Skip to content
2000
image of Mechanism of Inula Helenium in Liver Cancer Treatment: Network Pharmacology and Molecular Docking

Abstract

Introduction

This study employed network pharmacology and molecular docking to investigate the mechanism of Inula helenium in treating liver cancer.

Methods

Active compounds and their targets were identified from Inula helenium using HERB and Swiss Target Prediction. After standardizing target names UniProt, liver cancer-related genes were collected from GeneCards and OMIM. Venny 2.1 analysis yielded 57 overlapping targets. A PPI network was constructed with STRING 11.5, and functional enrichment analyses were conducted using DAVID. GO analysis revealed multiple biological processes, cellular components, and molecular functions, while KEGG analysis highlighted key pathways including chemical carcinogenesis, IL-17, and NF-κB signaling. Thirteen core targets (., TNF, IL1B, PTGS2, GSK3B, and MAPK14) were identified, and molecular docking confirmed their strong binding with active compounds.

Results

Inula helenium may treat liver cancer by modulating targets such as TNF, PTGS2, GSK3B, and MAPK14, as well as pathways like IL-17, NF-κB, and hepatitis B, thereby suppressing tumor growth and apoptosis.

Discussion

The findings support the anti-hepatocellular carcinoma effect of Inula helenium and suggest potential mechanisms, though further clinical validation is needed due to inherent limitations of network pharmacology.

Conclusion

This study offers a theoretical basis for the clinical use of Inula helenium in liver cancer treatment and encourages further investigation.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128416376251021094924
2026-01-12
2026-01-27
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Dongiovanni P. Romeo S. Valenti L. Hepatocellular carcinoma in nonalcoholic fatty liver: Role of environmental and genetic factors. World J. Gastroenterol. 2014 20 36 12945 10.3748/wjg.v20.i36.12945
    [Google Scholar]
  3. Chen J.G. Zhang S.W. Liver cancer epidemic in China: Past, present and future. Semin. Cancer Biol. 2011 21 1 59 69 10.1016/j.semcancer.2010.11.002 21144900
    [Google Scholar]
  4. Chen X. Liu F. Li B. Wei Y.G. Yan L.N. Wen T.F. p53 codon 72 polymorphism and liver cancer susceptibility: A meta-analysis of epidemiologic studies. World J. Gastroenterol. 2011 17 9 1211 1218 10.3748/wjg.v17.i9.1211 21448428
    [Google Scholar]
  5. Wang S. Zhang Q-Y. Zhou R-L. Relationship between LAPTM4B gene polymorphism and susceptibility of primary liver cancer. Ann. Oncol. 2012 23 7 1864 1869 10.1093/annonc/mdr538 22156622
    [Google Scholar]
  6. Liu K. Li H. Duan J. Progress in clinical research on the integration of Chinese and Western medicines for treating primary liver cancer. J. Tradit. Chin. Med. Sci. 2021 8 3 173 185 10.1016/j.jtcms.2021.07.001
    [Google Scholar]
  7. Shi J.F. Cao M. Wang Y. Is it possible to halve the incidence of liver cancer in China by 2050? Int. J. Cancer 2021 148 5 1051 1065 10.1002/ijc.33313 32997794
    [Google Scholar]
  8. Fu J. Wang H. Precision diagnosis and treatment of liver cancer in China. Cancer Lett. 2018 412 283 288 10.1016/j.canlet.2017.10.008 29050983
    [Google Scholar]
  9. Maki H. Hasegawa K. Advances in the surgical treatment of liver cancer. Biosci. Trends 2022 16 3 178 188 10.5582/bst.2022.01245 35732434
    [Google Scholar]
  10. Anwanwan D. Singh S.K. Singh S. Saikam V. Singh R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 2020 1873 1 188314 10.1016/j.bbcan.2019.188314 31682895
    [Google Scholar]
  11. Llovet J.M. Montal R. Sia D. Finn R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018 15 10 599 616 10.1038/s41571‑018‑0073‑4 30061739
    [Google Scholar]
  12. Ganesan P. Kulik L.M. Hepatocellular carcinoma. Clin. Liver Dis. 2023 27 1 85 102 10.1016/j.cld.2022.08.004 36400469
    [Google Scholar]
  13. Roy P.S. Saikia B.J. Cancer and cure: A critical analysis. Indian J. Cancer 2016 53 3 441 442 10.4103/0019‑509X.200658 28244479
    [Google Scholar]
  14. Liu Y. Yang S. Wang K. Cellular senescence and cancer: Focusing on traditional Chinese medicine and natural products. Cell Prolif. 2020 53 10 e12894 e4 10.1111/cpr.12894 32881115
    [Google Scholar]
  15. Du H. Liu Y. Chen X. DT-13 synergistically potentiates the sensitivity of gastric cancer cells to topotecan via cell cycle arrest in vitro and in vivo. Eur. J. Pharmacol. 2018 818 124 131 10.1016/j.ejphar.2017.10.014 29037767
    [Google Scholar]
  16. Zraik I.M. Heß-Busch Y. Management of chemotherapy side effects and their long-term consequences. Urologe A 2021 60 7 862 871 10.1007/s00120‑021‑01569‑7 34185118
    [Google Scholar]
  17. Xu D.D. Hou X.Y. Wang O. A four-component combination derived from Huang-Qin Decoction significantly enhances anticancer activity of irinotecan. Chin. J. Nat. Med. 2021 19 5 364 375 10.1016/S1875‑5364(21)60034‑1 33941341
    [Google Scholar]
  18. Binobead M.A. Aziz I.M. Ibrahim S.M. Aljowaie R.M. Chemical composition and bioactivities of the methanol root extracts of Saussurea costus. Open Chem. 2024 22 1 20240002 10.1515/chem‑2024‑0002
    [Google Scholar]
  19. Yan H. Haiming S. Cheng G. Xiaobo L. Chemical constituents of the roots of Inula helenium. Chem. Nat. Compd. 2012 48 3 522 524 10.1007/s10600‑012‑0298‑x
    [Google Scholar]
  20. Kenny C.R. Stojakowska A. Furey A. Lucey B. From monographs to chromatograms: The antimicrobial potential of Inula helenium L. (Elecampane) Naturalised in Ireland. Molecules 2022 27 4 1406 10.3390/molecules27041406 35209195
    [Google Scholar]
  21. Yan Y.Y. Zhang Q. Zhang B. Yang B. Lin N.M. Active ingredients of Inula helenium L. exhibits similar anti-cancer effects as isoalantolactone in pancreatic cancer cells. Nat. Prod. Res. 2020 34 17 2539 2544 10.1080/14786419.2018.1543676 30661396
    [Google Scholar]
  22. Wang G.W. Qin J.J. Cheng X.R. Inula sesquiterpenoids: Structural diversity, cytotoxicity and anti-tumor activity. Expert Opin. Investig. Drugs 2014 23 3 317 345 10.1517/13543784.2014.868882 24387187
    [Google Scholar]
  23. Dorn D.C. Alexenizer M. Hengstler J.G. Dorn A. Tumor cell specific toxicity of Inula helenium extracts. Phytother. Res. 2006 20 11 970 980 10.1002/ptr.1991 16912983
    [Google Scholar]
  24. Goyal R. Chhabra B.R. Kalsi P.S. Three oxygenated alantolides from Inula racemosa. Phytochemistry 1990 29 7 2341 2343 10.1016/0031‑9422(90)83069‑D
    [Google Scholar]
  25. Li Z. Xu D. Jing J. Li F. Network pharmacology based study to explore the mechanism of the Yiqi Gubiao pill in lung cancer treatment. Oncol. Lett. 2021 21 4 321 10.3892/ol.2021.12583 33692853
    [Google Scholar]
  26. Li S. Zhang B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med. 2013 11 2 110 120 10.1016/S1875‑5364(13)60037‑0 23787177
    [Google Scholar]
  27. Yang M. Chen J.L. Xu L.W. Ji G. Navigating traditional chinese medicine network pharmacology and computational tools. Evid. Based Complement. Alternat. Med. 2013 2013 1 23 10.1155/2013/731969 23983798
    [Google Scholar]
  28. Liu S. Wang R. Lou Y. Liu J. Uncovering the mechanism of the effects of Pien-Tze-Huang on liver cancer using network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med. 2020 2020 1 4863015 10.1155/2020/4863015 32963562
    [Google Scholar]
  29. Sukumaran N. Sureka C.S. Gurusaravanan P. Thirunavukkarasu V. Alagupandi R. Priyadharshini T. Investigations on bioactive compounds of Punica granatum and Beta vulgaris for breast cancer treatment: Network pharmacology predictions, molecular docking, and in vitro experimental verification of radiation-sensitizing effects. Comput. Biol. Chem. 2025 119 108512 10.1016/j.compbiolchem.2025.108512 40435702
    [Google Scholar]
  30. Kurmi S.P.C. Karati D. Molecular targets and mechanisms of piperine against breast cancer: A network pharmacology, molecular docking analysis, and toxicity prediction. Chem. Biodivers. 2025 27 e03180 10.1002/cbdv.202403180 40424641
    [Google Scholar]
  31. Hussain M.S. Moglad E. Afzal M. Non-coding RNA mediated regulation of PI3K/Akt pathway in hepatocellular carcinoma: Therapeutic perspectives. Pathol. Res. Pract. 2024 258 155303 10.1016/j.prp.2024.155303 38728793
    [Google Scholar]
  32. Islam M.R. Rauf A. Alash S. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: Targeting insights into molecular signaling pathways. Med. Oncol. 2024 41 6 134 10.1007/s12032‑024‑02333‑5 38703282
    [Google Scholar]
  33. Tan Y.R. Lu Y. Molecular mechanism of Rhubarb in the treatment of non-small cell lung cancer based on network pharmacology and molecular docking technology. Mol. Divers. 2023 27 3 1437 1457 10.1007/s11030‑022‑10501‑w 35933455
    [Google Scholar]
  34. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357-64 10.1093/nar/gkz382 31106366
    [Google Scholar]
  35. Gao K. Liu L. Lei S. HERB 2.0: An updated database integrating clinical and experimental evidence for traditional Chinese medicine. Nucleic Acids Res. 2025 53 D1 D1404 D1414 10.1093/nar/gkae1037 39558177
    [Google Scholar]
  36. Stelzer G Rosen N Plaschkes I The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinforma 2016 54 1.30.1 1.30.33. 10.1002/cpbi.5
    [Google Scholar]
  37. Collier N. Groza T. Smedley D. Robinson P.N. Oellrich A. Rebholz-Schuhmann D. PhenoMiner: From text to a database of phenotypes associated with OMIM diseases. Database (Oxford) 2015 2015 bav104 10.1093/database/bav104 26507285
    [Google Scholar]
  38. Kanehisa M. Furumichi M. Sato Y. Matsuura Y. Ishiguro-Watanabe M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res. 2025 53 D1 D672 D677 10.1093/nar/gkae909 39417505
    [Google Scholar]
  39. Zhao J. Tian S. Lu D. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine 2021 85 153315 10.1016/j.phymed.2020.153315 32978039
    [Google Scholar]
  40. Li H. Liu L. Liu C. Deciphering key pharmacological pathways of qingdai acting on chronic myeloid leukemia using a network pharmacology-based strategy. Med. Sci. Monit. 2018 24 5668 5688 10.12659/MSM.908756 30108199
    [Google Scholar]
  41. Zhu J. Liang Q. He S. Research trends and hotspots of neurodegenerative diseases employing network pharmacology: A bibliometric analysis. Front. Pharmacol. 2023 13 1109400 10.3389/fphar.2022.1109400 36712694
    [Google Scholar]
  42. Gan D. Xu X. Chen D. Feng P. Xu Z. Network pharmacol- ogy-based pharmacological mechanism of the Chinese medicine Rhizoma drynariae against osteoporosis. Med. Sci. Monit. 2019 25 5700 5716 10.12659/MSM.915170 31368456
    [Google Scholar]
  43. Wei X. Hou W. Liang J. Network pharmacology-based analysis on the potential biological mechanisms of Sinisan against non-alcoholic fatty liver disease. Front. Pharmacol. 2021 12 693701 10.3389/fphar.2021.693701 34512330
    [Google Scholar]
  44. Zhu Y. Yu J. Zhang K. Network pharmacology analysis to explore the pharmacological mechanism of effective Chinese medicines in treating metastatic colorectal cancer using meta-analysis approach. Am. J. Chin. Med. 2021 49 8 1839 1870 10.1142/S0192415X21500877 34781857
    [Google Scholar]
  45. Zhang B. Zeng J. Yan Y. Ethyl acetate extract from Inulaï¿1/2helenium L. inhibits the proliferation of pancreatic cancer cells by regulating the STAT3/AKT pathway. Mol. Med. Rep. 2018 17 4 5440 5448 10.3892/mmr.2018.8534 29393456
    [Google Scholar]
  46. Chun J. Song K. Kim Y.S. Sesquiterpene lactones‐enriched fraction of Inula helenium L. induces apoptosis through inhibition of signal transducers and activators of transcription 3 signaling pathway in MDA‐MB‐231 breast cancer cells. Phytother. Res. 2018 32 12 2501 2509 10.1002/ptr.6189 30251272
    [Google Scholar]
  47. Wang Q. Gao S. Wu G. Total sesquiterpene lactones isolated from Inula helenium L. attenuates 2,4-dinitrochlorobenzene-induced atopic dermatitis-like skin lesions in mice. Phytomedicine 2018 46 78 84 10.1016/j.phymed.2018.04.036 30097125
    [Google Scholar]
  48. Ding Y. Pan W. Xu J. Sesquiterpenoids from the roots of Inula helenium inhibit acute myelogenous leukemia progenitor cells. Bioorg. Chem. 2019 86 363 367 10.1016/j.bioorg.2019.01.055 30753990
    [Google Scholar]
  49. Chen W. Li P. Liu Y. Isoalantolactone induces apoptosis through ROS-mediated ER stress and inhibition of STAT3 in prostate cancer cells. J. Exp. Clin. Cancer Res. 2018 37 1 309 10.1186/s13046‑018‑0987‑9 30541589
    [Google Scholar]
  50. Chun J. Park S.M. Lee M. Ha I.J. Jeong M.K. The sesquiterpene lactone-rich fraction of Inula helenium L. enhances the antitumor effect of anti-PD-1 antibody in colorectal cancer: Integrative phytochemical, Transcriptomic, and Experimental Analyses. Cancers 2023 15 3 653 3 10.3390/cancers15030653 36765611
    [Google Scholar]
  51. Yang C. Yang J. Sun M. Yan J. Meng X. Ma T. Alantolactone inhibits growth of K562/adriamycin cells by downregulating Bcr/Abl and P‐glycoprotein expression. IUBMB Life 2013 65 5 435 444 10.1002/iub.1141 23441067
    [Google Scholar]
  52. Cai Y. Gao K. Peng B. Alantolactone: A natural plant extract as a potential therapeutic agent for cancer. Front. Pharmacol. 2021 12 781033 10.3389/fphar.2021.781033 34899346
    [Google Scholar]
  53. Yao Y. Xia D. Bian Y. Alantolactone induces G1 phase arrest and apoptosis of multiple myeloma cells and overcomes bortezomib resistance. Apoptosis 2015 20 8 1122 1133 10.1007/s10495‑015‑1140‑2 26033479
    [Google Scholar]
  54. Zhang Y. Zhao Y. Ran Y. Guo J. Cui H. Liu S. Alantolactone exhibits selective antitumor effects in HELA human cervical cancer cells by inhibiting cell migration and invasion, G2/M cell cycle arrest, mitochondrial mediated apoptosis and targeting Nf-kB signalling pathway. JBUON 2019 24 6 2310 2315 31983099
    [Google Scholar]
  55. Chang S.H. T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch. Pharm. Res. 2019 42 7 549 559 10.1007/s12272‑019‑01146‑9 30941641
    [Google Scholar]
  56. Gu C. Wu L. Li X. IL-17 family: Cytokines, receptors and signaling. Cytokine 2013 64 2 477 485 10.1016/j.cyto.2013.07.022 24011563
    [Google Scholar]
  57. Compton S.E. DeCamp L.M. Oswald B.M. IL-17 links the tumor suppressor LKB1 to gastrointestinal inflammation and polyposis. Sci. Adv. 2025 11 25 eadt5933 10.1126/sciadv.adt5933 40540556
    [Google Scholar]
  58. Petroni G. Galassi C. Gouin K.H. IL-17A-secreting γδ T cells promote resistance to CDK4/CDK6 inhibitors in HR+HER2− breast cancer via CX3CR1+ macrophages. Nat. Cancer 2025 10.1038/s43018‑025‑01007‑z 40624238
    [Google Scholar]
  59. Guo Q. Jin Y. Chen X. NF-κB in biology and targeted therapy: New insights and translational implications. Signal Transduct. Target. Ther. 2024 9 1 53 3 10.1038/s41392‑024‑01757‑9 38433280
    [Google Scholar]
  60. Dolcet X. Llobet D. Pallares J. Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005 446 5 475 482 10.1007/s00428‑005‑1264‑9 15856292
    [Google Scholar]
  61. Rasul A. Khan M. Yu B. Isoalantolactone, a sesquiterpene lactone, induces apoptosis in SGC-7901 cells via mitochondrial and phosphatidylinositol 3-kinase/Akt signaling pathways. Arch. Pharm. Res. 2013 36 10 1262 1269 10.1007/s12272‑013‑0217‑0 23881702
    [Google Scholar]
  62. Bettermann K. Vucur M. Haybaeck J. TAK1 suppresses a NEMO-dependent but NF-kappaB-independent pathway to liver cancer. Cancer Cell 2010 17 5 481 496 10.1016/j.ccr.2010.03.021 20478530
    [Google Scholar]
  63. Inokuchi S. Aoyama T. Miura K. Disruption of TAK1 in hepatocytes causes hepatic injury, inflammation, fibrosis, and carcinogenesis. Proc. Natl. Acad. Sci. USA 2010 107 2 844 849 10.1073/pnas.0909781107 20080763
    [Google Scholar]
  64. Niland S. Riscanevo A.X. Eble J.A. Matrix metalloproteinases shape the tumor microenvironment in cancer progression. Int. J. Mol. Sci. 2021 23 1 146 10.3390/ijms23010146 35008569
    [Google Scholar]
  65. Liu J. Liu M. Wang S. Alantolactone induces apoptosis and suppresses migration in MCF 7 human breast cancer cells via the p38 MAPK, NF κB and Nrf2 signaling pathways. Int. J. Mol. Med. 2018 42 4 1847 1856 10.3892/ijmm.2018.3751 30015828
    [Google Scholar]
  66. Wang S. Lin Y. Zhao Q. Chen H. Du S. Zeng Z. Metformin reverses 5-FU resistance induced by radiotherapy through mediating folate metabolism in colorectal cancer. Mol. Med. 2025 31 1 199 10.1186/s10020‑025‑01206‑5 40399808
    [Google Scholar]
  67. Pfister D. Núñez N.G. Pinyol R. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021 592 7854 450 456 10.1038/s41586‑021‑03362‑0 33762733
    [Google Scholar]
  68. Liedtke C. Trautwein C. The role of TNF and Fas dependent signaling in animal models of inflammatory liver injury and liver cancer. Eur. J. Cell Biol. 2012 91 6-7 582 589 10.1016/j.ejcb.2011.10.001 22153863
    [Google Scholar]
  69. Dostert C. Grusdat M. Letellier E. Brenner D. The TNF Family of ligands and receptors: Communication modules in the immune system and beyond. Physiol. Rev. 2019 99 1 115 160 10.1152/physrev.00045.2017 30354964
    [Google Scholar]
  70. Dong W. Sun S. Cao X. Exposure to TNF-α combined with TGF-β induces carcinogenesis in vitro via NF-κB/Twist axis. Oncol. Rep. 2017 37 3 1873 1882 10.3892/or.2017.5369 28098875
    [Google Scholar]
  71. Ray I. Michael A. Meira L.B. Ellis P.E. The role of cytokines in epithelial-mesenchymal transition in gynaecological cancers: A systematic review. Cells 2023 12 3 416 10.3390/cells12030416 36766756
    [Google Scholar]
  72. Gramantieri L. Giovannini C. Suzzi F. Leoni I. Fornari F. Hepatic cancer stem cells: Molecular mechanisms, therapeutic implications, and circulating biomarkers. Cancers 2021 13 18 4550 0 10.3390/cancers13184550 34572776
    [Google Scholar]
  73. Sung Y.K. Hwang S.Y. Kim J.O. Bae H.I. Kim J.C. Kim M.K. The correlation between cyclooxygenase-2 expression and hepatocellular carcinogenesis. Mol. Cells 2004 17 1 35 38 10.1016/S1016‑8478(23)13002‑0 15055524
    [Google Scholar]
  74. Özhan G. Lochan R. Leathart J.B.S. Charnley R. Daly A.K. Cyclooxygenase-2 polymorphisms and pancreatic cancer susceptibility. Pancreas 2011 40 8 1289 1294 10.1097/MPA.0b013e31821fcc3b 21705955
    [Google Scholar]
  75. Upadhyay R. Jain M. Kumar S. Ghoshal U.C. Mittal B. Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for esophageal squmaous cell carcinoma. Mutat. Res. 2009 663 1-2 52 59 10.1016/j.mrfmmm.2009.01.007 19428370
    [Google Scholar]
  76. Bu X. Zhao C. The association between cyclooxygenase-2 1195 G/A polymorphism and hepatocellular carcinoma: evidence from a meta-analysis. Tumour Biol. 2013 34 3 1479 1484 10.1007/s13277‑013‑0672‑8 23494177
    [Google Scholar]
  77. Kim H.S. Kim T. Kim M.K. Suh D.H. Chung H.H. Song Y.S. Cyclooxygenase-1 and -2: Molecular targets for cervical neoplasia. J. Cancer Prev. 2013 18 2 123 134 10.15430/JCP.2013.18.2.123 25337538
    [Google Scholar]
  78. Reyna D.E. Garner T.P. Lopez A. Direct activation of BAX by BTSA1 overcomes apoptosis resistance in acute myeloid leukemia. Cancer Cell 2017 32 4 490 505.e10 10.1016/j.ccell.2017.09.001 29017059
    [Google Scholar]
  79. Inoue-Yamauchi A. Jeng P.S. Kim K. Targeting the differential addiction to anti-apoptotic BCL-2 family for cancer therapy. Nat. Commun. 2017 8 1 16078 10.1038/ncomms16078 28714472
    [Google Scholar]
  80. Jin Q. Jiao W. Lian Y. Chitrakar B. Sang Y. Wang X. Study on antihepatocellular carcinoma effect of 6-shogaol and curcumin through network-based pharmacological and cellular assay. Front. Pharmacol. 2024 15 1367417 10.3389/fphar.2024.1367417 39224778
    [Google Scholar]
  81. Gu Y. Chen X. Wang R. Comparative two-dimensional HepG2 and L02/cell membrane chromatography/C18/time-of-flight mass spectrometry for screening selective anti-hepatoma components from Scutellariae Radix. J. Pharm. Biomed. Anal. 2019 164 550 556 10.1016/j.jpba.2018.10.028 30458388
    [Google Scholar]
  82. Datta S. Misra S.K. Saha M.L. Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proc. Natl. Acad. Sci. USA 2018 115 32 8087 8092 10.1073/pnas.1803800115 30038010
    [Google Scholar]
  83. Duan X. Fan X. Jiang H. Herb-drug interactions in oncology: Pharmacodynamic/pharmacokinetic mechanisms and risk prediction. Chin. Med. 2025 20 1 107 10.1186/s13020‑025‑01156‑4 40624553
    [Google Scholar]
  84. Vitiello F. Tada T. Suda G. Atezolizumab plus bevacizumab versus Lenvatinib for patients with Barcelona clinic liver cancer stage B (BCLC-B) hepatocellular carcinoma (HCC): A real-world population. Semin. Oncol. 2025 52 4 152348 10.1016/j.seminoncol.2025.152348 40494131
    [Google Scholar]
  85. Zhai Y. Liu L. Zhang F. Network pharmacology: A crucial approach in traditional Chinese medicine research. Chin. Med. 2025 20 1 8 8 10.1186/s13020‑024‑01056‑z 39800680
    [Google Scholar]
  86. Zheng S. Xue T. Wang B. Guo H. Liu Q. Application of network pharmacology in the study of the mechanism of action of traditional chinese medicine in the treatment of COVID-19. Front. Pharmacol. 2022 13 926901 10.3389/fphar.2022.926901 35991891
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128416376251021094924
Loading
/content/journals/cpd/10.2174/0113816128416376251021094924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test