Skip to content
2000
image of Sanguinarine Suppresses Lung Adenocarcinoma via TGF-β1/Smad3 Pathway: Insights from Network Analysis and Experimental Validation

Abstract

Introduction

This study elucidates molecular mechanisms underlying sanguinarine (SAN)-mediated inhibition of Lung Adenocarcinoma (LUAD) progression.

Methods

A Protein-Protein Interaction (PPI) network was constructed, and core targets were visualized using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed with DAVID, while Reactome, WikiPathways, and MSigDB Hallmark analyses utilized Enrichr. Core targets expression and immune infiltration in LUAD were validated using The Cancer Genome Atlas (TCGA). Molecular docking assessed binding affinity between SAN and core targets, and experiments confirmed SAN's suppression of LUAD progression the TGF-β1/Smad3 pathway.

Results

Ten core targets of SAN in LUAD were identified. GO analysis revealed biological processes including proliferation, apoptosis, and signal transduction. Significantly enriched cancer-related pathways included PI3K-Akt, MAPK, Ras, and TGF-β signaling, the latter of which was significantly enriched across KEGG, Reactome, WikiPathways, and MSigDB Hallmark analyses. Molecular docking demonstrated a strong binding affinity between SAN and core targets. , SAN suppressed proliferation and autophagy in A549 cells while promoting apoptosis by inhibiting the TGF-β1/Smad3 signaling pathway.

Discussion

The results demonstrate SAN's multi-target action against LUAD, notably through the inhibition of TGF-β1/Smad3, providing a mechanistic basis within oncogenic networks. Limitations include reliance on models and the preclinical focus. Future work requires validation and clinical translation.

Conclusion

This study identifies key targets and pathways for SAN's inhibition of LUAD progression, validating its effect through the suppression of TGF-β1/Smad3 and providing experimental evidence for clinical application in LUAD therapy.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128404840251114063502
2026-01-09
2026-01-27
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128404840251114063502/BMS-CPD-2025-418.html?itemId=/content/journals/cpd/10.2174/0113816128404840251114063502&mimeType=html&fmt=ahah

References

  1. Bray F. Laversanne M. Sung H. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Arbour K.C. Riely G.J. Systemic therapy for locally advanced and metastatic non–small cell lung cancer. JAMA 2019 322 8 764 774 10.1001/jama.2019.11058 31454018
    [Google Scholar]
  3. Zielińska S. Dziągwa-Becker M. Junka A. Screening papaveraceae as novel antibiofilm natural-based agents. Molecules 2021 26 16 4778 10.3390/molecules26164778 34443363
    [Google Scholar]
  4. Ali I. Li J. Cui L. Zhao H. He Q. Wang D. Efficient extraction and purification of benzo[ c]phenanthridine alkaloids from Macleaya cordata (Willd) R. Br. by combination of ultrahigh pressure extraction and pH‐zone‐refining counter‐current chromatography with anti‐breast cancer activity in vitro. Phytochem. Anal. 2021 32 3 423 432 10.1002/pca.2990 32898923
    [Google Scholar]
  5. Sun W. Xu Y. Liu Z. Studies on pharmacokinetic properties and intestinal absorption mechanism of sanguinarine chloride: In vivo and in situ. Toxicol. Mech. Methods 2025 35 1 43 52 10.1080/15376516.2024.2383366 39087424
    [Google Scholar]
  6. Zhong L.T. Yuan J.M. Fu W.L. Identification of sanguinarine as c-MYC transcription inhibitor through enhancing the G-quadruplex-NM23-H2 interactions. Bioorg. Chem. 2024 153 107842 10.1016/j.bioorg.2024.107842 39342890
    [Google Scholar]
  7. Ullah A. Razzaq A. Alfaifi M.Y. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis. Curr. Mol. Pharmacol. 2024 17 e18761429269383 10.2174/0118761429269383231119062233 38389415
    [Google Scholar]
  8. Messeha S.S. Noel S. Zarmouh N.O. Womble T. Latinwo L.M. Soliman K.F.A. Involvement of AKT/PI3K pathway in sanguinarine’s induced apoptosis and cell cycle arrest in triple-negative breast cancer cells. Cancer Genomics Proteomics 2023 20 4 323 342 10.21873/cgp.20385 37400144
    [Google Scholar]
  9. Hu X. Li G. Kong C. Fluorinated chitosan mediated transepithelial delivery of sanguinarine-loaded platinum (IV) prodrug for intravesical instillation therapy of muscle-invasive bladder cancer. J. Control. Release 2025 378 701 718 10.1016/j.jconrel.2024.12.023 39701454
    [Google Scholar]
  10. Ding Q. Zhu W. Zhu S. Zhou X. Sanguinarine promotes apoptosis of hepatocellular carcinoma cells via regulating the miR-497-5p/CDK4 axis. Am. J. Transl. Res. 2022 14 12 8539 8551 36628219
    [Google Scholar]
  11. Qin T.T. Li Z.H. Li L.X. Sanguinarine, identified as a natural alkaloid LSD1 inhibitor, suppresses lung cancer cell growth and migration. Iran. J. Basic Med. Sci. 2022 25 6 781 788 10.22038/IJBMS.2022.62541.13851 35949313
    [Google Scholar]
  12. Wei X. Hou W. Liang J. Network pharmacology-based analysis on the potential biological mechanisms of sinisan against non-alcoholic fatty liver disease. Front. Pharmacol. 2021 12 693701 10.3389/fphar.2021.693701 34512330
    [Google Scholar]
  13. Daina A. Michielin O. Zoete V. SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357-64 10.1093/nar/gkz382 31106366
    [Google Scholar]
  14. Wang X. Shen Y. Wang S. PharmMapper 2017 update: a web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017 45 W1 W356-60 10.1093/nar/gkx374 28472422
    [Google Scholar]
  15. Stelzer G Rosen N Plaschkes I The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics 2016 54 1.30.1 1.30.33 10.1002/cpbi.5 27322403
    [Google Scholar]
  16. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  17. Piñero J. Bravo À. Queralt-Rosinach N. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017 45 D1 D833 D839 10.1093/nar/gkw943 27924018
    [Google Scholar]
  18. Mering C. Huynen M. Jaeggi D. Schmidt S. Bork P. Snel B. STRING: A database of predicted functional associations between proteins. Nucleic Acids Res. 2003 31 1 258 261 10.1093/nar/gkg034 12519996
    [Google Scholar]
  19. Shannon P. Markiel A. Ozier O. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  20. Dennis G. Sherman B.T. Hosack D.A. DAVID: Database for annotation, visualization, and integrated discovery. Genome Biol. 2003 4 5 3 10.1186/gb‑2003‑4‑5‑p3
    [Google Scholar]
  21. The gene ontology (GO) project in 2006. Nucleic Acids Res. 2006 34 90001 D322 D326 10.1093/nar/gkj021 16381878
    [Google Scholar]
  22. Chen E.Y. Tan C.M. Kou Y. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013 14 1 128 10.1186/1471‑2105‑14‑128 23586463
    [Google Scholar]
  23. Kuleshov M.V. Jones M.R. Rouillard A.D. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016 44 W1 W90-7 10.1093/nar/gkw377 27141961
    [Google Scholar]
  24. Xie Z. Bailey A. Kuleshov M.V. Gene set knowledge discovery with enrichr. Curr. Protoc. 2021 1 3 e90 10.1002/cpz1.90 33780170
    [Google Scholar]
  25. Trott O. Olson A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  26. Hänzelmann S. Castelo R. Guinney J. GSVA: gene set variation analysis for microarray and RNA-Seq data. BMC Bioinformatics 2013 14 1 7 10.1186/1471‑2105‑14‑7 23323831
    [Google Scholar]
  27. Bindea G. Mlecnik B. Tosolini M. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013 39 4 782 795 10.1016/j.immuni.2013.10.003 24138885
    [Google Scholar]
  28. Zhang G. Zhu L. Xue Y. Benzophenanthridine alkaloids suppress lung adenocarcinoma by blocking TMEM16A Ca2+-activated Cl− channels. Pflugers Arch. 2020 472 10 1457 1467 10.1007/s00424‑020‑02434‑w 32683500
    [Google Scholar]
  29. Saini N. Grewal A.S. Lather V. Gahlawat S.K. Natural alkaloids targeting EGFR in non-small cell lung cancer: Molecular docking and ADMET predictions. Chem. Biol. Interact. 2022 358 109901 10.1016/j.cbi.2022.109901 35341731
    [Google Scholar]
  30. Yu Y. Luo Y. Fang Z. Mechanism of sanguinarine in inhibiting macrophages to promote metastasis and proliferation of lung cancer via modulating the exosomes in A549 Cells. OncoTargets Ther. 2020 13 8989 9003 10.2147/OTT.S261054 32982290
    [Google Scholar]
  31. Prabhu K.S. Bhat A.A. Siveen K.S. Sanguinarine mediated apoptosis in Non-Small Cell Lung Cancer via generation of reactive oxygen species and suppression of JAK/STAT pathway. Biomed. Pharmacother. 2021 144 112358 10.1016/j.biopha.2021.112358 34794241
    [Google Scholar]
  32. Cui Y. Luo Y. Qian Q. Sanguinarine regulates tumor-associated macrophages to prevent lung cancer angiogenesis through the WNT/β-catenin pathway. Front. Oncol. 2022 12 732860 10.3389/fonc.2022.732860 35847885
    [Google Scholar]
  33. Zhang S. Leng T. Zhang Q. Zhao Q. Nie X. Yang L. Sanguinarine inhibits epithelial ovarian cancer development via regulating long non-coding RNA CASC2-EIF4A3 axis and/or inhibiting NF-κB signaling or PI3K/AKT/mTOR pathway. Biomed. Pharmacother. 2018 102 302 308 10.1016/j.biopha.2018.03.071 29571014
    [Google Scholar]
  34. Lee T.K. Park C. Jeong S.J. Sanguinarine induces apoptosis of human oral squamous cell carcinoma KB Cells via inactivation of the PI3K/Akt signaling pathway. Drug Dev. Res. 2016 77 5 227 240 10.1002/ddr.21315 27363951
    [Google Scholar]
  35. Qi X. Chen Y. Liu S. Sanguinarine inhibits melanoma invasion and migration by targeting the FAK/PI3K/AKT/mTOR signalling pathway. Pharm. Biol. 2023 61 1 696 709 10.1080/13880209.2023.2200787 37092313
    [Google Scholar]
  36. Xu X. Deng L. Tang Y. Cytostatic activity of sanguinarine and a cyanide derivative in human erythroleukemia cells is mediated by suppression of c-MET/MAPK Signaling. Int. J. Mol. Sci. 2023 24 9 8113 10.3390/ijms24098113 37175820
    [Google Scholar]
  37. Lee B. Lee S.J. Park S.S. Sanguinarine-induced G1-phase arrest of the cell cycle results from increased p27KIP1 expression mediated via activation of the Ras/ERK signaling pathway in vascular smooth muscle cells. Arch. Biochem. Biophys. 2008 471 2 224 231 10.1016/j.abb.2008.01.008 18237541
    [Google Scholar]
  38. Garg P. Pareek S. Kulkarni P. Horne D. Salgia R. Singhal S.S. Exploring the potential of TGFβ as a diagnostic marker and therapeutic target against cancer. Biochem. Pharmacol. 2025 231 116646 10.1016/j.bcp.2024.116646 39577704
    [Google Scholar]
  39. Peng R. Li Y. Gao Y. Chen D. Li Z. Zhao Y. Cellular and molecular landscape of primary dermatofibrosarcoma protuberans: Insights from single‐cell RNA sequencing analysis. Exp. Dermatol. 2024 33 8 e15121 10.1111/exd.15121 39081004
    [Google Scholar]
  40. Lan X. Wei D. Fang L. Wu X. Wu B. Tumor-associated macrophage-derived TGF-β1 activates GLI2 via the Smad2/3 signaling pathway to affect cisplatin resistance in lung adenocarcinoma. Technol. Cancer Res. Treat. 2024 23 15330338241274337 10.1177/15330338241274337 39166273
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128404840251114063502
Loading
/content/journals/cpd/10.2174/0113816128404840251114063502
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test