Skip to content
2000
image of Comprehensive Evaluation of Triptolide’s Therapeutic Mechanisms in Diabetic Kidney Disease via Meta-Analysis, Network Pharmacology, Molecular Docking, and Mendelian Randomization

Abstract

Introduction

Diabetic kidney disease (DKD) is a devastating complication of diabetes for which there are few potent treatments.Triptolide (TP), an active compound from , has shown potential in early studies, but its therapeutic mechanisms in DKD are not fully understood. This study aims to systematically evaluate TP’s efficacy and mechanisms using meta-analysis, network pharmacology, molecular docking, and Mendelian randomization (MR).

Methods

A comprehensive search across Chinese and English databases identified animal randomized controlled trials (RCTs) assessing the effects of TP on DKD. A total of 27 studies were incorporated, and a meta-analysis was conducted Review Manager. TP's drug and disease targets were identified through network pharmacology and molecular docking, while bioinformatics methods were employed to explore the mechanisms. MR analysis was performed to assess potential causal relationships between TP and DKD-related targets.

Results

Meta-analysis showed that TP significantly reduced urinary protein, blood lipids, and glucose levels, while improving renal function, renal weight, and renal index (all < 0.05). Seven core targets—IFNG, CXCL8, TNF, TGFB1, IL2, IL4, and RELA—were identified network pharmacology, involving key pathways such as lipid-atherosclerosis, AGE-RAGE, and IL-17 signaling. Molecular docking demonstrated strong binding affinities between TP and these targets, with binding energies below -7.00 kJ/mol. Although MR analysis did not establish direct causal relationships between these core genes and DKD, a significant negative correlation between TNF, IL4, and GFR was observed, suggesting their involvement in DKD progression.

Discussion

TP may exert therapeutic effects on DKD through coordinated regulation of immune and inflammatory pathways. The integration of multi-omics approaches supports its multi-target pharmacological mechanisms. Although MR analysis did not confirm direct causal relationships, the identified gene associations further reinforce the potential biological relevance of TP. However, this study was primarily based on public datasets and lacks experimental validation and .

Conclusion

TP exerts therapeutic effects on DKD through multi-target and multi-pathway mechanisms, primarily involving immunomodulation, anti-inflammation, anti-oxidation, and anti-fibrosis processes.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128367671250714100708
2025-07-23
2025-09-10
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128367671250714100708/BMS-CPD-2024-1158.html?itemId=/content/journals/cpd/10.2174/0113816128367671250714100708&mimeType=html&fmt=ahah

References

  1. van Raalte D.H. Bjornstad P. Cherney D.Z.I. Combination therapy for kidney disease in people with diabetes mellitus. Nat. Rev. Nephrol. 2024 20 7 433 446 10.1038/s41581‑024‑00827‑z 38570632
    [Google Scholar]
  2. Peng J. Zhang Y. Zhu Y. Estimated glucose disposal rate for predicting cardiovascular events and mortality in patients with non-diabetic chronic kidney disease: A prospective cohort study. BMC Med. 2024 22 1 411 10.1186/s12916‑024‑03582‑x 39334214
    [Google Scholar]
  3. Wang Y. You Y.K. Guo J. C-reactive protein promotes diabetic kidney disease via Smad3-mediated NLRP3 inflammasome activation. Mol. Ther. 2025 33 1 263 278 10.1016/j.ymthe.2024.11.018 39539016
    [Google Scholar]
  4. Mazzieri A. Porcellati F. Timio F. Reboldi G. Molecular targets of novel therapeutics for diabetic kidney disease: A new era of nephroprotection. Int. J. Mol. Sci. 2024 25 7 3969 10.3390/ijms25073969 38612779
    [Google Scholar]
  5. Umapathysivam M.M. Morgan B. Inglis J.M. SGLT2 inhibitor–associated ketoacidosis vs type 1 diabetes–associated ketoacidosis. JAMA Netw. Open 2024 7 3 e242744 10.1001/jamanetworkopen.2024.2744 38497966
    [Google Scholar]
  6. Legrand M. Falcone J. Cholley B. Continuation vs discontinuation of renin-angiotensin system inhibitors before major noncardiac surgery. JAMA 2024 332 12 970 978 10.1001/jama.2024.17123 39212270
    [Google Scholar]
  7. Lerma E. White W.B. Bakris G. Effectiveness of nonsteroidal mineralocorticoid receptor antagonists in patients with diabetic kidney disease. Postgrad. Med. 2023 135 3 224 233 10.1080/00325481.2022.2060598 35392754
    [Google Scholar]
  8. Liu P. Liu H. Sang Y. Triptolide regulates neutrophil function through the Hippo signaling pathway to alleviate rheumatoid arthritis disease progression. J. Transl. Autoimmun. 2024 8 100242 10.1016/j.jtauto.2024.100242 38765902
    [Google Scholar]
  9. Wu Q. Leng X. Ma X. Triptolide reduces MDA-MB-231 cell metastasis by attenuating epithelial-mesenchymal transition through the ROCK/PTEN/Akt axis. Chem. Biodivers. 2023 20 12 e202300399 10.1002/cbdv.202300399 37910661
    [Google Scholar]
  10. Zhang S. Li H. Yang C. Inflammatory and immunomodulatory Effects of Tripterygium wilfordii multiglycoside in mouse models of psoriasis keratinocytes. Chin. J. Integr. Med. 2024 30 3 222 229 10.1007/s11655‑023‑3599‑y 37597119
    [Google Scholar]
  11. Lv C. Cheng T. Zhang B. Sun K. Lu K. Triptolide protects against podocyte injury in diabetic nephropathy by activating the Nrf2/HO-1 pathway and inhibiting the NLRP3 inflammasome pathway. Ren. Fail. 2023 45 1 2165103 10.1080/0886022X.2023.2165103 36938748
    [Google Scholar]
  12. Wang H.Q. Wu H.X. Shi W.Q. Triptolide attenuates renal slit diagram to tight junction transition in diabetic kidney disease by regulating Nrf2–ferroptosis pathway. Am. J. Chin. Med. 2024 52 7 2161 2185 10.1142/S0192415X24500836 39663264
    [Google Scholar]
  13. Shi H. Liu Q. He W. Ma X. Shen X. Zou Y. Triptolide attenuates LPS-induced chondrocyte inflammation by inhibiting inflammasome activation via the Wnt/β-catenin and NF-κB signaling pathways. Cytotechnology 2025 77 1 13 10.1007/s10616‑024‑00680‑9 39665044
    [Google Scholar]
  14. Ren L. Wan R. Chen Z. Triptolide alleviates podocyte epithelial-mesenchymal transition via kindlin-2 and EMT-related TGF-β/Smad signaling pathway in diabetic kidney disease. Appl. Biochem. Biotechnol. 2022 194 2 1000 1012 10.1007/s12010‑021‑03661‑2 34596829
    [Google Scholar]
  15. Chhabra M. Ben-Eltriki M. Mansell H. Cannabinoids used for medical purposes in children and adolescents. JAMA Pediatr. 2024 178 11 1124 1135 10.1001/jamapediatrics.2024.3045 39283619
    [Google Scholar]
  16. Wu Z. Shi R. Yan S. Integrating network pharmacology, experimental validation and molecular docking to reveal the alleviation of Yinhuang granule on idiopathic pulmonary fibrosis. Phytomedicine 2024 128 155368 10.1016/j.phymed.2024.155368 38498951
    [Google Scholar]
  17. Mu C. Dang X. Luo X.J. Mendelian randomization analyses reveal causal relationships between brain functional networks and risk of psychiatric disorders. Nat. Hum. Behav. 2024 8 7 1417 1428 10.1038/s41562‑024‑01879‑8 38724650
    [Google Scholar]
  18. Hooijmans C.R. Rovers M.M. de Vries R.B.M. Leenaars M. Ritskes-Hoitinga M. Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014 14 1 43 10.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  19. Lv H. Liu K. Xie Y. No causal association between allergic rhinitis and migraine: A Mendelian randomization study. Eur. J. Med. Res. 2024 29 1 78 10.1186/s40001‑024‑01682‑1 38281051
    [Google Scholar]
  20. Ren L.Y. Zhu M. Zhu H.Y. Ding M. Fei D.F. Huo L.X. Effect of triptolide on podocytes in mice with diabetic nephropathy by regulating Toll-Like Receptor(TLR)/nuclear factor-Kb(NF-κB) signal pathway. Zhejiang J Integr Trad Chin West Med 2020 30 3 191 195 10.3969/j.issn.1005‑4561.2020.03.007
    [Google Scholar]
  21. Zhu J.J. Wang B.F. Hong Y.Z. Yang X.C. Effect of triptolide on the expression of RANTES in the renal tissue of diabetic nephropathy rats. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 2014 34 10 1231 1237 10.7661/CJIM.2014.10.1231 25509268
    [Google Scholar]
  22. Xue M. Cheng Y. Han F. Triptolide attenuates renal tubular epithelial-mesenchymal transition via the MiR-188-5p-mediated PI3K/AKT pathway in diabetic kidney disease. Int. J. Biol. Sci. 2018 14 11 1545 1557 10.7150/ijbs.24032 30263007
    [Google Scholar]
  23. Han F. Study on the mechanism of triptolide in improving diabetic nephropathy via PDK1/Akt and miR-137/Notch1 pathway. Doctor of Philosophy. Tianjin Medicial University 2018
    [Google Scholar]
  24. Fan H.R. Yang J.H. Wang M. Du J.J. Fang F. Experimental study of Tripterygium glycosides in delaying the progression of diabetic nephropathy. Zhongguo Linchuang Baojian Zazhi 2018 21 3 377 382 10.3969/J.issn.1672‑6790.2018.03.024
    [Google Scholar]
  25. Wang D.N. Yu R. Effects of triptolide on expressions of iNOS and COX-2 in renal tissue of diabetic nephropathy rats. Progr Anatom Sci 2017 23 148 150
    [Google Scholar]
  26. Wang D.N. Yu R. Effects of triptolide on expressions of PGE2 and NF-κB in renal tissue of diabetic nephropathy rats. Prog Anat Sci 2017 23 2 148 150
    [Google Scholar]
  27. Wang D.N. Yu R. Effects of triptolide on expressions of TNF-α and MCP-1 in renal tissue of diabetic nephropathy rats. Prog Anat Sci 2017 23 71 73 10.16695/j.cnki.1006‑2947.2017.01.020
    [Google Scholar]
  28. An Z.M. Dong X.G. Guo Y. Zhou J.L. Qin T. Effect of triptolide on urinary albumin excretion in rats with diabetic nephropathy. J Nanchang Univ Sci 2017 57 27 29 10.13764/j.cnki.ncdm.2017.01.007
    [Google Scholar]
  29. You L.J. Guo H. Li Y.C. Influence of triptolide on the expression of Glut-1,Glut-4 in kidney of diabetic nephropathy rats. Shiyong Yaowu Yu Linchuang 2015 18 4 390 393 10.14053/j.cnki.ppcr.201504004
    [Google Scholar]
  30. Ye X. Hong Y.Z. Effect of triptolide on the expression of regulated upon activation normal T - cell expressed and secreted in renal tissue of diabetic nephropathy rats. Chin. J. Clin. Pharmacol. 2015 31 1 31 37 10.13699/j.cnki.1001‑6821.2015.01.010
    [Google Scholar]
  31. Li W.H. Bai X.M. Wu Y.D. Huang W. Tian X.Y. Men H.T. Protective effect of triptolide on kidney of early diabetes mellitus (DM) model rats. J Hebei North Univ 2015 31 05 77 80 10.3969/j.issn.1673‑1492.2015.05.017
    [Google Scholar]
  32. Ruan J. Li K.Z. Jiang A.Q. Expression of angiopoietin-like protein 2 in the kidneys of diabetic rats and the interventional study of triptolide. Chin J Pharm Econ 2014 9 S1 27 29
    [Google Scholar]
  33. Liu Q. Chen S.J. Liu F.H. Wang X.Q. Shi Z.W. Chen H.P. Effects of triptolide on expressions of NF - κB,NOS and VEGF in glomeruli of diabetes mellitus rats. J Clin Exp Med 2014 13 23 1925 1929 10.3969/j.issn.1671‑4695.2014.23.002
    [Google Scholar]
  34. Li K.Z. Influence of ANGPTL2 on the podocytes in the kidney of type 2 diabetes rat models and effect of triptolide. Doctor of philosophy. Qingdao University 2014
    [Google Scholar]
  35. Li K.Z. Luan J. Sui A.H. Ma R.X. Zhou L.M. Wang Y. Influence of irbesrtan combined with triptolide on ANGPTL2 and VEGF in the kidney of 2 type diabetes at models. Chin J Integr Trad West Nephrol 2013 14 11 959 962
    [Google Scholar]
  36. Ma R.X. Xu Y. Zhang J. Li Y.S. Liu L.Q. Triptolide combined with irbesartan synergistically blocks podocyte injury in a type 2 diabetes rat model. Zhonghua Nei Ke Za Zhi 2012 51 2 117 122 10.3760/cma.j.issn.0578‑1426.2012.02.012 22490812
    [Google Scholar]
  37. Ma R.X. Liu X.M. Liu L.Q. Li H.N. Effects of triptolide on the podocyte protein expression of nephrin and podocin and its mechanism in type 2 diabetic rats. Chin J Diabetes Mellitus 2010 02 4 291 296 10.3760/cma.j.issn.1674‑5809.2010.04.013
    [Google Scholar]
  38. Ma R.X. Wang Y. Wei Z.M. Effect of triptolide on podocyte injury and its mechanism in the kidney of 2 type diabetic rats. Chin. J. Immunol. 2009 25 5 404 408
    [Google Scholar]
  39. Ma R.X. Liu L.Q. Xu Y. Jiang W. Protective effect of triptolide on renal tissues in type 2 diabetic rats. Chin J Hypertension 2008 16 12 1120 1124 10.3969/j.issn.1673‑7245.2008.12.017
    [Google Scholar]
  40. Gao Q. Liu Z.H. Qin W.S. Zhen C.X. Zhang M.C. Zeng C.H. Triptolide ameliorates proteinuria and improves renal lesion in diabetic db/db mice. J Nephrol Dial Transplant 2009 18 6 519 528 10.3969/j.issn.1006‑298X.2009.06.004
    [Google Scholar]
  41. Dong X. An Z. Guo Y. Zhou J. Qin T. Effect of triptolide on expression of oxidative carbonyl protein in renal cortex of rats with diabetic nephropathy. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2017 37 1 25 29 10.1007/s11596‑017‑1689‑9 28224432
    [Google Scholar]
  42. Liu F. Li Y. Zhou Y.X. Lu L.F. Xiong G.L. Mechanism of triptolide in prevention and treatment of diabetic nephropathy based on cGAS/STING/NFκB pathway. J Chin Foreign Med Pharm Res 2024 3 33 3 5
    [Google Scholar]
  43. Guo H. Pan C. Chang B. Triptolide improves diabetic nephropathy by regulating Th cell balance and macrophage infiltration in rat models of diabetic nephropathy. Exp. Clin. Endocrinol. Diabetes 2016 124 6 389 398 10.1055/s‑0042‑106083 27328403
    [Google Scholar]
  44. Pang R. Gu D. Triptolide improves renal injury in diabetic nephropathy rats through TGF-β1/smads signal pathway. Endocr. Metab. Immune Disord. Drug Targets 2021 21 10 1905 1911 10.2174/1871530320666201208110209 34530721
    [Google Scholar]
  45. Yu Z. Wu Y. Ma Y. Cheng Y. Song G. Zhang F. Systematic analysis of the mechanism of aged citrus peel (Chenpi) in oral squamous cell carcinoma treatment via network pharmacology, molecular docking and experimental validation. J. Funct. Foods 2022 91 105012 105022 10.1016/j.jff.2022.105012
    [Google Scholar]
  46. Deng Y.J. Liu B.W. He Z.X. Liu T. Zhen R.L. Yang A.D. Study on active compounds from Huoxiang Zhengqi Oral Liquid for prevention of coronavirus disease 2019 (COVID-19) based on network pharmacology and molecular docking. Chin. Tradit. Herbal Drugs 2020 51 05 1113 1122 10.7501/j.issn.0253‑2670.2020.05.004
    [Google Scholar]
  47. Barratt J. Liew A. Yeo S.C. Phase 2 trial of cemdisiran in adult patients with IgA nephropathy: A randomized controlled trial. Clin. J. Am. Soc. Nephrol. 2024 19 4 452 462 10.2215/CJN.0000000000000384 38214599
    [Google Scholar]
  48. Jiang M. Xie Y. Wang P. Du M. Wang Y. Yan S. Research progress of triptolide against fibrosis. Drug Des. Devel. Ther. 2024 18 3255 3266 10.2147/DDDT.S467929 39081704
    [Google Scholar]
  49. Sun R. Dai J. Ling M. Yu L. Yu Z. Tang L. Delivery of triptolide: A combination of traditional Chinese medicine and nanomedicine. J. Nanobiotechnology 2022 20 1 194 10.1186/s12951‑022‑01389‑7 35443712
    [Google Scholar]
  50. Shen F. Zheng Y.S. Dong L. Cao Z. Cao J. Enhanced tumor suppression in colorectal cancer via berberine-loaded PEG-PLGA nanoparticles. Front. Pharmacol. 2024 15 1500731 10.3389/fphar.2024.1500731 39555093
    [Google Scholar]
  51. Liu D. Ni M.X. Tong X.Y. Chen D.Y. Expressions of IL-4, INF-&#947;and TAFI in peripheral blood and their correlation with glomerular filtration function in patients with type 2 diabetic nephropathy. J North Sichuan Med Coll 2023 38 4 510 513 10.3969/j.issn.1005‑3697.2023.04.017
    [Google Scholar]
  52. Zheng D. Hu J. Mai C. Liver X receptor inverse agonist SR9243 attenuates rheumatoid arthritis via modulating glycolytic metabolism of macrophages. Acta Pharmacol. Sin. 2024 45 11 2354 2365 10.1038/s41401‑024‑01315‑7 38987388
    [Google Scholar]
  53. Chang T.T. Chen J.W. The role of chemokines and chemokine receptors in diabetic nephropathy. Int. J. Mol. Sci. 2020 21 9 3172 10.3390/ijms21093172 32365893
    [Google Scholar]
  54. Cui S. Zhu Y. Du J. CXCL8 antagonist improves diabetic nephropathy in male mice with diabetes and attenuates high glucose–induced mesangial injury. Endocrinology 2017 158 6 1671 1684 10.1210/en.2016‑1781 28387853
    [Google Scholar]
  55. Wang Y. Ping Z. Gao H. LYC inhibits the AKT signaling pathway to activate autophagy and ameliorate TGFB-induced renal fibrosis. Autophagy 2024 20 5 1114 1133 10.1080/15548627.2023.2287930 38037248
    [Google Scholar]
  56. Chen C. Feng C. Luo Q. CD5L up-regulates the TGF-β signaling pathway and promotes renal fibrosis. Life Sci. 2024 354 122945 10.1016/j.lfs.2024.122945 39127319
    [Google Scholar]
  57. Jang J.Y. Kim H.W. Yan J.J. Interleukin-2/anti-interleukin-2 immune complex attenuates cold ischemia-reperfusion injury after kidney transplantation by increasing renal regulatory T cells. Clin. Transl. Med. 2024 14 3 e1631 10.1002/ctm2.1631 38504554
    [Google Scholar]
  58. Lin D.W. Yang T.M. Ho C. Shih Y.H. Lin C.L. Hsu Y.C. Targeting macrophages: Therapeutic approaches in diabetic kidney disease. Int. J. Mol. Sci. 2024 25 8 4350 10.3390/ijms25084350 38673935
    [Google Scholar]
  59. Wang Y. Li H. Jiang S. The glycolytic enzyme PFKFB3 drives kidney fibrosis through promoting histone lactylation-mediated NF-κB family activation. Kidney Int. 2024 106 2 226 240 10.1016/j.kint.2024.04.016 38789037
    [Google Scholar]
  60. Xu X. Wang Y. Song Q. Mechanism of Zhenwu Decoction modulating TLR4/NF-κB/HIF-1α loop through miR-451 to delay renal fibrosis in type 2 CRS. Phytomedicine 2024 132 155632 10.1016/j.phymed.2024.155632 38851985
    [Google Scholar]
  61. Han X. Wei J. Zheng R. Macrophage SHP2 deficiency alleviates diabetic nephropathy via suppression of MAPK/NF-κB– dependent inflammation. Diabetes 2024 73 5 780 796 10.2337/db23‑0700 38394639
    [Google Scholar]
  62. El-Tahir F. Esh A. Ghorab A. Shendi A.M. Chemerin, TNF- α and the degree of albuminuria in patients with diabetic kidney disease. Cytokine 2024 184 156772 10.1016/j.cyto.2024.156772 39366065
    [Google Scholar]
  63. Xie H. Duan Y. Zhou P. TNF-α-downregulated SIRT1 regulates mitochondrial-autophagy and apoptosis in renal vascular endothelial cells involved in trichloroethylene-induced immune kidney injury. Int. Immunopharmacol. 2024 143 Pt 2 113521 10.1016/j.intimp.2024.113521 39476564
    [Google Scholar]
  64. Zhou Y. Li Z. Yu S. Wang X. Xie T. Zhang W. Iguratimod prevents renal fibrosis in unilateral ureteral obstruction model mice by suppressing M2 macrophage infiltration and macrophage–myofibroblast transition. Ren. Fail. 2024 46 1 2327498 10.1080/0886022X.2024.2327498 38666363
    [Google Scholar]
  65. Tang J.T. Gao K.C. Zhang Y. ERK/STAT3 activation through CCL17/CCR4 axis-mediated type 2 cytokine-involved signaling pathways in Th2 cells regulates cutaneous drug reactions. Int. Immunopharmacol. 2024 130 111712 10.1016/j.intimp.2024.111712 38377858
    [Google Scholar]
  66. Sedky A. Famurewa A.C. Anti-ischemic drug trimetazidine blocks mercury nephrotoxicity by suppressing renal redox imbalance, inflammatory stress and caspase-dependent apoptosis in rats. Drug Chem. Toxicol. 2024 47 5 674 681 10.1080/01480545.2023.2242007 37528808
    [Google Scholar]
  67. Chinese Association of Integrative Medicine Committee of Endocrinology, Chinese Society of Microcirculation Committee of Chinese Medicine and Microcirculation. Expert consensus on the prevention and treatment of diabetic kidney disease with integrated traditional Chinese and Western medicine (2023 edition). Chin J Diabetes Mellitus 2023 15 8 690 702 10.3760/cma.j.cn115791‑20230523‑00216
    [Google Scholar]
  68. Lv Z. Hu J. Su H. TRAIL induces podocyte PANoptosis via death receptor 5 in diabetic kidney disease. Kidney Int. 2025 107 2 317 331 10.1016/j.kint.2024.10.026 39571905
    [Google Scholar]
  69. Xu Y. Liu J. Wang J. Wang J. Lan P. Wang T. USP25 stabilizes STAT6 to promote IL-4-induced macrophage M2 polarization and fibrosis. Int. J. Biol. Sci. 2025 21 2 475 489 10.7150/ijbs.99345 39781451
    [Google Scholar]
  70. Lee L.E. Doke T. Mukhi D. Susztak K. The key role of altered tubule cell lipid metabolism in kidney disease development. Kidney Int. 2024 106 1 24 34 10.1016/j.kint.2024.02.025 38614389
    [Google Scholar]
  71. Wang Z. Qian H. Zhong S. Gu T. Xu M. Yang Q. The relationship between triglyceride-glucose index and albuminuria in United States adults. Front. Endocrinol. (Lausanne) 2023 14 1215055 10.3389/fendo.2023.1215055 37680883
    [Google Scholar]
  72. Kim G. Yoo H.J. Yoo M.K. Choi J.H. Lee K.W. Methylglyoxal-derived hydroimidazolone-1/RAGE axis induces renal oxidative stress and renal fibrosis in vitro and in vivo. Toxicology 2024 507 153887 10.1016/j.tox.2024.153887 39019314
    [Google Scholar]
  73. Qin Y. Wu S. Zhang F. Zhou X. You C. Tan F. N6-methyladenosine methylation regulator RBM15 promotes the progression of diabetic nephropathy by regulating cell proliferation, inflammation, oxidative stress, and pyroptosis through activating the AGE-RAGE pathway. Environ. Toxicol. 2023 38 11 2772 2782 10.1002/tox.23917 37551785
    [Google Scholar]
  74. Guzik T.J. Nosalski R. Maffia P. Drummond G.R. Immune and inflammatory mechanisms in hypertension. Nat. Rev. Cardiol. 2024 21 6 396 416 10.1038/s41569‑023‑00964‑1 38172242
    [Google Scholar]
  75. Zhang F. Yin J. Liu L. IL-17C neutralization protects the kidney against acute injury and chronic injury. EBioMedicine 2023 92 104607 10.1016/j.ebiom.2023.104607 37263138
    [Google Scholar]
  76. Peroumal D. Biswas P.S. Kidney-specific interleukin-17 responses during infection and injury. Annu. Rev. Immunol. 2024 42 1 35 55 10.1146/annurev‑immunol‑052523‑015141 37906942
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128367671250714100708
Loading
/content/journals/cpd/10.2174/0113816128367671250714100708
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test