot Melt Extrusion from Process to Product with Methodologies and Drug-Delivery Applications: A Review
Authors: Praveen Halagali, Mahalaxmi Rathnanand and Vamshi Krishna TippavajhalaFor the pharmaceutical industry, hot-melt extrusion (HME) has become a cutting-edge production process. Compared to conventional procedures, HME is a solvent-free approach that offers numerous applications, cost-effectiveness, and continuous manufacturing. Studying the formulation and process characteristics should be prioritized in order to satisfy requirements. Many distinct dosage forms for different purposes can be formulated by altering the equipment design and a few processing parameters. For the intended outcome, the HME process must run smoothly and continuously. In this regard, pre-formulation study plays a main role in selecting the carrier, drug, and other required excipients. This review provides a comprehensive understanding of various equipment parts, HME materials and processes, formulation development, and HME in the delivery of drugs. It also highlights the applications and patents of HME.
-
-
-
Metformin and its Nanoformulations in Cancer Prevention and Therapy
Currently, the resistance to antineoplastic drugs is an important critical challenge in managing several forms of cancers. An improved prognosis for cancer patients is often associated with increased cell death markers. The objective of the current review article was to discuss how metformin works at the molecular level to fight different types of cancer. This review also discussed the latest developments in metformin nanoformulations and their enhanced anticancer effects and the feasibility of using nanoformulation to deliver metformin with its limitations and challenges. In the current review article, we compiled previously reported studies on metformin's anticancer properties and nanoformulations by searching them in commonly used electronic databases such as Scopus, Google Scholar, PubMed, Medline, Science Direct, etc. In many research investigations, it has been reported that metformin (oral antidiabetic drug commonly employed in the clinical management of type 2 diabetes mellitus), can also help fight cancer by encouraging cell death, mostly through a process called apoptosis. Several previously reported investigations revealed that metformin and its nanoformulations are capable of showing significant anticancer activity against various carcinoma cell lines. From the reported literature, it has been found that there was prominent evidence for anticancer activity of metformin. In addition, a number of studies pointed out that metformin-loaded nanoformulations are capable of showing higher antitumor activity than free metformin, resulting in better efficacy in the therapeutic management of cancer. Metformin-loaded nanoformulations can be employed as potentially useful option for cancer treatment.
-
-
-
Computational Screening of IL-1 and IL-6 Inhibitors for Rheumatoid Arthritis: Insights from Molecular Docking and Dynamics Analysis
Authors: Yunwei Li and Salam Pradeep SinghBackgroundRheumatoid arthritis (RA) remains a significant therapeutic challenge due to its chronic inflammatory nature. Consequently, many patients turn to alternative therapies, such as herbal compounds and supplements, when conventional treatments prove relatively ineffective or cause adverse side effects. Some compounds are being investigated for their potential to alleviate RA symptoms or manage disease. This study aimed to evaluate the anti-inflammatory effects of selected herbal compounds targeting the Interleukin-1 (IL-1) and Interleukin-6 (IL-6) pathways, key inflammatory regulators in RA. Specifically, the study assessed the binding affinity, stability, and dynamics of IL-1 and IL-6 inhibitory compounds as potential therapeutic agents for RA.
MethodsIn silico experiments were conducted with herbal compounds to modulate IL-1 and IL-6 signaling. Computational techniques, including molecular docking, molecular dynamics (MD) simulations, Molecular Mechanics-Generalized Born Surface Area (MM-GBSA) calculations, Absorption, Distribution, Metabolism, and Excretion (ADME) analysis, toxicity predictions, and Density Functional Theory (DFT) analysis, were employed to investigate these interactions comprehensively.
ResultsNeoglucobrassicin demonstrated the strongest binding affinity for IL-6 (Total score: -349.00 kJ/mol), followed by Galbelgin (-338.00 kJ/mol). For IL-1β, CID21722980 exhibited the highest binding affinity (-273.14 kJ/mol), with Eupaformosanin ranking second (-264.29 kJ/mol). Neoglucobrassicin formed interactions with multiple IL-6 residues, indicating a stable binding complex, while CID21722980 similarly interacted with key IL-1β residues, forming stable complexes. Both the Neoglucobrassicin-IL-6 and CID21722980-IL1β complexes demonstrated structural stability, as evidenced by Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation (RMSF) stabilizing towards the end of the 100 ns molecular dynamics (MD) simulation. MM-GBSA analysis revealed the highest binding energy for the IL-6-Neoglucobrassicin complex (-43.70 kcal/mol), while CID21722980 showed strong affinity for IL-1β (-43.29 kcal/mol), suggesting enhanced binding potential. Additionally, Density Functional Theory (DFT) analysis of the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) energies revealed electron distribution patterns in Neoglucobrassicin and CID21722980 that support their potential therapeutic applications.
DiscussionThe strong binding affinities, stable molecular dynamics (MD) simulations, and favorable ADMET and DFT properties of Neoglucobrassicin and CID21722980 underscore their potential as anti-inflammatory agents targeting IL-6 and IL-1β. The mechanistic insights into their inhibitory effects on these targets suggest multifaceted anti-inflammatory properties, warranting further in vivo and clinical investigations.
ConclusionNeoglucobrassicin and CID21722980 demonstrated promising binding affinities, favorable pharmacokinetic profiles, and advantageous electronic properties, positioning them as strong candidates for further exploration in anti-inflammatory therapies. These findings highlight the potential of these herbal compounds as modulators of IL-6 and IL-1β, paving the way for future drug development.
-
Volumes & issues
-
Volume 31 (2025)
-
Volume (2025)
-
Volume 30 (2024)
-
Volume 29 (2023)
-
Volume 28 (2022)
-
Volume 27 (2021)
-
Volume 26 (2020)
-
Volume 25 (2019)
-
Volume 24 (2018)
-
Volume 23 (2017)
-
Volume 22 (2016)
-
Volume 21 (2015)
-
Volume 20 (2014)
-
Volume 19 (2013)
-
Volume 18 (2012)
-
Volume 17 (2011)
-
Volume 16 (2010)
-
Volume 15 (2009)
-
Volume 14 (2008)
-
Volume 13 (2007)
-
Volume 12 (2006)
-
Volume 11 (2005)
-
Volume 10 (2004)
-
Volume 9 (2003)
-
Volume 8 (2002)
-
Volume 7 (2001)
-
Volume 6 (2000)
Most Read This Month
