Skip to content
2000
image of Antimicrobial Resistance: Enzymes, Proteins, and Computational Resources

Abstract

Antimicrobial resistance (AMR) is an important health concern rooted in antibiotic misuse and overuse, resulting in drug-resistant bacteria. However, resistance to these antimicrobials developed as soon as they were administered. Several variables lead to the progression of antimicrobial resistance (AMR), making it a multifaceted challenge for healthcare systems worldwide, such as erroneous diagnosis, inappropriate prescription, incomplete treatment, and many more. Getting an in-depth idea about the mechanism underlying AMR development is essential to overcome this. This review aims to provide information on how various enzymes or proteins aid in the antimicrobial resistance mechanisms and also highlight the clinical perspective of AMR, emphasizing its growing impact on patient outcomes, and incorporate the latest recent data from the World Health Organisation (WHO), underscoring the global urgency of the AMR crisis, with specific attention to trends observed in recent years. Additionally, it is intended to provide ideas about inhibitors that can inhibit the mechanism of antibiotic resistance and also to provide an idea about numerous computational resources available that can be employed to predict genes and/or proteins and enzymes involved in various antibiotic resistance mechanisms.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128415482250721112427
2025-08-05
2025-09-10
Loading full text...

Full text loading...

References

  1. Minarini L.A.D.R. Antimicrobial resistance as a global public health problem: How can we address it? Front. Public Health 2020 8 612844 10.3389/fpubh.2020.612844 33282821
    [Google Scholar]
  2. Uddin T.M. Chakraborty A.J. Khusro A. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021 14 12 1750 1766 10.1016/j.jiph.2021.10.020 34756812
    [Google Scholar]
  3. Ndagi U. Falaki A.A. Abdullahi M. Lawal M.M. Soliman M.E. Antibiotic resistance: Bioinformatics-based understanding as a functional strategy for drug design. RSC Advances 2020 10 31 18451 18468 10.1039/D0RA01484B 35685616
    [Google Scholar]
  4. Alcock B.P. Raphenya A.R. Lau T.T.Y. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020 48 D1 D517 D525 31665441
    [Google Scholar]
  5. Guevara Salazar J.A. Morán Díaz J.R. Ramírez Segura E. Trujillo Ferrara J.G. What are the origins of growing microbial resistance? Both Lamarck and Darwin were right. Expert Rev. Anti Infect. Ther. 2021 19 5 563 569 10.1080/14787210.2021.1839418 33073640
    [Google Scholar]
  6. Catalano A. Iacopetta D. Ceramella J. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022 27 3 616 10.3390/molecules27030616 35163878
    [Google Scholar]
  7. Abushaheen MA Muzaheed, Fatani AJ, et al. Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon. 2020 66 6 100971 10.1016/j.disamonth.2020.100971 32201008
    [Google Scholar]
  8. D’Costa V.M. Wright G.D. Biochemical logic of antibiotic inactivation and modification. Antimicrob Drug Resist Mech Drug Resist 2017 1 97 113 10.1007/978‑3‑319‑46718‑4_8
    [Google Scholar]
  9. Munita J.M. Arias C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016 4 2 10.1128/microbiolspec.VMBF‑0016‑2015
    [Google Scholar]
  10. Gauthier J. Vincent A.T. Charette S.J. Derome N. A brief history of bioinformatics. Brief. Bioinform. 2019 20 6 1981 1996 10.1093/bib/bby063 30084940
    [Google Scholar]
  11. Maryam L. Usmani S.S. Raghava G.P.S. Computational resources in the management of antibiotic resistance: Speeding up drug discovery. Drug Discov. Today 2021 26 9 2138 2151 10.1016/j.drudis.2021.04.016 33892146
    [Google Scholar]
  12. Ho C.S. Wong C.T.H. Aung T.T. Antimicrobial resistance: A concise update. Lancet Microbe 2025 6 1 100947 10.1016/j.lanmic.2024.07.010 39305919
    [Google Scholar]
  13. Prestinaci F. Pezzotti P. Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015 109 7 309 318 10.1179/2047773215Y.0000000030 26343252
    [Google Scholar]
  14. C Reygaert W. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018 4 3 482 501 10.3934/microbiol.2018.3.482 31294229
    [Google Scholar]
  15. Ramirez M.S. Tolmasky M.E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 2010 13 6 151 171 10.1016/j.drup.2010.08.003 20833577
    [Google Scholar]
  16. Fernández L. Hancock R.E.W. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev. 2012 25 4 661 681 10.1128/CMR.00043‑12 23034325
    [Google Scholar]
  17. Varela M.F. Stephen J. Lekshmi M. Bacterial resistance to antimicrobial agents. Antibiotics 2021 10 5 593 10.3390/antibiotics10050593 34067579
    [Google Scholar]
  18. Gabibov A.G. Dontsova O.A. Egorov A.M. Overcoming antibiotic resistance in microorganisms: Molecular mechanisms. Biochemistry 2020 85 11 1289 1291 10.1134/S0006297920110012 33280573
    [Google Scholar]
  19. Henderson P.J.F. Maher C. Elbourne L.D.H. Eijkelkamp B.A. Paulsen I.T. Hassan K.A. Physiological functions of bacterial “multidrug” efflux pumps. Chem. Rev. 2021 121 9 5417 5478 10.1021/acs.chemrev.0c01226 33761243
    [Google Scholar]
  20. Sun J. Deng Z. Yan A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 2014 453 2 254 267 10.1016/j.bbrc.2014.05.090 24878531
    [Google Scholar]
  21. Egorov A.M. Ulyashova M.M. Rubtsova M.Y. Bacterial enzymes and antibiotic resistance. Acta Nat 2018 10 4 33 48 10.32607/20758251‑2018‑10‑4‑33‑48 30713760
    [Google Scholar]
  22. Schaenzer A.J. Wright G.D. Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol. Med. 2020 26 8 768 782 10.1016/j.molmed.2020.05.001 32493628
    [Google Scholar]
  23. Polikanov Y.S. Aleksashin N.A. Beckert B. Wilson D.N. The mechanisms of action of ribosome-targeting peptide antibiotics. Front. Mol. Biosci. 2018 5 48 10.3389/fmolb.2018.00048 29868608
    [Google Scholar]
  24. Wachino J.I. Doi Y. Arakawa Y. Aminoglycoside Resistance. Infect. Dis. Clin. North Am. 2020 34 4 887 902 10.1016/j.idc.2020.06.002 33011054
    [Google Scholar]
  25. Morić I. Savić M. Ilić-Tomić T. Vojnović S. Bajkić S. Vasiljević B. rRNA methyltransferases and their role in resistance to antibiotics. J. Med. Biochem. 2010 29 29 165 174 10.2478/v10011‑010‑0030‑y
    [Google Scholar]
  26. Salaikumaran M.R. Badiger V.P. Burra V.L.S.P. 16S rRNA methyltransferases as novel drug targets against tuberculosis. Protein J. 2022 41 1 97 130 10.1007/s10930‑021‑10029‑2 35112243
    [Google Scholar]
  27. Stsiapanava A. Selmer M. Crystal structure of ErmE - 23S rRNA methyltransferase in macrolide resistance. Sci. Rep. 2019 9 1 14607 10.1038/s41598‑019‑51174‑0 31601908
    [Google Scholar]
  28. Stogios P.J. Savchenko A. Molecular mechanisms of vancomycin resistance. Protein Sci. 2020 29 3 654 669 10.1002/pro.3819 31899563
    [Google Scholar]
  29. Moffatt J.H. Harper M. Boyce J.D. Mechanisms of polymyxin resistance. Adv. Exp. Med. Biol. 2019 1145 55 71 10.1007/978‑3‑030‑16373‑0_5
    [Google Scholar]
  30. Connell S.R. Tracz D.M. Nierhaus K.H. Taylor D.E. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 2003 47 12 3675 3681 10.1128/AAC.47.12.3675‑3681.2003 14638464
    [Google Scholar]
  31. Rodríguez-Martínez J.M. Machuca J. Cano M.E. Calvo J. Martínez-Martínez L. Pascual A. Plasmid-mediated quinolone resistance: Two decades on. Drug Resist. Updat. 2016 29 13 29 10.1016/j.drup.2016.09.001 27912841
    [Google Scholar]
  32. Dhindwal P. Thompson C. Kos D. A neglected and emerging antimicrobial resistance gene encodes for a serine-dependent macrolide esterase. Proc. Natl. Acad. Sci. USA 2023 120 8 2219827120 10.1073/pnas.2219827120 36791107
    [Google Scholar]
  33. Nagshetty K. Shilpa B.M. Patil S.A. Shivannavar C.T. Manjula N.G. An overview of extended spectrum beta lactamases and metallo beta lactamases. Adv. Microbiol. 2021 11 1 37 62 10.4236/aim.2021.111004
    [Google Scholar]
  34. Golkar T. Zieliński M. Berghuis A.M. Look and outlook on enzyme-mediated macrolide resistance. Front. Microbiol. 2018 9 1942 10.3389/fmicb.2018.01942 30177927
    [Google Scholar]
  35. Morar M. Pengelly K. Koteva K. Wright G.D. Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry 2012 51 8 1740 1751 10.1021/bi201790u 22303981
    [Google Scholar]
  36. Zieliński M. Park J. Sleno B. Berghuis A.M. Structural and functional insights into esterase-mediated macrolide resistance. Nat. Commun. 2021 12 1 1732 10.1038/s41467‑021‑22016‑3 33741980
    [Google Scholar]
  37. Van Bambeke F. Balzi E. Tulkens P.M. Antibiotic efflux pumps. Biochem. Pharmacol. 2000 60 4 457 470 10.1016/S0006‑2952(00)00291‑4 10874120
    [Google Scholar]
  38. Hassan K.A. Liu Q. Henderson P.J.F. Paulsen I.T. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems. MBio 2015 6 1 e01982 e14 10.1128/mBio.01982‑14 25670776
    [Google Scholar]
  39. Kim J. Cater R.J. Choy B.C. Mancia F. Structural insights into transporter-mediated drug resistance in infectious diseases. J. Mol. Biol. 2021 433 16 167005 10.1016/j.jmb.2021.167005 33891902
    [Google Scholar]
  40. Nishino K. Yamasaki S. Nakashima R. Zwama M. Hayashi-Nishino M. Function and inhibitory mechanisms of multidrug efflux pumps. Front. Microbiol. 2021 12 737288 10.3389/fmicb.2021.737288 34925258
    [Google Scholar]
  41. Zhang W. Fisher J.F. Mobashery S. The bifunctional enzymes of antibiotic resistance. Curr. Opin. Microbiol. 2009 12 5 505 511 10.1016/j.mib.2009.06.013 19615931
    [Google Scholar]
  42. Ahmed S.K. Hussein S. Qurbani K. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2024 2 100081 10.1016/j.glmedi.2024.100081
    [Google Scholar]
  43. Annunziato G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: A review. Int. J. Mol. Sci. 2019 20 23 5844 10.3390/ijms20235844 31766441
    [Google Scholar]
  44. Laws M. Shaaban A. Rahman K.M. Antibiotic resistance breakers: Current approaches and future directions. FEMS Microbiol. Rev. 2019 43 5 490 516 10.1093/femsre/fuz014 31150547
    [Google Scholar]
  45. González-Bello C. Rodríguez D. Pernas M. Rodríguez Á. Colchón E. β-Lactamase inhibitors to restore the efficacy of antibiotics against superbugs. J. Med. Chem. 2020 63 5 1859 1881 10.1021/acs.jmedchem.9b01279 31663735
    [Google Scholar]
  46. Wong D. van Duin D. Novel beta-lactamase inhibitors: Unlocking their potential in therapy. Drugs 2017 77 6 615 628 10.1007/s40265‑017‑0725‑1 28303449
    [Google Scholar]
  47. Bush K. Other β-lactam antibiotics. Antibiot. Chemother. 2010 226 244 10.1016/b978‑0‑7020‑4064‑1.00015‑4
    [Google Scholar]
  48. Shapiro A.B. Kinetics of sulbactam hydrolysis by β-lactamases, and kinetics of β-lactamase inhibition by sulbactam. Antimicrob. Agents Chemother. 2017 61 12 e01612 17 10.1128/AAC.01612‑17 28971872
    [Google Scholar]
  49. Bonomo R. Rudin S.A. Shlaes D.M. Tazobactam is a potent inactivator of selected inhibitor-resistant class A β-lactamases. FEMS Microbiol. Lett. 1997 148 1 59 62 10.1016/S0378‑1097(97)00013‑X 9066111
    [Google Scholar]
  50. Sharma A. Gupta V.K. Pathania R. Efflux pump inhibitors for bacterial pathogens. Indian J. Med. Res. 2019 149 2 129 145 10.4103/ijmr.IJMR_2079_17 31219077
    [Google Scholar]
  51. Lamers R.P. Cavallari J.F. Burrows L.L. The efflux inhibitor phenylalanine-arginine beta-naphthylamide (PAβN) permeabilizes the outer membrane of gram-negative bacteria. PLoS One 2013 8 3 60666 10.1371/journal.pone.0060666 23544160
    [Google Scholar]
  52. Rindi L. Efflux pump inhibitors against nontuberculous mycobacteria. Int. J. Mol. Sci. 2020 21 12 4191 10.3390/ijms21124191 32545436
    [Google Scholar]
  53. Anes J. Sivasankaran S.K. Muthappa D.M. Fanning S. Srikumar S. Exposure to sub-inhibitory concentrations of the chemosensitizer 1-(1-Naphthylmethyl)-piperazine creates membrane destabilization in multi-drug resistant Klebsiella pneumoniae. Front. Microbiol. 2019 10 92 10.3389/fmicb.2019.00092 30814979
    [Google Scholar]
  54. Grimsey E.M. Piddock L.J.V. Do phenothiazines possess antimicrobial and efflux inhibitory properties? FEMS Microbiol. Rev. 2019 43 6 577 590 10.1093/femsre/fuz017 31216574
    [Google Scholar]
  55. Mahamoud A. Chevalier J. Davin-Regli A. Barbe J. Pagès J.M. Quinoline derivatives as promising inhibitors of antibiotic efflux pump in multidrug resistant Enterobacter aerogenes isolates. Curr. Drug Targets 2006 7 7 843 847 10.2174/138945006777709557 16842215
    [Google Scholar]
  56. Stavri M. Piddock L.J.V. Gibbons S. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother. 2007 59 6 1247 1260 10.1093/jac/dkl460 17145734
    [Google Scholar]
  57. Douafer H. Andrieu V. Phanstiel O. Brunel J.M. Antibiotic adjuvants: Make antibiotics great again! J. Med. Chem. 2019 62 19 8665 8681 10.1021/acs.jmedchem.8b01781 31063379
    [Google Scholar]
  58. George A. Georrge J.J. Viroinformatics: Databases and tools. Rec Trends Sci Tech 2019 2019 117 126
    [Google Scholar]
  59. Georrge J.J. Mishra S.K. Chhetri T. Roy S. Gurung K. Computational tools and software in drug discovery. In: Molecular modeling and docking techniques for drug discovery and design. USA IGI Global Scientific Publishing 2025 183 216
    [Google Scholar]
  60. Balakrishnan A. Mishra S.K. Sharma K. Gaglani C. Georrge J.J. Intersecting peptidomics and bioactive peptides in drug therapeutics. Curr. Bioinform. 2025 20 2 103 119 10.2174/0115748936351054241010091822
    [Google Scholar]
  61. Papp M. Solymosi N. Review and comparison of antimicrobial resistance gene databases. Antibiotics 2022 11 3 339 10.3390/antibiotics11030339
    [Google Scholar]
  62. Flandrois J.P. Lina G. Dumitrescu O. MUBII-TB-DB: A database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinformatics 2014 15 1 107 10.1186/1471‑2105‑15‑107 24731071
    [Google Scholar]
  63. Boolchandani M. D’Souza A.W. Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat. Rev. Genet. 2019 20 6 356 370 10.1038/s41576‑019‑0108‑4 30886350
    [Google Scholar]
  64. Saha S.B. Uttam V. Verma V. u-CARE: User-friendly Comprehensive Antibiotic resistance Repository of Escherichia coli. J. Clin. Pathol. 2015 68 8 648 651 10.1136/jclinpath‑2015‑202927 25935546
    [Google Scholar]
  65. Lakin S.M. Dean C. Noyes N.R. MEGARes: An antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res. 2017 45 D1 D574 D580 10.1093/nar/gkw1009 27899569
    [Google Scholar]
  66. Feldgarden M. Brover V. Gonzalez-Escalona N. AMRFinderPlus and the Reference Gene Catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 2021 11 1 12728 10.1038/s41598‑021‑91456‑0 34135355
    [Google Scholar]
  67. Gschwind R. Ugarcina Perovic S. Weiss M. ResFinderFG v2.0: A database of antibiotic resistance genes obtained by functional metagenomics. Nucleic Acids Res. 2023 51 W1 W493-500 10.1093/nar/gkad384 37207327
    [Google Scholar]
  68. Yang Y. Jiang X. Chai B. ARGs-OAP: Online analysis pipeline for antibiotic resistance genes detection from metagenomic data using an integrated structured ARG-database. Bioinformatics 2016 32 15 2346 2351 10.1093/bioinformatics/btw136 27153579
    [Google Scholar]
  69. Thai Q.K. Bös F. Pleiss J. The lactamase engineering database: A critical survey of TEM sequences in public databases. BMC Genomics 2009 10 1 390 10.1186/1471‑2164‑10‑390 19698099
    [Google Scholar]
  70. Widmann M. Pleiss J. Oelschlaeger P. Systematic analysis of metallo-β-lactamases using an automated database. Antimicrob. Agents Chemother. 2012 56 7 3481 3491 10.1128/AAC.00255‑12 22547615
    [Google Scholar]
  71. Naas T. Oueslati S. Bonnin R.A. Beta-lactamase database (BLDB) - structure and function. J. Enzyme Inhib. Med. Chem. 2017 32 1 917 919 10.1080/14756366.2017.1344235 28719998
    [Google Scholar]
  72. Srivastava A. Singhal N. Goel M. Virdi J.S. Kumar M. CBMAR: A comprehensive β-lactamase molecular annotation resource. Database 2014 2014 bau111 10.1093/database/bau111 25475113
    [Google Scholar]
  73. Wang G. Zietz C.M. Mudgapalli A. Wang S. Wang Z. The evolution of the antimicrobial peptide database over 18 years: Milestones and new features. Protein Sci. 2022 31 1 92 106 10.1002/pro.4185 34529321
    [Google Scholar]
  74. Waghu F.H. Idicula-Thomas S. Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Sci. 2020 29 1 36 42 10.1002/pro.3714 31441165
    [Google Scholar]
  75. Jhong J.H. Chi Y.H. Li W.C. Lin T.H. Huang K.Y. Lee T.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res. 2019 47 D1 D285 D297 10.1093/nar/gky1030 30380085
    [Google Scholar]
  76. Pirtskhalava M. Amstrong A.A. Grigolava M. DBAASP v3: Database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics. Nucleic Acids Res. 2021 49 D1 D288 D297 10.1093/nar/gkaa991 33151284
    [Google Scholar]
  77. Lv J. Liu G. Dong W. Ju Y. Sun Y. ACDB: An Antibiotic Combination DataBase. Front. Pharmacol. 2022 13 869983 10.3389/fphar.2022.869983 35370670
    [Google Scholar]
  78. Arango-Argoty G.A. Dai D. Pruden A. Vikesland P. Heath L.S. Zhang L. NanoARG: A web service for detecting and contextualizing antimicrobial resistance genes from nanopore-derived metagenomes. Microbiome 2019 7 1 88 10.1186/s40168‑019‑0703‑9 31174603
    [Google Scholar]
  79. Arango-Argoty G.A. Guron G.K.P. Garner E. ARGminer: A web platform for the crowdsourcing-based curation of antibiotic resistance genes. Bioinformatics 2020 36 9 2966 2973 10.1093/bioinformatics/btaa095 32058567
    [Google Scholar]
  80. Pinzi L. Tinivella A. Gagliardelli L. Beneventano D. Rastelli G. LigAdvisor: A versatile and user-friendly web-platform for drug design. Nucleic Acids Res. 2021 49 W1 W326-35 10.1093/nar/gkab385 34023895
    [Google Scholar]
  81. Snyder EE Kampanya N Lu J PATRIC: The VBI pathosystems resource integration center. Nucleic Acids Res 2007 35 Database D401 6 10.1093/nar/gkl858 17142235
    [Google Scholar]
  82. Kyriakidis I. Vasileiou E. Pana Z.D. Tragiannidis A. Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens 2021 10 3 373 10.3390/pathogens10030373 33808905
    [Google Scholar]
  83. Elfadadny A. Ragab R.F. AlHarbi M. Antimicrobial resistance of Pseudomonas aeruginosa: Navigating clinical impacts, current resistance trends, and innovations in breaking therapies. Front. Microbiol. 2024 15 1374466 10.3389/fmicb.2024.1374466 38646632
    [Google Scholar]
  84. Gan T. Shu G. Fu H. Antimicrobial resistance and genotyping of Staphylococcus aureus obtained from food animals in Sichuan Province, China. BMC Vet. Res. 2021 17 1 177 10.1186/s12917‑021‑02884‑z 33902574
    [Google Scholar]
  85. Bruce S.A. Smith J.T. Mydosh J.L. Shared antibiotic resistance and virulence genes in Staphylococcus aureus from diverse animal hosts. Sci. Rep. 2022 12 1 4413 10.1038/s41598‑022‑08230‑z 35292708
    [Google Scholar]
  86. Zhang X. Tan L. Ouyang P. Analysis of distribution and antibiotic resistance of Gram-positive bacteria isolated from a tertiary-care hospital in southern China: An 8-year retrospective study. Front. Microbiol. 2023 14 1220363 10.3389/fmicb.2023.1220363 37840716
    [Google Scholar]
  87. Dadgostar P. Antimicrobial resistance: Implications and costs. Infect. Drug Resist. 2019 12 3903 3910 10.2147/IDR.S234610 31908502
    [Google Scholar]
  88. Zhu Y. Huang W.E. Yang Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug Resist. 2022 15 735 746 10.2147/IDR.S345574 35264857
    [Google Scholar]
  89. Algammal A. Hetta H.F. Mabrok M. Behzadi P. Editorial: Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol. 2023 14 1135614 10.3389/fmicb.2023.1135614 36819057
    [Google Scholar]
  90. Liu H. Shi K. Wang Y. Characterization of antibiotic resistance genes and mobile genetic elements in Escherichia coli isolated from captive black bears. Sci. Rep. 2024 14 1 2745 10.1038/s41598‑024‑52622‑2 38302507
    [Google Scholar]
  91. Naylor N.R. Atun R. Zhu N. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018 7 1 58 10.1186/s13756‑018‑0336‑y 29713465
    [Google Scholar]
  92. Raveendran K. Vaiyapuri M. Badireddy M.R. Molecular tools for characterizing AMR pathogens. In: Handbook on antimicrobial resistance: Current status, trends in detection and mitigation measures. Cham Springer 2023 1 25
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128415482250721112427
Loading
/content/journals/cpd/10.2174/0113816128415482250721112427
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test