Skip to content
2000
image of Integrative Approaches to Uncover the Therapeutic Action of Huaiqihuang in Myocarditis: Network Pharmacology, Molecular Docking, and Molecular Dynamics

Abstract

Introduction

Myocarditis (MC) is an inflammatory cardiomyopathy with high morbidity and mortality. Current treatment options for MC have limitations and side effects, necessitating the exploration of new therapies. Traditional Chinese Medicine (TCM), particularly Huaiqihuang Granules (HQH), has shown promise due to its anti-inflammatory, antioxidative, and anti-apoptotic properties. However, the application in cardiovascular diseases remains underexplored.

Methods

We employed network pharmacology, molecular docking, and Molecular Dynamics (MD) simulations to evaluate HQH’s effects on MC. This involved identifying bioactive components and therapeutic targets, conducting enrichment analyses, and performing molecular docking and MD simulations to validate the interactions between HQH components and MC-related targets.

Results

A total of 57 bioactive components in HQH and 143 potential therapeutic targets for MC were identified. Enrichment analyses revealed that HQH’s potential treatment effects on MC involve various processes and pathways, including response to lipopolysaccharide, peptidase activity, the extracellular region, and pathways in cancer. Molecular docking indicates that Physalin A, sibiricoside A_qt, zhonghualiaoine 1, and methylprotodioscin_qt, along with ALB, PTGS2, AKT1, ESR1, and MMP9, may serve as key therapeutic components and targets. MD simulations confirmed strong interactions between HQH’s core components and MC-related targets, supporting their potential therapeutic effects.

Discussion

This study suggests that HQH exerts therapeutic effects against MC through multi-target mechanisms and stable targets. These findings provide valuable insights into alternative treatment strategies for MC, offering a foundation for further research and clinical exploration.

Conclusion

This study confirms that HQH can influence MC through various active components and multiple therapeutic targets.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128393399251021101651
2026-01-09
2026-01-27
Loading full text...

Full text loading...

References

  1. Tschöpe C. Ammirati E. Bozkurt B. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat. Rev. Cardiol. 2021 18 3 169 193 10.1038/s41569‑020‑00435‑x 33046850
    [Google Scholar]
  2. Golpour A. Patriki D. Hanson P.J. McManus B. Heidecker B. Epidemiological impact of myocarditis. J. Clin. Med. 2021 10 4 603 10.3390/jcm10040603 33562759
    [Google Scholar]
  3. Wang Y.W.Y. Liu R.B. Huang C.Y. Global, regional, and national burdens of myocarditis, 1990–2019: Systematic analysis from GBD 2019. BMC Public Health 2023 23 1 714 10.1186/s12889‑023‑15539‑5 37076853
    [Google Scholar]
  4. Fairweather D. Beetler D.J. Di Florio D.N. Musigk N. Heidecker B. Cooper L.T. COVID-19, myocarditis and pericarditis. Circ. Res. 2023 132 10 1302 1319 10.1161/CIRCRESAHA.123.321878 37167363
    [Google Scholar]
  5. Nagai T. Inomata T. Kohno T. JCS 2023 guideline on the diagnosis and treatment of myocarditis. Circ. J. 2023 87 5 674 754 10.1253/circj.CJ‑22‑0696 36908170
    [Google Scholar]
  6. Hui X.S. Wang S.Q. Lu S. Chinese herbal medicine for the treatment of adult viral myocarditis: An overview of systematic reviews and meta-analyses of randomized controlled trials. Clin. Ther. 2023 45 10 991 1003 10.1016/j.clinthera.2023.08.005 37690913
    [Google Scholar]
  7. Cao Y. Xu X. Zhang P. Advances in the traditional chinese medicine-based management of viral myocarditis. Cell Biochem. Biophys. 2015 73 1 237 243 10.1007/s12013‑015‑0620‑x 25724442
    [Google Scholar]
  8. Lin J. Huang L.M. Wang J.J. Mao J.H. Efficacy and safety of Huaiqihuang granule as adjuvant treatment for primary nephrotic syndrome in children: A meta-analysis and systematic review. World J. Pediatr. 2021 17 3 242 252 10.1007/s12519‑020‑00405‑w 34075551
    [Google Scholar]
  9. Zhang X. Cheng Y. Zhou Q. The effect of chinese traditional medicine huaiqihuang (HQH) on the protection of nephropathy. Oxid. Med. Cell. Longev. 2020 2020 1 10 10.1155/2020/2153912 32655761
    [Google Scholar]
  10. Dai Y. Zhao M. Qiu F. Yan X. Fan Y. Sun C. Investigation of the effect of Huaiqihuang granules via adjuvant treatment in children with relapsed systemic lupus erythematosus. Am. J. Transl. Res. 2021 13 4 3222 3229 34017492
    [Google Scholar]
  11. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 48 D1 D845 D855 31680165
    [Google Scholar]
  12. Wang X. Pan C. Gong J. Liu X. Li H. Enhancing the enrichment of pharmacophore-based target prediction for the polypharmacological profiles of drugs. J. Chem. Inf. Model. 2016 56 6 1175 1183 10.1021/acs.jcim.5b00690 27187084
    [Google Scholar]
  13. Wang X. Shen Y. Wang S. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res. 2017 45 W1 W356-60 10.1093/nar/gkx374 28472422
    [Google Scholar]
  14. Liu X Ouyang S Yu B Liu Y Huang K Gong J. PharmMapper server: a web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res 2010 38 Web Server issue W609 W614 10.1093/nar/gkq300
    [Google Scholar]
  15. Tang D. Chen M. Huang X. SRplot: A free online platform for data visualization and graphing. PLoS One 2023 18 11 0294236 10.1371/journal.pone.0294236 37943830
    [Google Scholar]
  16. Burley S.K. Bhikadiya C. Bi C. RCSB protein data bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 49 D1 D437 D451 10.1093/nar/gkaa1038 33211854
    [Google Scholar]
  17. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  18. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  19. Eberhardt J. Santos-Martins D. Tillack A.F. Forli S. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 2021 61 8 3891 3898 10.1021/acs.jcim.1c00203 34278794
    [Google Scholar]
  20. Li X. Wei S. Niu S. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022 144 105389 10.1016/j.compbiomed.2022.105389 35303581
    [Google Scholar]
  21. Wallace A.C. Laskowski R.A. Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 1995 8 2 127 134 10.1093/protein/8.2.127
    [Google Scholar]
  22. Lee J. Cheng X. Swails J.M. Charmm-gui input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 2016 12 1 405 413 10.1021/acs.jctc.5b00935 26631602
    [Google Scholar]
  23. Jo S. Kim T. Iyer V.G. Im W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  24. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021 17 10 6281 6291 10.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  25. Zhou C. Chen H. Li W. Yang L. Zeng L. Bian Y. Mechanism of sour jujube kernel-five-flavour berry in the treatment of insomnia based on network pharmacology and molecular docking. Curr. Pharm. Des. 2025 ••• 31 10.2174/0113816128356734250322041738 40264323
    [Google Scholar]
  26. Luo X. Zhang X. Xu A. Mechanistic insights into the anti-glioma effects of exosome-like nanoparticles derived from Garcinia mangostana L.: A metabolomics, network pharmacology, and experimental study. Int. J. Nanomedicine 2025 20 5407 5427 10.2147/IJN.S514930 40321800
    [Google Scholar]
  27. Jo H.G. Baek C.Y. Ilyas S. Asarum heterotropoides F. schmidt attenuates osteoarthritis via multi-target anti-inflammatory actions: A network pharmacology and experimental validation. J. Ethnopharmacol. 2025 349 May 119915 10.1016/j.jep.2025.119915 40345271
    [Google Scholar]
  28. Law Y.M. Lal A.K. Chen S. Diagnosis and management of myocarditis in children. Circulation 2021 144 6 e123 e135 10.1161/CIR.0000000000001001 34229446
    [Google Scholar]
  29. Lampejo T. Durkin S.M. Bhatt N. Guttmann O. Acute myocarditis: Aetiology, diagnosis and management. Clin. Med. 2021 21 5 e505 e510 10.7861/clinmed.2021‑0121 34507935
    [Google Scholar]
  30. Kociol R.D. Cooper L.T. Fang J.C. Recognition and initial management of fulminant myocarditis. Circulation 2020 141 6 e69 e92 10.1161/CIR.0000000000000745 31902242
    [Google Scholar]
  31. Ammirati E. Frigerio M. Adler E.D. Management of acute myocarditis and chronic inflammatory cardiomyopathy. Circ. Heart Fail. 2020 13 11 007405 10.1161/CIRCHEARTFAILURE.120.007405 33176455
    [Google Scholar]
  32. Caforio A.L.P. Pankuweit S. Arbustini E. Basso C. Gimeno-Blanes J. Felix S.B. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: A position statement of the european society of cardiology working group on myocardial and pericardial diseases. Eur. Heart J. 2013 34 33 2636 2648 10.1093/eurheartj/eht210
    [Google Scholar]
  33. Siripanthong B. Nazarian S. Muser D. Recognizing COVID-19–related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 2020 17 9 1463 1471 10.1016/j.hrthm.2020.05.001 32387246
    [Google Scholar]
  34. Liu Z. Guan C. Li C. Tilianin reduces apoptosis via the ERK/EGR1/BCL2L1 pathway in ischemia/reperfusion-induced acute kidney injury mice. Front. Pharmacol. 2022 13 862584 10.3389/fphar.2022.862584 35721209
    [Google Scholar]
  35. Shelke V. Kale A. Dagar N. Habshi T. Gaikwad A.B. Concomitant inhibition of TLR-4 and SGLT2 by phloretin and empagliflozin prevents diabetes-associated ischemic acute kidney injury. Food Funct. 2023 14 11 5391 5403 10.1039/D3FO01379K 37218423
    [Google Scholar]
  36. Wang Y. Quan F. Cao Q. Lin Y. Yue C. Bi R. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 2021 28 231 243
    [Google Scholar]
  37. Pan J. Yang C. Jiang Z. Huang J. Trametes robiniophila Murr: A traditional Chinese medicine with potent anti-tumor effects. Cancer Manag. Res. 2019 11 1541 1549 10.2147/CMAR.S193174 30863164
    [Google Scholar]
  38. Wang C. Nguyen P.H. Pham K. Calculating protein–ligand binding affinities with MMPBSA: Method and error analysis. J. Comput. Chem. 2016 37 27 2436 2446 10.1002/jcc.24467 27510546
    [Google Scholar]
  39. Bisht A. Tewari D. Kumar S. Chandra S. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the mechanism of anti-aging action of Tinospora cordifolia. Mol. Divers. 2024 28 3 1743 1763 10.1007/s11030‑023‑10684‑w 37439907
    [Google Scholar]
  40. Dagar N. Jadhav H.R. Gaikwad A.B. Network pharmacology combined with molecular docking and dynamics to assess the synergism of esculetin and phloretin against acute kidney injury-diabetes comorbidity. Mol. Divers. 2024 10.1007/s11030‑024‑10829‑5 38578376
    [Google Scholar]
  41. Vadak N. Borkar M.R. Bhatt L.K. Deciphering neuroprotective mechanism of nitroxoline in cerebral ischemia: Network pharmacology and molecular modeling-based investigations. Mol. Divers. 2024 28 6 3993 4015 10.1007/s11030‑023‑10791‑8 38233690
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128393399251021101651
Loading
/content/journals/cpd/10.2174/0113816128393399251021101651
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test