Skip to content
2000
Volume 31, Issue 27
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Currently, the resistance to antineoplastic drugs is an important critical challenge in managing several forms of cancers. An improved prognosis for cancer patients is often associated with increased cell death markers. The objective of the current review article was to discuss how metformin works at the molecular level to fight different types of cancer. This review also discussed the latest developments in metformin nanoformulations and their enhanced anticancer effects and the feasibility of using nanoformulation to deliver metformin with its limitations and challenges. In the current review article, we compiled previously reported studies on metformin's anticancer properties and nanoformulations by searching them in commonly used electronic databases such as Scopus, Google Scholar, PubMed, Medline, Science Direct, . In many research investigations, it has been reported that metformin (oral antidiabetic drug commonly employed in the clinical management of type 2 diabetes mellitus), can also help fight cancer by encouraging cell death, mostly through a process called apoptosis. Several previously reported investigations revealed that metformin and its nanoformulations are capable of showing significant anticancer activity against various carcinoma cell lines. From the reported literature, it has been found that there was prominent evidence for anticancer activity of metformin. In addition, a number of studies pointed out that metformin-loaded nanoformulations are capable of showing higher antitumor activity than free metformin, resulting in better efficacy in the therapeutic management of cancer. Metformin-loaded nanoformulations can be employed as potentially useful option for cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128367242250214052019
2025-04-08
2025-10-26
Loading full text...

Full text loading...

References

  1. YangQ. XuD. YangY. LuS. WangD. WangL. Global, regional, and national burden of gastric cancer in adolescents and young adults, 1990-2019: A systematic analysis for the global burden of disease study 2019.Am. J. Gastroenterol.2024119345446710.14309/ajg.0000000000002551 37800697
    [Google Scholar]
  2. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  3. GarnerW.B. SmithB.D. LudmirE.B. Predicting future cancer incidence by age, race, ethnicity, and sex.J. Geriatr. Oncol.202314110139310.1016/j.jgo.2022.10.008 36692964
    [Google Scholar]
  4. ClappR.W. JacobsM.M. LoechlerE.L. Environmental and occupational causes of cancer: New evidence 2005-2007.Rev. Environ. Health200823113810.1515/REVEH.2008.23.1.1 18557596
    [Google Scholar]
  5. BoseS. BanerjeeS. MondalA. Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy.Cells202096145110.3390/cells9061451 32545187
    [Google Scholar]
  6. GalluzziL. KeppO. HeidenM.G.V. KroemerG. Metabolic targets for cancer therapy.Nat. Rev. Drug Discov.2013121182984610.1038/nrd4145 24113830
    [Google Scholar]
  7. KumarA. EmdadL. DasS.K. FisherP.B. Recent advances and progress in immunotherapy of solid cancers.Adv. Cancer Res.202416411119010.1016/bs.acr.2024.05.004 39306365
    [Google Scholar]
  8. PriyadarshniN. SinghR. MishraM.K. Nanodiamonds: Next generation nano-theranostics for cancer therapy.Cancer Lett.202458721671010.1016/j.canlet.2024.216710 38369006
    [Google Scholar]
  9. MondalA. NayakA. ChakrabortyP. BanerjeeS. NandyB. Natural polymeric nanobiocomposites for anti-cancer drug delivery therapeutics: A recent update.Pharmaceutics2023158206410.3390/pharmaceutics15082064 37631276
    [Google Scholar]
  10. DasS.S. AlkahtaniS. BharadwajP. Molecular insights and novel approaches for targeting tumor metastasis.Int. J. Pharm.202058511955610.1016/j.ijpharm.2020.119556 32574684
    [Google Scholar]
  11. LuJ. TanM. CaiQ. The Warburg effect in tumor progression: Mitochondrial oxidative metabolism as an anti-metastasis mechanism.Cancer Lett.2015356215616410.1016/j.canlet.2014.04.001 24732809
    [Google Scholar]
  12. LiberatiA AltmanDG TetzlaffJ The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration.Ann Intern Med20091514W10.7326/0003‑4819‑151‑4‑200908180‑00136 19622512
    [Google Scholar]
  13. BoykoD.J.M.E.J. KarurangaS. PiemonteL. RileyP. SaeediP. SunH. International Diabetes Federation.10th edIDF Diabetes Atlas2024
    [Google Scholar]
  14. OgurtsovaK. da Rocha FernandesJ.D. HuangY. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.Diabetes Res. Clin. Pract.2017128405010.1016/j.diabres.2017.03.024 28437734
    [Google Scholar]
  15. KalogirouC. SchäferD. KrebsM. Metformin-derived growth inhibition in renal cell carcinoma depends on miR-21-mediated PTEN expression.Urol. Int.201696110611510.1159/000441011 26496641
    [Google Scholar]
  16. GuptaG. SinghR. DavidS.R. VermaR.K. Effect of R osiglitazone, a PPAR ‐γ Ligand on H aloperidol‐ I nduced C atalepsy.CNS Neurosci. Ther.201319972472510.1111/cns.12137 23786164
    [Google Scholar]
  17. SpragueA.H. KhalilR.A. Inflammatory cytokines in vascular dysfunction and vascular disease.Biochem. Pharmacol.200978653955210.1016/j.bcp.2009.04.029 19413999
    [Google Scholar]
  18. MallikR. ChowdhuryT.A. Metformin in cancer.Diabetes Res. Clin. Pract.201814340941910.1016/j.diabres.2018.05.023 29807101
    [Google Scholar]
  19. PadhiS. NayakA.K. BeheraA. Type II diabetes mellitus: A review on recent drug based therapeutics.Biomed. Pharmacother.202013111070810.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  20. DuttaS. ShahR.B. SinghalS. Metformin: A review of potential mechanism and therapeutic utility beyond diabetes.Drug Des. Devel. Ther.2023171907193210.2147/DDDT.S409373 37397787
    [Google Scholar]
  21. DrzewoskiJ. HanefeldM. The current and potential therapeutic use of metformin-The good old drug.Pharmaceuticals202114212210.3390/ph14020122 33562458
    [Google Scholar]
  22. MarshallS.M. 60 years of metformin use: A glance at the past and a look to the future.Diabetologia20176091561156510.1007/s00125‑017‑4343‑y 28776085
    [Google Scholar]
  23. ChengM. RenL. JiaX. WangJ. CongB. Understanding the action mechanisms of metformin in the gastrointestinal tract.Front. Pharmacol.202415134704710.3389/fphar.2024.1347047 38617792
    [Google Scholar]
  24. BuczyńskaA. SidorkiewiczI. KrętowskiA.J. AdamskaA. Examining the clinical relevance of metformin as an antioxidant intervention.Front. Pharmacol.202415133079710.3389/fphar.2024.1330797 38362157
    [Google Scholar]
  25. ChaudharyM. MidhaN.K. SukhadiyaP. KumarD. GargM.K. Metformin-induced chronic diarrhea misdiagnosed as irritable bowel syndrome for years.Cureus2024163e5682810.7759/cureus.56828 38654785
    [Google Scholar]
  26. SalujaM. PareekK.K. SwamiY.K. Study of diversity of metformin related gastrointestinal side effects.J. Assoc. Physicians India20206883638 32738838
    [Google Scholar]
  27. ChanP. ShaoL. TomlinsonB. ZhangY. LiuZ.M. Metformin transporter pharmacogenomics: insights into drug disposition—where are we now?Expert Opin. Drug Metab. Toxicol.2018141111110.1080/17425255.2018.1541981 30375241
    [Google Scholar]
  28. HunterR.W. HugheyC.C. LantierL. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase.Nat. Med.20182491395140610.1038/s41591‑018‑0159‑7 30150719
    [Google Scholar]
  29. LvZ. GuoY. Metformin and its benefits for various diseases.Front. Endocrinol. (Lausanne)20201119110.3389/fendo.2020.00191 32425881
    [Google Scholar]
  30. SarkarA. FanousK. MareiI. Repurposing metformin for the treatment of atrial fibrillation: Current insights.Vasc. Health Risk Manag.20242025528810.2147/VHRM.S391808 38919471
    [Google Scholar]
  31. TriggleC.R. MohammedI. BsheshK. Metformin: Is it a drug for all reasons and diseases?Metabolism202213315522310.1016/j.metabol.2022.155223 35640743
    [Google Scholar]
  32. UgwuezeC.V. OgambaO.J. YoungE.E. OnyenekweB.M. EzeokpoB.C. Metformin: A possible option in cancer chemotherapy.Anal. Cell. Pathol. (Amst.)2020202011010.1155/2020/7180923 32399389
    [Google Scholar]
  33. ShirasakaY. LeeN. ZhaW. WagnerD. WangJ. Involvement of organic cation transporter 3 (Oct3/Slc22a3) in the bioavailability and pharmacokinetics of antidiabetic metformin in mice.Drug Metab. Pharmacokinet.201631538538810.1016/j.dmpk.2016.04.005 27569291
    [Google Scholar]
  34. HardieD.G. AMP-activated protein kinase as a drug target.Annu. Rev. Pharmacol. Toxicol.200747118521010.1146/annurev.pharmtox.47.120505.105304 16879084
    [Google Scholar]
  35. HeL. WondisfordF.E. Metformin action: Concentrations matter.Cell Metab.201521215916210.1016/j.cmet.2015.01.003 25651170
    [Google Scholar]
  36. VancuraA. BuP. BhagwatM. ZengJ. VancurovaI. Metformin as an anticancer agent.Trends Pharmacol. Sci.2018391086787810.1016/j.tips.2018.07.006 30150001
    [Google Scholar]
  37. GedawyA. Al-SalamiH. DassC.R. Role of metformin in various pathologies: State-of-the-art microcapsules for improving its pharmacokinetics.Ther. Deliv.2020111173375310.4155/tde‑2020‑0102 32967584
    [Google Scholar]
  38. EvansJ.M.M. DonnellyL.A. Emslie-SmithA.M. AlessiD.R. MorrisA.D. Metformin and reduced risk of cancer in diabetic patients.BMJ200533075031304130510.1136/bmj.38415.708634.F7 15849206
    [Google Scholar]
  39. DauganM Dufaÿ WojcickiA d’HayerB BoudyV. Metformin: An anti-diabetic drug to fight cancer.Pharmacol Res2016113Pt A6758510.1016/j.phrs.2016.10.006 27720766
    [Google Scholar]
  40. BertrandN. WuJ. XuX. KamalyN. FarokhzadO.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology.Adv. Drug Deliv. Rev.20146622510.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  41. KamalyN. YameenB. WuJ. FarokhzadO.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release.Chem. Rev.201611642602266310.1021/acs.chemrev.5b00346 26854975
    [Google Scholar]
  42. TangL. XieM. LiJ. Leveraging nano-engineered mesenchymal stem cells for intramedullary spinal cord tumor treatment.Chin. Chem. Lett.202334510780110.1016/j.cclet.2022.107801
    [Google Scholar]
  43. DeA. KuppusamyG. Metformin in breast cancer: Preclinical and clinical evidence.Curr. Probl. Cancer202044110048810.1016/j.currproblcancer.2019.06.003 31235186
    [Google Scholar]
  44. XiongY ZhaoY MiaoL LinCM HuangL Co-delivery of polymeric metformin and cisplatin by self-assembled coremembrane nanoparticles to treat non-small cell lung cancer.J Control Release2016244Pt A637310.1016/j.jconrel.2016.11.005 27840166
    [Google Scholar]
  45. MogheriF. JokarE. AfshinR. Co-delivery of metformin and silibinin in dual-drug loaded nanoparticles synergistically improves chemotherapy in human non-small cell lung cancer A549 cells.J. Drug Deliv. Sci. Technol.20216610275210.1016/j.jddst.2021.102752
    [Google Scholar]
  46. TaghizadehghalehjoughiA. HacimuftuogluA. CetinM. Effect of metformin/irinotecan-loaded poly-lactic-co-glycolic acid nanoparticles on glioblastoma: in vitro and in vivo studies.Nanomedicine (Lond.)201813131595160610.2217/nnm‑2017‑0386 30028222
    [Google Scholar]
  47. SongM. XiaW. TaoZ. Self-assembled polymeric nanocarrier-mediated co-delivery of metformin and doxorubicin for melanoma therapy.Drug Deliv.202128159460610.1080/10717544.2021.1898703 33729072
    [Google Scholar]
  48. HassaniN. Jafari-GharabaghlouD. DadashpourM. ZarghamiN. The effect of dual bioactive compounds artemisinin and metformin co-loaded in PLGA-PEG nano-particles on breast cancer cell lines: potential apoptotic and anti-proliferative action.Appl. Biochem. Biotechnol.2022194104930494510.1007/s12010‑022‑04000‑9 35674922
    [Google Scholar]
  49. BanalaV.T. SharmaS. BarnwalP. Synchronized Ratiometric codelivery of metformin and topotecan through engineered nanocarrier facilitates in vivo synergistic precision levels at tumor site.Adv. Healthc. Mater.2018719180030010.1002/adhm.201800300 30102470
    [Google Scholar]
  50. FarajzadehR. Pilehvar-SoltanahmadiY. DadashpourM. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells.Artif. Cells Nanomed. Biotechnol.201846591792510.1080/21691401.2017.1347879 28678551
    [Google Scholar]
  51. KekatpureV. SubramaniamN. SunnyS. Two by two factorial design using metformin and curcumin for second primary head and neck cancer prevention trial.Asian Pac. J. Cancer Prev.20242561935194310.31557/APJCP.2024.25.6.1935 38918654
    [Google Scholar]
  52. SiddharthS. KuppusamyP. WuQ. NagalingamA. SaxenaN.K. SharmaD. Metformin enhances the anti-cancer efficacy of sorafenib via suppressing MAPK/ERK/Stat3 axis in hepatocellular carcinoma.Int. J. Mol. Sci.20222315808310.3390/ijms23158083 35897659
    [Google Scholar]
  53. LuoD. WangX. ZhongX. MPEG-PCL nanomicelles platform for synergistic metformin and chrysin delivery to breast cancer in mice.Anticancer. Agents Med. Chem.202222228029310.2174/1871520621666210623092725 34165412
    [Google Scholar]
  54. Vakili-GhartavolR. MehrabianA. MirzaviF. Docetaxel in combination with metformin enhances antitumour efficacy in metastatic breast carcinoma models: A promising cancer targeting based on PEGylated liposomes.J. Pharm. Pharmacol.20227491307131910.1093/jpp/rgac048 35833585
    [Google Scholar]
  55. HuaY. ZhengY. YaoY. JiaR. GeS. ZhuangA. Metformin and cancer hallmarks: Shedding new lights on therapeutic repurposing.J. Transl. Med.202321140310.1186/s12967‑023‑04263‑8 37344841
    [Google Scholar]
  56. Amengual-CladeraE. Morla-BarceloP.M. Morán-CostoyaA. Metformin: From diabetes to cancer-unveiling molecular mechanisms and therapeutic strategies.Biology202413530210.3390/biology13050302 38785784
    [Google Scholar]
  57. HerzigS. ShawR.J. AMPK: Guardian of metabolism and mitochondrial homeostasis.Nat. Rev. Mol. Cell Biol.201819212113510.1038/nrm.2017.95 28974774
    [Google Scholar]
  58. ZhaoY. SunH. FengM. Metformin is associated with reduced cell proliferation in human endometrial cancer by inbibiting PI3K/AKT/mTOR signaling.Gynecol. Endocrinol.201834542843210.1080/09513590.2017.1409714 29182407
    [Google Scholar]
  59. AmableG. Martínez-LeónE. PiccoM.E. Metformin inhibits β-catenin phosphorylation on Ser-552 through an AMPK/PI3K/] Akt pathway in colorectal cancer cells.Int. J. Biochem. Cell Biol.2019112889410.1016/j.biocel.2019.05.004 31082618
    [Google Scholar]
  60. ZhaoB. LuoJ. YuT. ZhouL. LvH. ShangP. Anticancer mechanisms of metformin: A review of the current evidence.Life Sci.202025411771710.1016/j.lfs.2020.117717 32339541
    [Google Scholar]
  61. GwinnD.M. ShackelfordD.B. EganD.F. AMPK phosphorylation of raptor mediates a metabolic checkpoint.Mol. Cell200830221422610.1016/j.molcel.2008.03.003 18439900
    [Google Scholar]
  62. VakanaE. AltmanJ.K. GlaserH. DonatoN.J. PlataniasL.C. Antileukemic effects of AMPK activators on BCR-ABL-expressing cells.Blood2011118246399640210.1182/blood‑2011‑01‑332783 22021366
    [Google Scholar]
  63. BarbatoD.L. VeglianteR. DesideriE. CirioloM.R. Managing lipid metabolism in proliferating cells: New perspective for metformin usage in cancer therapy. Biochim Biophys Acta (BBA)-.Revis. Cancer20141845317324
    [Google Scholar]
  64. FaubertB. VincentE.E. PoffenbergerM.C. JonesR.G. The AMP-activated protein kinase (AMPK) and cancer: Many faces of a metabolic regulator.Cancer Lett.2015356216517010.1016/j.canlet.2014.01.018 24486219
    [Google Scholar]
  65. KimH.G. HienT.T. HanE.H. Metformin inhibits P‐glycoprotein expression via the NF‐κB pathway and CRE transcriptional activity through AMPK activation.Br. J. Pharmacol.201116251096110810.1111/j.1476‑5381.2010.01101.x 21054339
    [Google Scholar]
  66. TadakawaM. TakedaT. LiB. TsuijiK. YaegashiN. The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-1α signaling pathway in ELT-3 cells.Mol. Cell. Endocrinol.20153991810.1016/j.mce.2014.08.012 25179820
    [Google Scholar]
  67. ChomanicovaN. GazovaA. AdamickovaA. ValaskovaS. KyselovicJ. The role of AMPK/mTOR signaling pathway in anticancer activity of metformin.Physiol. Res.202170450150810.33549/physiolres.934618 34062070
    [Google Scholar]
  68. RochaG.Z. DiasM.M. RopelleE.R. Metformin amplifies chemotherapy-induced AMPK activation and antitumoral growth.Clin. Cancer Res.201117123993400510.1158/1078‑0432.CCR‑10‑2243 21543517
    [Google Scholar]
  69. KalyanaramanB. ChengG. HardyM. OuariO. BennettB. ZielonkaJ. Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies.Redox Biol.20181534736210.1016/j.redox.2017.12.012 29306792
    [Google Scholar]
  70. LeeS.Y. SongC.H. XieY.B. JungC. ChoiH.S. LeeK. SMILE upregulated by metformin inhibits the function of androgen receptor in prostate cancer cells.Cancer Lett.2014354239039710.1016/j.canlet.2014.09.001 25199764
    [Google Scholar]
  71. MayerM.J. KlotzL.H. VenkateswaranV. Metformin and prostate cancer stem cells: A novel therapeutic target.Prostate Cancer Prostatic Dis.201518430330910.1038/pcan.2015.35 26215782
    [Google Scholar]
  72. GaoZ.Y. LiuZ. BiM.H. Metformin induces apoptosis via a mitochondria-mediated pathway in human breast cancer cells in vitro.Exp. Ther. Med.20161151700170610.3892/etm.2016.3143 27168791
    [Google Scholar]
  73. SharmaP. KumarS. Metformin inhibits human breast cancer cell growth by promoting apoptosis via a ROS-independent pathway involving mitochondrial dysfunction: Pivotal role of superoxide dismutase (SOD).Cell Oncol. (Dordr.)201841663765010.1007/s13402‑018‑0398‑0 30088260
    [Google Scholar]
  74. LiuY. HeC. HuangX. Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism.Oncotarget2017843752067521610.18632/oncotarget.20663 29088858
    [Google Scholar]
  75. LuH. XieF. HuangZ. QinJ. HanN. MaoW. Effect of metformin in the prognosis of patients with small cell lung cancer combined with diabetes mellitus.Adv. Clin. Exp. Med.20182791195119910.17219/acem/69021 30016011
    [Google Scholar]
  76. SanchoP. Burgos-RamosE. TaveraA. MYC/PGC-1α balance determines the metabolic phenotype and plasticity of pancreatic cancer stem cells.Cell Metab.201522459060510.1016/j.cmet.2015.08.015 26365176
    [Google Scholar]
  77. XiongY. LuQ.J. ZhaoJ. WuG.Y. Metformin inhibits growth of hepatocellular carcinoma cells by inducing apoptosis via mitochondrion-mediated pathway.Asian Pac. J. Cancer Prev.20121373275327910.7314/APJCP.2012.13.7.3275 22994747
    [Google Scholar]
  78. LoubièreC. GoiranT. LaurentK. DjabariZ. TantiJ.F. BostF. Metformin-induced energy deficiency leads to the inhibition of lipogenesis in prostate cancer cells.Oncotarget2015617156521566110.18632/oncotarget.3404 26002551
    [Google Scholar]
  79. ScotlandS. SalandE. SkuliN. Mitochondrial energetic and AKT status mediate metabolic effects and apoptosis of metformin in human leukemic cells.Leukemia201327112129213810.1038/leu.2013.107 23568147
    [Google Scholar]
  80. AdamsJ.M. CoryS. The BCL-2 arbiters of apoptosis and their growing role as cancer targets.Cell Death Differ.2018251273610.1038/cdd.2017.161 29099483
    [Google Scholar]
  81. KalyanaramanB. ChengG. HardyM. Modified metformin as a more potent anticancer drug: Mitochondrial inhibition, redox signaling, antiproliferative effects and future EPR studies.Cell Biochem. Biophys.2017753-431131710.1007/s12013‑017‑0796‑3 28429253
    [Google Scholar]
  82. LoubiereC. ClavelS. GilleronJ. The energy disruptor metformin targets mitochondrial integrity via modification of calcium flux in cancer cells.Sci. Rep.201771504010.1038/s41598‑017‑05052‑2 28698627
    [Google Scholar]
  83. MaayahZ.H. GhebehH. AlhaiderA.A. Metformin inhibits 7,12-dimethylbenz[a]anthracene-induced breast carcinogenesis and adduct formation in human breast cells by inhibiting the cytochrome P4501A1/aryl hydrocarbon receptor signaling pathway.Toxicol. Appl. Pharmacol.2015284221722610.1016/j.taap.2015.02.007 25697376
    [Google Scholar]
  84. GuoZ. SevrioukovaI.F. DenisovI.G. ZhangX. ChiuT-L. ThomasD.G. Heme binding biguanides target cytochrome P450-dependent cancer cell mitochondria.Cell Chem. Biol.20172412591275
    [Google Scholar]
  85. BridgemanS.C. EllisonG.C. MeltonP.E. NewsholmeP. MamotteC.D.S. Epigenetic effects of metformin: From molecular mechanisms to clinical implications.Diabetes Obes. Metab.20182071553156210.1111/dom.13262 29457866
    [Google Scholar]
  86. YanL. ZhouJ. GaoY. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation.Oncogene201534233076308410.1038/onc.2014.236 25088204
    [Google Scholar]
  87. ZhongT. MenY. LuL. Metformin alters DNA methylation genome-wide via the H19/SAHH axis.Oncogene201736172345235410.1038/onc.2016.391 27775072
    [Google Scholar]
  88. CuyàsE. Fernández-ArroyoS. VerduraS. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism.Oncogene201837796397010.1038/onc.2017.367 29059169
    [Google Scholar]
  89. CuyàsE. Fernández-ArroyoS. JovenJ. MenendezJ.A. Metformin targets histone acetylation in cancer-prone epithelial cells.Cell Cycle201615243355336110.1080/15384101.2016.1249547 27792453
    [Google Scholar]
  90. White-Al HabeebN.M.A. GarciaJ. FleshnerN. BapatB. Metformin elicits antitumor effects and downregulates the histone methyltransferase multiple myeloma SET domain (MMSET) in prostate cancer cells.Prostate201676161507151810.1002/pros.23235 27404348
    [Google Scholar]
  91. VancuraA. VancurovaI. Metformin induces protein acetylation in cancer cells.Oncotarget2017825399393994010.18632/oncotarget.17829 28537919
    [Google Scholar]
  92. LiK. ZhangT. WangF. Metformin suppresses melanoma progression by inhibiting KAT5-mediated SMAD3 acetylation, transcriptional activity and TRIB3 expression.Oncogene201837222967298110.1038/s41388‑018‑0172‑9 29520103
    [Google Scholar]
  93. PulitoC. DonzelliS. MutiP. PuzzoL. StranoS. BlandinoG. microRNAs and cancer metabolism reprogramming: The paradigm of metformin.Ann. Transl. Med.20142658 25333033
    [Google Scholar]
  94. ZhouJ.Y. XuB. LiL. A new role for an old drug: Metformin targets micro RNAs in treating diabetes and cancer.Drug Dev. Res.201576626326910.1002/ddr.21265 26936407
    [Google Scholar]
  95. BrackenC.P. ScottH.S. GoodallG.J. A network-biology perspective of microRNA function and dysfunction in cancer.Nat. Rev. Genet.2016171271973210.1038/nrg.2016.134 27795564
    [Google Scholar]
  96. DuL. WangM. KangY. Prognostic role of metformin intake in diabetic patients with colorectal cancer: An updated qualitative evidence of cohort studies.Oncotarget2017816264482645910.18632/oncotarget.14688 28103573
    [Google Scholar]
  97. XuS. YangZ. JinP. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer.Mol. Cancer Ther.20181761291130210.1158/1535‑7163.MCT‑17‑0927 29545331
    [Google Scholar]
  98. XiaoZ. GaertnerS. Morresi-HaufA. Metformin triggers autophagy to attenuate drug-induced apoptosis in NSCLC cells, with minor effects on tumors of diabetic patients.Neoplasia201719538539510.1016/j.neo.2017.02.011 28391030
    [Google Scholar]
  99. RamasamyT. RuttalaH.B. KalirajK. Polypeptide derivative of metformin with the combined advantage of a gene carrier and anticancer activity.ACS Biomater. Sci. Eng.20195105159516810.1021/acsbiomaterials.9b00982 33455222
    [Google Scholar]
  100. LeeJ. ParkD. LeeY. Metformin synergistically potentiates the antitumor effects of imatinib in colorectal cancer cells.Dev. Reprod.201721213915010.12717/DR.2017.21.2.139 28785735
    [Google Scholar]
  101. JungY.S. ParkC.H. EunC.S. ParkD.I. HanD.S. Metformin use and the risk of colorectal adenoma: A systematic review and meta‐analysis.J. Gastroenterol. Hepatol.201732595796510.1111/jgh.13639 28449338
    [Google Scholar]
  102. ParkJ.W. LeeJ.H. ParkY.H. Sex-dependent difference in the effect of metformin on colorectal cancer-specific mortality of diabetic colorectal cancer patients.World J. Gastroenterol.201723285196520510.3748/wjg.v23.i28.5196 28811714
    [Google Scholar]
  103. KatoK. IwamaH. YamashitaT. The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo: Study of the microRNAs associated with the antitumor effect of metformin.Oncol. Rep.20163531582159210.3892/or.2015.4496 26708419
    [Google Scholar]
  104. MussinN. OhS.C. LeeK.W. Sirolimus and metformin synergistically inhibits colon cancer in vitro and in vivo.J. Korean Med. Sci.20173291385139510.3346/jkms.2017.32.9.1385 28776332
    [Google Scholar]
  105. YousefM. TsianiE. Metformin in lung cancer: Review of in vitro and in vivo animal studies.Cancers2017954510.3390/cancers9050045 28481268
    [Google Scholar]
  106. WangC. ZhangT. LiaoQ. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation.Protein Cell202112212814410.1007/s13238‑020‑00760‑4 32737864
    [Google Scholar]
  107. MouhieddineT.H. NokkariA. ItaniM.M. Metformin and ara-a effectively suppress brain cancer by targeting cancer stem/] progenitor cells.Front. Neurosci.2015944210.3389/fnins.2015.00442 26635517
    [Google Scholar]
  108. XiaoY. WangS. ZongQ. YinZ. Co-delivery of metformin and paclitaxel via folate-modified pH-sensitive micelles for enhanced anti-tumor efficacy.AAPS PharmSciTech20181952395240610.1208/s12249‑018‑1070‑8 29869309
    [Google Scholar]
  109. Al HassanM. FakhouryI. El MasriZ. Metformin treatment inhibits motility and invasion of glioblastoma cancer cells.Anal. Cell. Pathol. (Amst.)201820181910.1155/2018/5917470 30046513
    [Google Scholar]
  110. LeidgensV. ProskeJ. RauerL. Stattic and metformin inhibit brain tumor initiating cells by reducing STAT3-phosphorylation.Oncotarget2017858250826310.18632/oncotarget.14159 28030813
    [Google Scholar]
  111. SorayaH. SaniN.A. JabbariN. RezaieJ. Metformin increases exosome biogenesis and secretion in U87 MG human glioblastoma cells: A possible mechanism of therapeutic resistance.Arch. Med. Res.202152215116210.1016/j.arcmed.2020.10.007 33059952
    [Google Scholar]
  112. SongthaveesinC. Sa-nongdejW. LimboonreungT. ChongthammakunS. Combination of metformin and 9-cis retinoic acid increases apoptosis in C6 glioma stem-like cells.Heliyon201845e0063810.1016/j.heliyon.2018.e00638 29872770
    [Google Scholar]
  113. BinlatehT. ReudhabibadhR. PrommeenateP. HutamekalinP. Investigation of mechanisms underlying the inhibitory effects of metformin against proliferation and growth of neuroblastoma SH-SY5Y cells.Toxicol. In Vitro20228310541010.1016/j.tiv.2022.105410 35675846
    [Google Scholar]
  114. GaoS. JiangJ. LiP. Attenuating tumour angiogenesis: A preventive role of metformin against breast cancer.BioMed Res. Int.201520151610.1155/2015/592523 25883966
    [Google Scholar]
  115. YangY. JinG. LiuH. Metformin inhibits esophageal squamous cell carcinoma-induced angiogenesis by suppressing JAK/] STAT3 signaling pathway.Oncotarget2017843746737468710.18632/oncotarget.20341 29088816
    [Google Scholar]
  116. ZhaoW. ZhangX. LiuJ. SunB. TangH. ZhangH. miR-27a-mediated antiproliferative effects of metformin on the breast cancer cell line MCF-7.Oncol. Rep.20163663691369910.3892/or.2016.5199 27779715
    [Google Scholar]
  117. SharmaA. BandyopadhayayaS. ChowdhuryK. Metformin exhibited anticancer activity by lowering cellular cholesterol content in breast cancer cells.PLoS One2019141e020943510.1371/journal.pone.0209435 30625181
    [Google Scholar]
  118. ParzychK.R. KlionskyD.J. An overview of autophagy: Morphology, mechanism, and regulation.Antioxid. Redox Signal.20142046047310.1089/ars.2013.5371
    [Google Scholar]
  119. FanC. WangY. LiuZ. Metformin exerts anticancer effects through the inhibition of the Sonic hedgehog signaling pathway in breast cancer.Int. J. Mol. Med.201536120421410.3892/ijmm.2015.2217 25999130
    [Google Scholar]
  120. HakimeeH. HutamekalinP. TanasawetS. ChonpathompikunlertP. TipmaneeV. SukketsiriW. Metformin inhibit cervical cancer migration by suppressing the FAK/Akt signaling pathway.Asian Pac. J. Cancer Prev.201920123539354510.31557/APJCP.2019.20.12.3539 31870092
    [Google Scholar]
  121. KimM.Y. KimY.S. KimM. Metformin inhibits cervical cancer cell proliferation via decreased AMPK O-GlcNAcylation.Anim. Cells Syst.201923430230910.1080/19768354.2019.1614092 31489252
    [Google Scholar]
  122. YudhaniR.D. AstutiI. MustofaM. IndartoD. MuthmainahM. Metformin modulates cyclin D1 and P53 expression to inhibit cell proliferation and to induce apoptosis in cervical cancer cell lines.Asian Pac. J. Cancer Prev.20192061667167310.31557/APJCP.2019.20.6.1667 31244286
    [Google Scholar]
  123. ChenY.H. WuJ.X. YangS.F. ChenM.L. ChenT.H. HsiaoY.H. Metformin potentiates the anticancer effect of everolimus on cervical cancer in vitro and in vivo.Cancers20211318461210.3390/cancers13184612 34572837
    [Google Scholar]
  124. XiaC. LiangS. HeZ. ZhuX. ChenR. ChenJ. Metformin, a first-line drug for type 2 diabetes mellitus, disrupts the MALAT1/miR-142-3p sponge to decrease invasion and migration in cervical cancer cells.Eur. J. Pharmacol.2018830596710.1016/j.ejphar.2018.04.027 29704494
    [Google Scholar]
  125. DallaglioK. BrunoA. CantelmoA.R. Paradoxic effects of metformin on endothelial cells and angiogenesis.Carcinogenesis20143551055106610.1093/carcin/bgu001 24419232
    [Google Scholar]
  126. SenaP. ManciniS. BenincasaM. MarianiF. PalumboC. RoncucciL. Metformin induces apoptosis and alters cellular responses to oxidative stress in Ht29 colon cancer cells: Preliminary findings.Int. J. Mol. Sci.2018195147810.3390/ijms19051478 29772687
    [Google Scholar]
  127. WangJ.C. LiG.Y. WangB. Metformin inhibits metastatic breast cancer progression and improves chemosensitivity by inducing vessel normalization via PDGF-B downregulation.J. Exp. Clin. Cancer Res.201938123510.1186/s13046‑019‑1211‑2 31164151
    [Google Scholar]
  128. JeongY.K. KimM.S. LeeJ.Y. KimE.H. HaH. Metformin radiosensitizes p53-deficient colorectal cancer cells through induction of G2/M arrest and inhibition of DNA repair proteins.PLoS One20151011e014359610.1371/journal.pone.0143596 26599019
    [Google Scholar]
  129. SaberM.M. GalalM.A. Ain-ShokaA.A. ShoumanS.A. Combination of metformin and 5-aminosalicylic acid cooperates to decrease proliferation and induce apoptosis in colorectal cancer cell lines.BMC Cancer201616112610.1186/s12885‑016‑2157‑9 26896068
    [Google Scholar]
  130. NguyenT.T. UngT.T. LiS. Metformin inhibits lithocholic acid-induced interleukin 8 upregulation in colorectal cancer cells by suppressing ROS production and NF-kB activity.Sci. Rep.201991200310.1038/s41598‑019‑38778‑2 30765814
    [Google Scholar]
  131. JiaY. MaZ. LiuX. Metformin prevents DMH ‐induced colorectal cancer in diabetic rats by reversing the warburg effect.Cancer Med.20154111730174110.1002/cam4.521 26376762
    [Google Scholar]
  132. GagnièreJ. RaischJ. VeziantJ. Gut microbiota imbalance and colorectal cancer.World J. Gastroenterol.201622250151810.3748/wjg.v22.i2.501 26811603
    [Google Scholar]
  133. HendriksD. ChoiG. de BruynM. WiersmaV.R. BremerE. Antibody-based cancer therapy: Successful agents and novel approaches.Int. Rev. Cell Mol. Biol.201733128938310.1016/bs.ircmb.2016.10.002 28325214
    [Google Scholar]
  134. LiH. ChenY. HuL. Will metformin use lead to a decreased risk of thyroid cancer? A systematic review and meta-analyses.Eur. J. Med. Res.202328139210.1186/s40001‑023‑01287‑0 37773165
    [Google Scholar]
  135. YueW. ZhengX. LinY. Metformin combined with aspirin significantly inhibit pancreatic cancer cell growth in vitro and in vivo by suppressing anti-apoptotic proteins Mcl-1 and Bcl-2.Oncotarget2015625212082122410.18632/oncotarget.4126 26056043
    [Google Scholar]
  136. ZouY.F. XieC.W. YangS.X. XiongJ.P. AMPK activators suppress breast cancer cell growth by inhibiting DVL3-facilitated Wnt/β-catenin signaling pathway activity.Mol. Med. Rep.201715289990710.3892/mmr.2016.6094 28035400
    [Google Scholar]
  137. LeonelC. BorinT.F. de Carvalho FerreiraL. Inhibition of epithelial-mesenchymal transition and metastasis by combined TGF beta knockdown and metformin treatment in a canine mammary cancer xenograft model.J. Mammary Gland Biol. Neoplasia2017221274110.1007/s10911‑016‑9370‑7 28078601
    [Google Scholar]
  138. ChiangC.F. ChaoT.T. SuY.F. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling.Oncotarget2017813207062071810.18632/oncotarget.14982 28157701
    [Google Scholar]
  139. ShiP LiuW Tala Metformin suppresses triple-negative breast cancer stem cells by targeting KLF5 for degradation.Cell Discov.2017311701010.1038/celldisc.2017.10 28480051
    [Google Scholar]
  140. ZhangJ. LiG. ChenY. Metformin inhibits tumorigenesis and tumor growth of breast cancer cells by upregulating miR-200c but downregulating AKT2 expression.J. Cancer20178101849186410.7150/jca.19858 28819383
    [Google Scholar]
  141. FengF. ZhangJ. FanX. Downregulation of Rab27A contributes to metformin-induced suppression of breast cancer stem cells.Oncol. Lett.20171432947295310.3892/ol.2017.6542 28928832
    [Google Scholar]
  142. DaviesG. LobanovaL. DawickiW. Metformin inhibits the development, and promotes the resensitization, of treatment-resistant breast cancer.PLoS One20171212e018719110.1371/journal.pone.0187191 29211738
    [Google Scholar]
  143. TanX.L. BhattacharyyaK.K. DuttaS.K. Metformin suppresses pancreatic tumor growth with inhibition of NFκB/STAT3 inflammatory signaling.Pancreas201544463664710.1097/MPA.0000000000000308 25875801
    [Google Scholar]
  144. QianW. LiJ. ChenK. Metformin suppresses tumor angiogenesis and enhances the chemosensitivity of gemcitabine in a genetically engineered mouse model of pancreatic cancer.Life Sci.201820825326110.1016/j.lfs.2018.07.046 30053447
    [Google Scholar]
  145. LiuF. YanL. WangZ. Metformin therapy and risk of colorectal adenomas and colorectal cancer in type 2 diabetes mellitus patients: A systematic review and meta-analysis.Oncotarget201789160171602610.18632/oncotarget.13762 27926481
    [Google Scholar]
  146. StorozhukY. HopmansS.N. SanliT. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK.Br. J. Cancer2013108102021203210.1038/bjc.2013.187 23632475
    [Google Scholar]
  147. Baccili Cury MegidT. FarooqA.R. WangX. ElimovaE. Gastric cancer: Molecular mechanisms, novel targets, and immunotherapies: From bench to clinical therapeutics.Cancers20231520507510.3390/cancers15205075 37894443
    [Google Scholar]
  148. ChenG. FengW. ZhangS. Metformin inhibits gastric cancer via the inhibition of HIF1α/PKM2 signaling.Am. J. Cancer Res.20155414231434 26101707
    [Google Scholar]
  149. KatoK. GongJ. IwamaH. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo.Mol. Cancer Ther.201211354956010.1158/1535‑7163.MCT‑11‑0594 22222629
    [Google Scholar]
  150. SekinoN. KanoM. MatsumotoY. The antitumor effects of metformin on gastric cancer in vitro and on peritoneal metastasis.Anticancer Res.201838116263626910.21873/anticanres.12982 30396946
    [Google Scholar]
  151. HanifF. MuzaffarK. PerveenK. MalhiS.M. SimjeeShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment.Asian Pac. J. Cancer Prev.201718139 28239999
    [Google Scholar]
  152. FerlaR. HaspingerE. SurmaczE. Metformin inhibits leptin-induced growth and migration of glioblastoma cells.Oncol. Lett.2012451077108110.3892/ol.2012.843 23162655
    [Google Scholar]
  153. WürthR. PattarozziA. GattiM. Metformin selectively affects human glioblastoma tumor-initiating cell viability.Cell Cycle201312114515610.4161/cc.23050 23255107
    [Google Scholar]
  154. UcbekA. ÖzünalZ.G. UzunÖ. GepdiremenA. Effect of metformin on the human T98G glioblastoma multiforme cell line.Exp. Ther. Med.2014751285129010.3892/etm.2014.1597 24940426
    [Google Scholar]
  155. SesenJ. DahanP. ScotlandS.J. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response.PLoS One2015104e012372110.1371/journal.pone.0123721 25867026
    [Google Scholar]
  156. SeligerC. MeyerA.L. RennerK. Metformin inhibits proliferation and migration of glioblastoma cells independently of TGF-β2.Cell Cycle201615131755176610.1080/15384101.2016.1186316 27163626
    [Google Scholar]
  157. SongY. ChenY. LiY. Metformin inhibits TGF-β1-induced epithelial-to-mesenchymal transition-like process and stem-like properties in GBM via AKT/mTOR/ZEB1 pathway.Oncotarget2018967023703510.18632/oncotarget.23317 29467947
    [Google Scholar]
  158. WoodardJ. PlataniasL.C. AMP-activated kinase (AMPK)-generated signals in malignant melanoma cell growth and survival.Biochem. Biophys. Res. Commun.2010398113513910.1016/j.bbrc.2010.06.052 20599746
    [Google Scholar]
  159. JanjetovicK. Harhaji-TrajkovicL. Misirkic-MarjanovicM. In vitro and in vivo anti-melanoma action of metformin.Eur. J. Pharmacol.2011668337338210.1016/j.ejphar.2011.07.004 21806981
    [Google Scholar]
  160. TomicT. BottonT. CerezoM. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms.Cell Death Dis.201129e199e9910.1038/cddis.2011.86 21881601
    [Google Scholar]
  161. CerezoM. TichetM. AbbeP. Metformin blocks melanoma invasion and metastasis development in AMPK/p53-dependent manner.Mol. Cancer Ther.20131281605161510.1158/1535‑7163.MCT‑12‑1226‑T 23741061
    [Google Scholar]
  162. LehraikiA. AbbeP. CerezoM. Inhibition of melanogenesis by the antidiabetic metformin.J. Invest. Dermatol.2014134102589259710.1038/jid.2014.202 24756109
    [Google Scholar]
  163. LiangG. DingM. LuH. Metformin upregulates E-cadherin and inhibits B16F10 cell motility, invasion and migration.Oncol. Lett.20151031527153210.3892/ol.2015.3475 26622703
    [Google Scholar]
  164. de Souza NetoF.P. BernardesS.S. MarinelloP.C. Metformin: Oxidative and proliferative parameters in-vitro and in-vivo models of murine melanoma.Melanoma Res.201727653654410.1097/CMR.0000000000000391 28877050
    [Google Scholar]
  165. TsengH.W. LiS.C. TsaiK.W. Metformin treatment suppresses melanoma cell growth and motility through modulation of microRNA expression.Cancers201911220910.3390/cancers11020209 30754729
    [Google Scholar]
  166. TianY. ZhaoL. Metformin induces apoptosis of melanoma B16 cells via PI3K/Akt/mTOR signaling pathways.JBUON202025420662070 33099954
    [Google Scholar]
  167. AlanaziF.E. As SobeaiH.M. AlhazzaniK. Metformin attenuates V-domain Ig suppressor of T-cell activation through the aryl hydrocarbon receptor pathway in Melanoma: In Vivo and in vitro studies.Saudi Pharm. J.202230213814910.1016/j.jsps.2021.12.014 35528855
    [Google Scholar]
  168. Hajimoradi JavarsianiM. SajedianfardJ. Haghjooy JavanmardS. The effects of metformin on the hippo pathway in the proliferation of melanoma cancer cells: A preclinical study.Arch. Physiol. Biochem.202212851150115510.1080/13813455.2020.1760304 32407182
    [Google Scholar]
  169. MartinM.J. HaywardR. VirosA. MaraisR. Metformin accelerates the growth of BRAF V600E-driven melanoma by upregulating VEGF-A.Cancer Discov.20122434435510.1158/2159‑8290.CD‑11‑0280 22576211
    [Google Scholar]
  170. SinghS.P. MadkeT. ChandP. Global epidemiology of hepatocellular carcinoma.J. Clin. Exp. Hepatol.202515210244610.1016/j.jceh.2024.102446 39659901
    [Google Scholar]
  171. AnwanwanD. SinghS.K. SinghS. SaikamV. SinghR. Challenges in liver cancer and possible treatment approaches.Biochim. Biophys. Acta Rev. Cancer20201873118831410.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  172. CaiX. HuX. CaiB. Metformin suppresses hepatocellular carcinoma cell growth through induction of cell cycle G1/G0 phase arrest and p21CIP and p27KIP expression and downregulation of cyclin D1 in vitro and in vivo.Oncol. Rep.20133052449245710.3892/or.2013.2718 24008375
    [Google Scholar]
  173. MiyoshiH. KatoK. IwamaH. Effect of the anti-diabetic drug metformin in hepatocellular carcinoma in vitro and in vivo.Int. J. Oncol.201445132233210.3892/ijo.2014.2419 24806290
    [Google Scholar]
  174. LuoZ. ZhuT. LuoW. Metformin induces apoptotic cytotoxicity depending on AMPK/PKA/GSK-3β-mediated c-FLIPL degradation in non-small cell lung cancer.Cancer Manag. Res.20191168168910.2147/CMAR.S178688 30666163
    [Google Scholar]
  175. LuoZ. ChenW. WuW. Metformin promotes survivin degradation through AMPK/PKA/GSK‐3β‐axis in non-small cell lung cancer.J. Cell. Biochem.20191207118901189910.1002/jcb.28470 30793366
    [Google Scholar]
  176. ZhouX. LiuS. LinX. Metformin inhibit lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A.Med. Sci. Monit.20192583684610.12659/MSM.912059 30693913
    [Google Scholar]
  177. JinD. GuoJ. WuY. Metformin-repressed miR-381-YAP-snail axis activity disrupts NSCLC growth and metastasis.J. Exp. Clin. Cancer Res.2020391610.1186/s13046‑019‑1503‑6 31906986
    [Google Scholar]
  178. DongJ. PengH. YangX. Metformin mediated microRNA-7 upregulation inhibits growth, migration, and invasion of non-small cell lung cancer A549 cells.Anticancer Drugs202031434535210.1097/CAD.0000000000000875 31789625
    [Google Scholar]
  179. LiL. WangT. HuM. ZhangY. ChenH. XuL. Metformin overcomes acquired resistance to EGFR TKIs in EGFR-mutant lung cancer via AMPK/ERK/NF-κB signaling pathway.Front. Oncol.202010160510.3389/fonc.2020.01605 33014814
    [Google Scholar]
  180. BlandA.R. ShresthaN. BowerR.L. RosengrenR.J. AshtonJ.C. The effect of metformin in EML4-ALK+ lung cancer alone and in combination with crizotinib in cell and rodent models.Biochem. Pharmacol.202118311434510.1016/j.bcp.2020.114345 33227290
    [Google Scholar]
  181. KimD. KimY. LeeB.B. Metformin reduces histone H3K4me3 at the promoter regions of positive cell cycle regulatory genes in lung cancer cells.Cancers202113473910.3390/cancers13040739 33578894
    [Google Scholar]
  182. LeeB.B. KimD. KimY. HanJ. ShimY.M. KimD.H. Metformin regulates expression of DNA methyltransferases through the miR-148/-152 family in non-small lung cancer cells.Clin. Epigenetics20231514810.1186/s13148‑023‑01466‑0 36959680
    [Google Scholar]
  183. KunduP. SinghD. SinghA. SahooS.K. Cancer nanotheranostics: A nanomedicinal approach for cancer therapy and diagnosis.Anticancer. Agents Med. Chem.202020111288129910.2174/1871520619666190820145930 31429694
    [Google Scholar]
  184. MallickS. ChoiJ.S. Liposomes: Versatile and biocompatible nanovesicles for efficient biomolecules delivery.J. Nanosci. Nanotechnol.201414175576510.1166/jnn.2014.9080 24730295
    [Google Scholar]
  185. ZhangL. GuF.X. ChanJ.M. WangA.Z. LangerR.S. FarokhzadO.C. Nanoparticles in medicine: Therapeutic applications and developments.Clin. Pharmacol. Ther.200883576176910.1038/sj.clpt.6100400 17957183
    [Google Scholar]
  186. Kanigur SultuybekG. SoydasT. YenmisG. NF ‐κB as the mediator of metformin’s effect on ageing and ageing‐related diseases.Clin. Exp. Pharmacol. Physiol.201946541342210.1111/1440‑1681.13073 30754072
    [Google Scholar]
  187. ChenY-H. YangS-F. YangC-K. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells.Mol. Med. Rep.202123123 33236135
    [Google Scholar]
  188. XiaC. LiuC. HeZ. CaiY. ChenJ. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression.J. Exp. Clin. Cancer Res.202039112710.1186/s13046‑020‑01627‑6 32631421
    [Google Scholar]
  189. SabitH. Abdel-GhanyS.E. M. SaidO.A. MostafaM.A. El-ZawahryM. Metformin reshapes the methylation profile in breast and colorectal cancer cells.Asian Pac. J. Cancer Prev.2018191029912999 30371994
    [Google Scholar]
  190. HuangD. HeX. ZouJ. Negative regulation of Bmi-1 by AMPK and implication in cancer progression.Oncotarget2016756188620010.18632/oncotarget.6748 26717043
    [Google Scholar]
  191. LiL. HuangW. LiK. Metformin attenuates gefitinib-induced exacerbation of pulmonary fibrosis by inhibition of TGF-β signaling pathway.Oncotarget2015641436054361910.18632/oncotarget.6186 26497205
    [Google Scholar]
  192. WangJ. GaoQ. WangD. WangZ. HuC. Metformin inhibits growth of lung adenocarcinoma cells by inducing apoptosis via the mitochondria-mediated pathway.Oncol. Lett.20151031343134910.3892/ol.2015.3450 26622674
    [Google Scholar]
  193. WangY. LiuG. TongD. Metformin represses androgen‐dependent and androgen‐independent prostate cancers by targeting androgen receptor.Prostate201575111187119610.1002/pros.23000 25894097
    [Google Scholar]
  194. ChenX. LiC. HeT. Metformin inhibits prostate cancer cell proliferation, migration, and tumor growth through upregulation of PEDF expression.Cancer Biol. Ther.201617550751410.1080/15384047.2016.1156273 26987032
    [Google Scholar]
  195. MoldashevaA. ZhakupovaA. AljofanM. Antiproliferative Mechanisms of metformin in breast cancer: A systematic review of the literature.Int. J. Mol. Sci.202426124710.3390/ijms26010247 39796103
    [Google Scholar]
  196. ShiridokhtF. DadashiH. VandghanooniS. EskandaniM. FarajollahiA. Metformin-loaded chitosan nanoparticles augment silver nanoparticle-induced radiosensitization in breast cancer cells during radiation therapy.Colloids Surf. B Biointerfaces202524511422010.1016/j.colsurfb.2024.114220 39270400
    [Google Scholar]
  197. FujimoriT. KatoK. FujiharaS. Antitumor effect of metformin on cholangiocarcinoma: In vitro and in vivo studies.Oncol. Rep.20153462987299610.3892/or.2015.4284 26398221
    [Google Scholar]
  198. JoseP. SundarK. AnjaliC.H. RavindranA. Metformin-loaded BSA nanoparticles in cancer therapy: A new perspective for an old antidiabetic drug.Cell Biochem. Biophys.201571262763610.1007/s12013‑014‑0242‑8 25209744
    [Google Scholar]
  199. HanH. HouY. ChenX. Metformin-induced stromal depletion to enhance the penetration of gemcitabine-loaded magnetic nanoparticles for pancreatic cancer targeted therapy.J. Am. Chem. Soc.2020142104944495410.1021/jacs.0c00650 32069041
    [Google Scholar]
  200. Salmani JavanE. LotfiF. Jafari-GharabaghlouD. MousazadehH. DadashpourM. ZarghamiN. Development of a magnetic nanostructure for co-delivery of metformin and silibinin on growth of lung cancer cells: Possible action through leptin gene and its receptor regulation.Asian Pac. J. Cancer Prev.202223251952710.31557/APJCP.2022.23.2.519 35225464
    [Google Scholar]
  201. MorgilloF. SassoF.C. Della CorteC.M. Synergistic effects of metformin treatment in combination with gefitinib, a selective EGFR tyrosine kinase inhibitor, in LKB1 wild-type NSCLC cell lines.Clin. Cancer Res.201319133508351910.1158/1078‑0432.CCR‑12‑2777 23695170
    [Google Scholar]
  202. SamadzadehS. MousazadehH. GhareghomiS. DadashpourM. BabazadehM. ZarghamiN. In vitro anticancer efficacy of Metformin-loaded PLGA nanofibers towards the post-surgical therapy of lung cancer.J. Drug Deliv. Sci. Technol.20216110231810.1016/j.jddst.2020.102318
    [Google Scholar]
  203. JiangX. MaN. WangD. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma.Oncotarget2015653178319410.18632/oncotarget.3063 25605008
    [Google Scholar]
  204. ChiyoT. KatoK. IwamaH. Therapeutic potential of the antidiabetic drug metformin in small bowel adenocarcinoma.Int. J. Oncol.20175062145215310.3892/ijo.2017.3971 28440424
    [Google Scholar]
  205. WangF. XuJ. LiuH. LiuZ. XiaF. Metformin induces apoptosis by microRNA-26a-mediated downregulation of myeloid cell leukaemia-1 in human oral cancer cells.Mol. Med. Rep.20161364671467610.3892/mmr.2016.5143 27082123
    [Google Scholar]
  206. DailahH.G. HommdiA.A. KoririM.D. AlgathlanE.M. MohanS. Potential role of immunotherapy and targeted therapy in the treatment of cancer: A contemporary nursing practice.Heliyon2024102e2455910.1016/j.heliyon.2024.e24559 38298714
    [Google Scholar]
  207. WangM. YuF. ZhangY. Present and future of cancer nano-immunotherapy: Opportunities, obstacles and challenges.Mol. Cancer20252412610.1186/s12943‑024‑02214‑5 39827147
    [Google Scholar]
  208. García-DomínguezD.J. López-EnríquezS. AlbaG. Cancer nano-immunotherapy: The novel and promising weapon to fight cancer.Int. J. Mol. Sci.2024252119510.3390/ijms25021195 38256268
    [Google Scholar]
  209. TanigawaK. RedmondW.L. Current landscape and future prospects of interleukin-2 receptor (IL-2R) agonists in cancer immunotherapy.OncoImmunology2025141245265410.1080/2162402X.2025.2452654 39812092
    [Google Scholar]
  210. RemonJ. PardoN. Martinez-MartíA. Immune-checkpoint inhibition in first-line treatment of advanced non-small cell lung cancer patients: Current status and future approaches.Lung Cancer2017106707510.1016/j.lungcan.2017.02.002 28285697
    [Google Scholar]
  211. TrapaniJ.A. DarcyP.K. Immunotherapy of cancer.Aust. Fam. Physician2017464194199 28376571
    [Google Scholar]
  212. KourelisT.V. SiegelR.D. Metformin and cancer: New applications for an old drug.Med. Oncol.20122921314132710.1007/s12032‑011‑9846‑7 21301998
    [Google Scholar]
  213. KenslerT.W. SpiraA. GarberJ.E. Transforming cancer prevention through precision medicine and immune-oncology.Cancer Prev. Res. (Phila.)20169121010.1158/1940‑6207.CAPR‑15‑0406 26744449
    [Google Scholar]
  214. SinghP.P. ShiQ. FosterN.R. Relationship between metformin use and recurrence and survival in patients with resected stage III colon cancer receiving adjuvant chemotherapy: Results from North Central Cancer Treatment Group N0147 (Alliance).Oncologist201621121509152110.1634/theoncologist.2016‑0153 27881709
    [Google Scholar]
  215. CifarelliV. LashingerL.M. DevlinK.L. Metformin and rapamycin reduce pancreatic cancer growth in obese prediabetic mice by distinct microRNA-regulated mechanisms.Diabetes20156451632164210.2337/db14‑1132 25576058
    [Google Scholar]
  216. LiuD. YangF. XiongF. GuN. The smart drug delivery system and its clinical potential.Theranostics2016691306132310.7150/thno.14858 27375781
    [Google Scholar]
  217. ChenK. QianW. JiangZ. Metformin suppresses cancer initiation and progression in genetic mouse models of pancreatic cancer.Mol. Cancer201716113110.1186/s12943‑017‑0701‑0 28738823
    [Google Scholar]
  218. Vázquez-IbarraK. Sánchez LópezJ. Pineda RazoT. Metformin in combination with chemotherapy increases apoptosis in gastric cancer cells and counteracts senescence induced by chemotherapy.Oncol. Lett.202428445710.3892/ol.2024.14590 39114572
    [Google Scholar]
  219. QuinnB.J. DallosM. KitagawaH. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling.Cancer Prev. Res. (Phila.)20136880181010.1158/1940‑6207.CAPR‑13‑0058‑T 23771523
    [Google Scholar]
  220. MaY. GuoF.C. WangW. ShiH.S. LiD. WangY.S. K-ras gene mutation as a predictor of cancer cell responsiveness to metformin.Mol. Med. Rep.20138376376810.3892/mmr.2013.1596 23877793
    [Google Scholar]
  221. ZhaoZ. ChengX. WangY. Metformin inhibits the IL-6-induced epithelial-mesenchymal transition and lung adenocarcinoma growth and metastasis.PLoS One201494e9588410.1371/journal.pone.0095884 24789104
    [Google Scholar]
  222. LiL. HanR. XiaoH. Metformin sensitizes EGFR-TKI-resistant human lung cancer cells in vitro and in vivo through inhibition of IL-6 signaling and EMT reversal.Clin. Cancer Res.201420102714272610.1158/1078‑0432.CCR‑13‑2613 24644001
    [Google Scholar]
  223. LinJ. GillA. ZahmS.H. Metformin use and survival after non‐small cell lung cancer: A cohort study in the US Military health system.Int. J. Cancer2017141225426310.1002/ijc.30724 28380674
    [Google Scholar]
  224. GroenendijkF.H. MellemaW.W. van der BurgE. Sorafenib synergizes with metformin in NSCLC through AMPK pathway activation.Int. J. Cancer201513661434144410.1002/ijc.29113 25080865
    [Google Scholar]
  225. Della CorteC.M. CiaramellaV. MauroC.D. Metformin increases antitumor activity of MEK inhibitors through GLI1 downregulation in LKB1 positive human NSCLC cancer cells.Oncotarget2016744265427810.18632/oncotarget.6559 26673006
    [Google Scholar]
  226. JalaliF. FakhariF. SepehrA. ZafariJ. SarajarBO. SarihiP. JafarzadehE. Synergistic anticancer effects of doxorubicin and metformin combination therapy: A systematic review.Transl. Oncol.20244510194610.1016/j.tranon.2024.101946
    [Google Scholar]
  227. KimT.S. LeeM. ParkM. Metformin and dichloroacetate suppress proliferation of liver cancer cells by inhibiting mTOR complex 1.Int. J. Mol. Sci.202122181002710.3390/ijms221810027 34576192
    [Google Scholar]
  228. ZhangH.H. ZhangY. ChengY.N. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo.Mol. Carcinog.2018571445610.1002/mc.22718 28833603
    [Google Scholar]
  229. KaoH.W. TsaiK.W. LinW. Synergistic effect of metformin and lansoprazole against gastric cancer through growth inhibition.Int. J. Med. Sci.202320671772410.7150/ijms.82407 37213670
    [Google Scholar]
  230. HeY. TaiS. DengM. Metformin and 4SC‐202 synergistically promote intrinsic cell apoptosis by accelerating ΔNp63 ubiquitination and degradation in oral squamous cell carcinoma.Cancer Med.2019873479349010.1002/cam4.2206 31025540
    [Google Scholar]
  231. BabcookM.A. SramkoskiR.M. FujiokaH. Combination simvastatin and metformin induces G1-phase cell cycle arrest and Ripk1- and Ripk3-dependent necrosis in C4-2B osseous metastatic castration-resistant prostate cancer cells.Cell Death Dis.2014511e1536e3610.1038/cddis.2014.500 25412314
    [Google Scholar]
  232. ChenY. LiuL. LiM. Nanoparticle-enabled in-situ drug potency activation for enhanced tumor-specific therapy.Eur. J. Pharm. Sci.202520510698910.1016/j.ejps.2024.106989 39675436
    [Google Scholar]
  233. HervieuL. GrooA.C. BellienJ. GuerrotD. Malzert-FréonA. Glucuronidation of orally administered drugs and the value of nanocarriers in strategies for its overcome.Pharmacol. Ther.202526610877310.1016/j.pharmthera.2024.108773 39647710
    [Google Scholar]
  234. SrinivasaraoD.A. ShahS. FamtaP. Unravelling the role of tumor microenvironment responsive nanobiomaterials in spatiotemporal controlled drug delivery for lung cancer therapy.Drug Deliv. Transl. Res.202515240743510.1007/s13346‑024‑01673‑z 39037533
    [Google Scholar]
  235. YadavK. Ebenezer GnanakaniS.P. Kumar SahuK. Unleashing the potential of natural protein based nanoparticles for the delivery of therapeutic nucleic Acid: A comprehensive review.Int. J. Pharm.202566912504910.1016/j.ijpharm.2024.125049 39674384
    [Google Scholar]
  236. BeigiA. NaghibS.M. MatiniA. TajabadiM. MozafariM.R. Lipid-based nanocarriers for targeted gene delivery in lung cancer therapy: Exploring a novel therapeutic paradigm.Curr. Gene Ther.20252529211210.2174/0115665232292768240503050508 38778601
    [Google Scholar]
  237. DasS. SamantaA. MondalS. RoyD. NayakA.K. Design and release kinetics of liposomes containing abiraterone acetate for treatment of prostate cancer.Sens. Int.2021210007710.1016/j.sintl.2020.100077
    [Google Scholar]
  238. WangS. WangY. JinK. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics.Expert Opin. Drug Deliv.202219896598410.1080/17425247.2022.2108786 35917435
    [Google Scholar]
  239. PanigrahiB.K. NayakA.K. Carbon nanotubes: An emerging drug delivery carrier in cancer therapeutics.Curr. Drug Deliv.202017755857610.2174/1567201817999200508092821 32384030
    [Google Scholar]
  240. PalD. NayakA.K. Nanotechnology for targeted delivery in cancer therapeutics.Int. J. Pharm. Sci. Rev. Res.2010117
    [Google Scholar]
  241. AnselmoA.C. MitragotriS. Nanoparticles in the clinic.Bioeng. Transl. Med.201611102910.1002/btm2.10003 29313004
    [Google Scholar]
  242. DilnawazF. AcharyaS. SahooS.K. Recent trends of nanomedicinal approaches in clinics.Int. J. Pharm.20185381-226327810.1016/j.ijpharm.2018.01.016 29339248
    [Google Scholar]
  243. ChauhanA. KamalR. BhatiaR. SinghT.G. AwasthiA. From bench to bedside: ROS-responsive nanocarriers in cancer therapy.AAPS PharmSciTech20242611010.1208/s12249‑024‑03011‑5 39668268
    [Google Scholar]
  244. DongsarT.T. DongsarT.S. GuptaG. KesharwaniP. Innovative strategies in cancer treatment: Harnessing cuproptosis and nanotechnology for targeted therapy.Drug Discov. Today2024291010410410.1016/j.drudis.2024.104104 39029867
    [Google Scholar]
  245. BoboD. RobinsonK.J. IslamJ. ThurechtK.J. CorrieS.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date.Pharm. Res.201633102373238710.1007/s11095‑016‑1958‑5 27299311
    [Google Scholar]
  246. BahramiB. Hojjat-FarsangiM. MohammadiH. AnvariE. GhalamfarsaG. YousefiM. Nanoparticles and targeted drug delivery in cancer therapy.Immunol. Lett.2017190648310.1016/j.imlet.2017.07.015
    [Google Scholar]
  247. KaushikN. BorkarS.B. NandanwarS.K. PandaP.K. ChoiE.H. KaushikN.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms.J. Nanobiotechnology202220115210.1186/s12951‑022‑01364‑2 35331246
    [Google Scholar]
  248. ZhouJ. KeY. LeiX. Meta-analysis: The efficacy of metformin and other anti-hyperglycemic agents in prolonging the survival of hepatocellular carcinoma patients with type 2 diabetes.Ann. Hepatol.202019332032810.1016/j.aohep.2019.11.008 31980358
    [Google Scholar]
  249. ChenQ. LiuG. LiuS. Remodeling the tumor microenvironment with emerging nanotherapeutics.Trends Pharmacol. Sci.2018391597410.1016/j.tips.2017.10.009 29153879
    [Google Scholar]
  250. van der MeelR. SulheimE. ShiY. KiesslingF. MulderW.J.M. LammersT. Smart cancer nanomedicine.Nat. Nanotechnol.201914111007101710.1038/s41565‑019‑0567‑y 31695150
    [Google Scholar]
  251. ZhangM. ChenX. LiC. ShenX. Charge-reversal nanocarriers: An emerging paradigm for smart cancer nanomedicine.J. Control. Release2020319466210.1016/j.jconrel.2019.12.024 31846619
    [Google Scholar]
  252. MagdyM. AlmahallawiA. NassarN. ShoumanS. Pluronic based cubosomes enhance metformin cytotoxicity in colon cancer cell lines.Clin. Ther.2017398e2710.1016/j.clinthera.2017.05.082
    [Google Scholar]
  253. LeeJ.Y. ShinD.H. KimJ.S. Anticancer effect of metformin in herceptin-conjugated liposome for breast cancer.Pharmaceutics20191211110.3390/pharmaceutics12010011 31877620
    [Google Scholar]
  254. ShuklaS.K. KulkarniN.S. ChanA. Metformin-encapsulated liposome delivery system: an effective treatment approach against breast cancer.Pharmaceutics2019111155910.3390/pharmaceutics11110559 31661947
    [Google Scholar]
  255. OsamaH. SayedO.M. HusseinR.R.S. AbdelrahimM.A. ElberryA. Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer.J. Liposome Res.202030215016210.1080/08982104.2019.1610434 31039656
    [Google Scholar]
  256. ArafaK. ShammaR.N. El-GazayerlyO.N. El-SherbinyI.M. Facile development, characterization, and optimization of new metformin-loaded nanocarrier system for efficient colon cancer adjunct therapy.Drug Dev. Ind. Pharm.20184471158117010.1080/03639045.2018.1438463 29429370
    [Google Scholar]
  257. NuraniM. AkbariV. TaheriA. Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials.Carbohydr. Polym.201716532233310.1016/j.carbpol.2017.02.067 28363556
    [Google Scholar]
  258. KumarC.S. RajaM.D. SundarD.S. Gover AntonirajM. RuckmaniK. Hyaluronic acid co-functionalized gold nanoparticle complex for the targeted delivery of metformin in the treatment of liver cancer (HepG2 cells).Carbohydr. Polym.2015128637410.1016/j.carbpol.2015.04.010 26005140
    [Google Scholar]
  259. QianR.C. LvJ. LiH.W. LongY.T. Sugar‐coated nanobullet: Growth inhibition of cancer cells induced by metformin‐loaded glyconanoparticles.ChemMedChem201712221823182710.1002/cmdc.201700583 28967197
    [Google Scholar]
  260. AldeaM. FlorianI.S. PotaraM. SoritauO. Nagy-SimonT. KacsoG. Metformin delivery using chitosan-capped gold nanoparticles in glioblastoma cell lines.Rom. Neurosurg.201832223023910.2478/romneu‑2018‑0030
    [Google Scholar]
  261. JiangT. ChenL. HuangY. Metformin and docosahexaenoic acid hybrid micelles for premetastatic niche modulation and tumor metastasis suppression.Nano Lett.20191963548356210.1021/acs.nanolett.9b00495 31026397
    [Google Scholar]
  262. LuoC. MiaoL. ZhaoY. A novel cationic lipid with intrinsic antitumor activity to facilitate gene therapy of TRAIL DNA.Biomaterials201610223924810.1016/j.biomaterials.2016.06.030 27344367
    [Google Scholar]
  263. ShiK. ZhaoY. MiaoL. Dual functional lipomet mediates envelope-type nanoparticles to combinational oncogene silencing and tumor growth inhibition.Mol. Ther.20172571567157910.1016/j.ymthe.2017.02.008 28274796
    [Google Scholar]
  264. LuoC. SunB. WangC. Self-facilitated ROS-responsive nanoassembly of heterotypic dimer for synergistic chemo-photodynamic therapy.J. Control. Release2019302798910.1016/j.jconrel.2019.04.001 30946853
    [Google Scholar]
  265. PengM. DarkoK.O. TaoT. Combination of metformin with chemotherapeutic drugs via different molecular mechanisms.Cancer Treat. Rev.201754243310.1016/j.ctrv.2017.01.005 28161619
    [Google Scholar]
  266. Shafiei-IrannejadV. SamadiN. SalehiR. Reversion of multidrug resistance by co-encapsulation of doxorubicin and metformin in poly (lactide-co-glycolide)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles.Pharm. Res.201835611910.1007/s11095‑018‑2404‑7 29671072
    [Google Scholar]
  267. SunY. ZhaoD. WangG. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: Opportunities, challenges, and future development.Acta Pharm. Sin. B20201081382139610.1016/j.apsb.2020.01.004 32963938
    [Google Scholar]
  268. SongX. FengL. LiangC. GaoM. SongG. LiuZ. Liposomes co-loaded with metformin and chlorin e6 modulate tumor hypoxia during enhanced photodynamic therapy.Nano Res.20171041200121210.1007/s12274‑016‑1274‑8
    [Google Scholar]
  269. JavidfarS. Pilehvar-SoltanahmadiY. FarajzadehR. The inhibitory effects of nano-encapsulated metformin on growth and hTERT expression in breast cancer cells.J. Drug Deliv. Sci. Technol.201843192610.1016/j.jddst.2017.09.013
    [Google Scholar]
  270. DadashpourM. YaghoutrangM. ZarghamiM. BonabiE. ZarghamiN. Metformin-loaded nanostructured PLGA: A new strategy for enhancing efficacy of metformin in breast cancer treatment.EURAS J Health202021374810.17932/EJOH.2020.022/ejoh_v02i1003
    [Google Scholar]
  271. AmirsaadatS. Jafari-GharabaghlouD. AlijaniS. MousazadehH. DadashpourM. ZarghamiN. Metformin and Silibinin co-loaded PLGA-PEG nanoparticles for effective combination therapy against human breast cancer cells.J. Drug Deliv. Sci. Technol.20216110210710.1016/j.jddst.2020.102107
    [Google Scholar]
  272. DeA. KuppuswamyG. JaiswalA. Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation.Drug Dev. Ind. Pharm.201945111821183410.1080/03639045.2019.1665060 31486683
    [Google Scholar]
  273. Abd-RabouA.A. AbdelazizA.M. ShakerO.G. AyeldeenG. Metformin-loaded lecithin nanoparticles induce colorectal cancer cytotoxicity via epigenetic modulation of noncoding RNAs.Mol. Biol. Rep.202148106805682010.1007/s11033‑021‑06680‑8 34468912
    [Google Scholar]
  274. ChenC. YangL. PengY. ZhangW.J. YangX.X. ZhouW. Autophagic blockage by metformin-loaded PLGA nanoparticles causes cell cycle arrest of HepG2 cells.Nanomedicine (Lond.)2024191435810.2217/nnm‑2023‑0160 38197371
    [Google Scholar]
  275. EbrahimnejadP. RezaeiroshanA. BabaeiA. Hyaluronic acid-coated chitosan/gelatin nanoparticles as a new strategy for topical delivery of metformin in melanoma.BioMed Res. Int.202320231330410510.1155/2023/3304105 37313551
    [Google Scholar]
  276. SnimaK.S. JayakumarR. UnnikrishnanA.G. NairS.V. LakshmananV.K. O-Carboxymethyl chitosan nanoparticles for metformin delivery to pancreatic cancer cells.Carbohydr. Polym.20128931003100710.1016/j.carbpol.2012.04.050 24750892
    [Google Scholar]
  277. SnimaK.S. NairR.S. NairS.V. KamathC.R. LakshmananV.K. Combination of anti-diabetic drug metformin and boswellic acid nanoparticles: A novel strategy for pancreatic cancer therapy.J. Biomed. Nanotechnol.20151119310410.1166/jbn.2015.1877 26301303
    [Google Scholar]
  278. FaramarziL. DadashpourM. SadeghzadehH. MahdaviM. ZarghamiN. Enhanced anti-proliferative and pro-apoptotic effects of metformin encapsulated PLGA-PEG nanoparticles on SKOV3 human ovarian carcinoma cells.Artif. Cells Nanomed. Biotechnol.201947173774610.1080/21691401.2019.1573737 30892093
    [Google Scholar]
  279. ZouH. BianE. HeJ. WuW. DengC. Versatile carrier-free binary nanodrug based on metformin/epigallocatechin gallate nanoparticles: Exploring its properties and potential in cancer treatment.Biomater. Sci.202410.1039/D4BM01356E 39711126
    [Google Scholar]
  280. El-MelegyM.G. El-KamelA.H. MehannaR.A. GaballahA. EltaherH.M. Stable self-assembled oral metformin-bridged nanocochleates against hepatocellular carcinoma.Drug Deliv. Transl. Res.2024Epub ahead of print10.1007/s13346‑024‑01724‑5 39537911
    [Google Scholar]
  281. GouharS.A. NasrM. FahmyC.A. AboZeidM.A.M. El-DalyS.M. Enhancing the anticancer effect of metformin through nanoencapsulation: Apoptotic induction, inflammatory reduction, and suppression of cell migration in colorectal cancer cells.Arch. Pharm. (Weinheim)20253581e240062810.1002/ardp.202400628 39535448
    [Google Scholar]
  282. ShahbaziR. MirjafaryZ. ZarghamiN. SaeidianH. Efficient PEGylated magnetic nanoniosomes for co-delivery of artemisinin and metformin: A new frontier in chemotherapeutic efficacy and cancer therapy.Sci. Rep.20241412738010.1038/s41598‑024‑78817‑1 39521852
    [Google Scholar]
  283. Karimian-ShaddelA DadashiH MashinchianM Codelivery of metformin and methotrexate with optimized chitosan nanoparticles for synergistic triple-negative breast cancer therapy in vivo.Int J Pharm2024667Pt A12489710.1016/j.ijpharm.2024.124897 39489387
    [Google Scholar]
  284. YinM. ZhouJ. GorakE.J. QuddusF. Metformin is associated with survival benefit in cancer patients with concurrent type 2 diabetes: A systematic review and meta-analysis.Oncologist201318121248125510.1634/theoncologist.2013‑0111 24258613
    [Google Scholar]
  285. StynenB. Abd-RabboD. KowarzykJ. Changes of cell biochemical states are revealed in protein homomeric complex dynamics.Cell2018175514181429.e910.1016/j.cell.2018.09.050 30454649
    [Google Scholar]
  286. ReniM. DugnaniE. CeredaS. (Ir) relevance of metformin treatment in patients with metastatic pancreatic cancer: An open-label, randomized phase II trial metformin in pancreatic cancer.Clin. Cancer Res.20162251076108510.1158/1078‑0432.CCR‑15‑1722 26459175
    [Google Scholar]
  287. MartinezJ.A. ChalasaniP. ThomsonC.A. Phase II study of metformin for reduction of obesity-associated breast cancer risk: A randomized controlled trial protocol.BMC Cancer201616150010.1186/s12885‑016‑2551‑3 27430256
    [Google Scholar]
  288. TabriziA.D. MelliM.S. ForoughiM. GhojazadehM. BidadiS. Antiproliferative effect of metformin on the endometrium--a clinical trial.Asian Pac. J. Cancer Prev.20151523100671007010.7314/APJCP.2014.15.23.10067 25556427
    [Google Scholar]
  289. ParikhA.B. KozuchP. RohsN. BeckerD.J. LevyB.P. Metformin as a repurposed therapy in advanced non-small cell lung cancer (NSCLC): Results of a phase II trial.Invest. New Drugs201735681381910.1007/s10637‑017‑0511‑7 28936567
    [Google Scholar]
  290. HigurashiT. HosonoK. TakahashiH. Metformin for chemoprevention of metachronous colorectal adenoma or polyps in post-polypectomy patients without diabetes: A multicentre double-blind, placebo-controlled, randomised phase 3 trial.Lancet Oncol.201617447548310.1016/S1470‑2045(15)00565‑3 26947328
    [Google Scholar]
  291. ZhaoY. GongC. WangZ. A randomized phase II study of aromatase inhibitors plus metformin in pre-treated postmenopausal patients with hormone receptor positive metastatic breast cancer.Oncotarget2017848842248423610.18632/oncotarget.20478 29137418
    [Google Scholar]
  292. NanniO. AmadoriD. De CensiA. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase 2 clinical trial.Breast Cancer Res. Treat.2019174243344210.1007/s10549‑018‑05070‑2 30536182
    [Google Scholar]
  293. YamC. EstevaF.J. PatelM.M. Efficacy and safety of the combination of metformin, everolimus and exemestane in overweight and obese postmenopausal patients with metastatic, hormone receptor-positive, HER2-negative breast cancer: A phase II study.Invest. New Drugs201937234535110.1007/s10637‑018‑0700‑z 30610588
    [Google Scholar]
  294. PuscedduS. VernieriC. Di MaioM. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues.Gastroenterology20181552479489.e710.1053/j.gastro.2018.04.010 29655834
    [Google Scholar]
  295. MolenaarR.J. CoelenR.J.S. KhurshedM. Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1 -mutated or IDH2 -mutated solid tumours.BMJ Open201776e01496110.1136/bmjopen‑2016‑014961 28601826
    [Google Scholar]
  296. MitsuhashiA. SatoY. KiyokawaT. KoshizakaM. HanaokaH. ShozuM. Phase II study of medroxyprogesterone acetate plus metformin as a fertility-sparing treatment for atypical endometrial hyperplasia and endometrial cancer.Ann. Oncol.201627226226610.1093/annonc/mdv539 26578736
    [Google Scholar]
  297. LiK. LiL. ZhangP. A multicenter double-blind phase II study of metformin with gefitinib as first-line therapy of locally advanced non-small-cell lung cancer.Clin. Lung Cancer201718334034310.1016/j.cllc.2016.12.003 28065465
    [Google Scholar]
  298. KhawajaM.R. NickA.M. MadhusudanannairV. Phase I dose escalation study of temsirolimus in combination with metformin in patients with advanced/refractory cancers.Cancer Chemother. Pharmacol.201677597397710.1007/s00280‑016‑3009‑7 27014780
    [Google Scholar]
  299. BraghiroliM.I. de Celis FerrariA.C.R. PfifferT.E. Phase II trial of metformin and paclitaxel for patients with gemcitabine-refractory advanced adenocarcinoma of the pancreas.Ecancermedicalscience2015956310.3332/ecancer.2015.563 26316884
    [Google Scholar]
  300. De MatteisS. ScarpiE. GranatoA.M. Role of SIRT-3, p-mTOR and HIF-1α in hepatocellular carcinoma patients affected by metabolic dysfunctions and in chronic treatment with metformin.Int. J. Mol. Sci.2019206150310.3390/ijms20061503 30917505
    [Google Scholar]
  301. CrielaardB.J. LammersT. RivellaS. Targeting iron metabolism in drug discovery and delivery.Nat. Rev. Drug Discov.201716640042310.1038/nrd.2016.248 28154410
    [Google Scholar]
  302. EikawaS. NishidaM. MizukamiS. YamazakiC. NakayamaE. UdonoH. Immune-mediated antitumor effect by type 2 diabetes drug, metformin.Proc. Natl. Acad. Sci. USA201511261809181410.1073/pnas.1417636112 25624476
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128367242250214052019
Loading
/content/journals/cpd/10.2174/0113816128367242250214052019
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test