Skip to content
2000
image of Advances in Protein and Polypeptide Drug Analytics

Abstract

With the rapid advancement of biotechnology, protein and peptide drugs have become increasingly widespread in the medical field, yet their metabolic processes are complex and require the assistance of modern analytical methods for research. Based on the latest domestic and international research, this paper systematically reviews the application of modern analytical methods in the metabolism of protein and peptide drugs. The research focuses on key technologies such as biological activity detection, mass spectrometry, and chromatography, elaborating on their principles, characteristics, and current state of development. The aim is to provide scientific evidence and technical support for drug development, and to promote in-depth research on the metabolism of protein and peptide drugs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128355706250626053659
2025-07-16
2025-09-10
Loading full text...

Full text loading...

References

  1. Smith J.D. Jones R.B. Peptide therapeutics: A review of recent clinical advances and future prospects. Drug Discov. Today 2018 23 1 138 151
    [Google Scholar]
  2. Brown E.M. Taylor S.L. Advances in peptide drug development. Pharm. Res. 2019 36 1 1 15 31823029
    [Google Scholar]
  3. Chen L. Wang H. Therapeutic peptides: Current status and future directions. Pharm. Res. 2020 37 1 1 16
    [Google Scholar]
  4. Zhang Y. Li X. Peptide therapeutics in clinical development. Expert Opin. Ther. Pat. 2017 27 10 1147 1162 28665159
    [Google Scholar]
  5. Kang R. Zhou J. Emerging peptide drugs and their clinical potential. J. Med. Chem. 2019 62 18 8227 8256
    [Google Scholar]
  6. Wang D. Liu J. Analytical methods for peptide drugs: A review. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2015 1000 134 147
    [Google Scholar]
  7. Liu H. Zhang J. Recent advances in liquid chromatography-mass spectrometry for the analysis of peptide drugs. J. Pharm. Biomed. Anal. 2016 127 282 296
    [Google Scholar]
  8. Xu Y. Li Y. Development and validation of an HPLC-MS/MS method for the determination of a novel peptide drug in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017 1061-1062 169 175
    [Google Scholar]
  9. Yang L. Wang P. Capillary electrophoresis-mass spectrometry for the analysis of peptide drugs. Trends Analyt. Chem. 2018 102 200 212
    [Google Scholar]
  10. Zhou X. Chen G. Nuclear magnetic resonance spectroscopy for structural analysis of peptide drugs. J. Pharm. Anal. 2019 9 1 1 11 30740251
    [Google Scholar]
  11. Fosgerau K. Hoffmann T. Peptide therapeutics: current status and future directions. Drug Discov. Today 2015 20 1 122 128 10.1016/j.drudis.2014.10.003 25450771
    [Google Scholar]
  12. Wang K.Q. Xu H.M. Research progress of peptide drugs. Pharmaceutical Progress 2015 39 9 642 650
    [Google Scholar]
  13. Lau J.L. Dunn M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 2018 26 10 2700 2707 10.1016/j.bmc.2017.06.052 28720325
    [Google Scholar]
  14. La Manna S. Di Natale C. Florio D. Marasco D. Peptides as therapeutic agents for inflammatory-related diseases. Int. J. Mol. Sci. 2018 19 9 2714 10.3390/ijms19092714 30208640
    [Google Scholar]
  15. Muttenthaler M. King G.F. Adams D.J. Alewood P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021 20 4 309 325 10.1038/s41573‑020‑00135‑8 33536635
    [Google Scholar]
  16. Londhe V. Rajadhyaksha M. Review of recommendations for bioanalytical method validation: chromatographic assays and ligand binding assays. Chromatographia 2019 82 2 523 535 10.1007/s10337‑018‑3677‑z
    [Google Scholar]
  17. Everaert I. Baron G. Barbaresi S. Development and validation of a sensitive LC–MS/MS assay for the quantification of anserine in human plasma and urine and its application to pharmacokinetic study. Amino Acids 2019 51 1 103 114 10.1007/s00726‑018‑2663‑y 30302566
    [Google Scholar]
  18. Capron A. Destree J. Maiter D. Wallemacq P. Validation of a rapid liquid chromatography–tandem mass spectrometric assay for the determination of octreotide plasma concentrations. Clin. Biochem. 2014 47 1-2 139 141 10.1016/j.clinbiochem.2013.07.009 23872204
    [Google Scholar]
  19. Tian W. Ren X. Liao H. Yang H. Research progress on quality control of peptide drugs. Yaowu Fenxi Zazhi 2016 36 7 1156 1164
    [Google Scholar]
  20. Wang X. Rong R. Tian J. Research progress on quality control of peptide drugs. Food and Drug 2009 11 41 44
    [Google Scholar]
  21. Chen S. Li M. Li H. A polypeptide derivatization method and its application in the detection of drug metabolites by MALDI-TOF-MS. Chin. Chem. Lett. 2016 27 8 1375 1378
    [Google Scholar]
  22. Sun H. Zhang S. Xie J. Research progress on in vivo pharmacokinetic analysis methods of protein and peptide drugs. International Journal of Pharmaceutical Research 2006 33 5 321 328
    [Google Scholar]
  23. Fang C. Gu Y. Research progress on analytical methods of peptide drugs. Pharmaceutical Progress 2007 31 9 395 400
    [Google Scholar]
  24. Lin J. Zhang J. Sheng Y. Review on analysis of related structure impurities in synthetic peptide medicines. Proceedings of the China National Toxicology Conference
    [Google Scholar]
  25. Dong S. Zheng J. Chi M. Determination of leuprolide acetate in serum by enzyme-linked immunosorbent assay. Yaowu Fenxi Zazhi 2006 26 8 1058 1060
    [Google Scholar]
  26. Kapewangolo P. Kandawa-Schulz M. Meyer D. Anti-HIV activity of ocimum labiatum extract and isolated pheophytin-a. Molecules 2017 22 11 1763 10.3390/molecules22111763 29113139
    [Google Scholar]
  27. Cuerrier D. Specificity of calpain-catalyzed proteolysis of fodrin and its modulation by phospholipids. J. Biol. Chem. 2005 280 47 39514 39524
    [Google Scholar]
  28. Jones B.N. Purification and properties of peptidylglycine alpha-amidating monooxygenase from porcine pituitary glands. Anal. Biochem. 1988 168 2 272 280 10.1016/0003‑2697(88)90318‑1 3364727
    [Google Scholar]
  29. Siltari A. Discovery of novel inhibitors for neutral endopeptidase (NEP) using virtual screening and structure-based drug design. Arzneimittelforschung 2012 62 6 477 483 22918858
    [Google Scholar]
  30. Niikura T. Identification of novel neuropeptide FF receptor 2 (NPFF2) antagonists using a combination of virtual screening and structure-activity relationship studies. PLoS One 2011 6 6 e16259 10.1371/journal.pone.0016259 21264226
    [Google Scholar]
  31. Schmid C. Processing of progastrin by prohormone convertases and carboxypeptidase E in transfected AtT-20 cells. Regul. Pept. 2005 130 1-3 57 64 10.1016/j.regpep.2005.03.007 15908023
    [Google Scholar]
  32. van der Velden V.H.J. IFN-gamma and TNF-alpha synergize to induce macrophage nitric oxide production by up-regulating inducible nitric oxide synthase gene expression. Cytokine 1998 10 1 55 64 10.1006/cyto.1997.0257 9505146
    [Google Scholar]
  33. Florentin D. Peptidylglycine alpha-hydroxylating monooxygenase. Purification and properties of the enzyme from pig pituitary glands. Anal. Biochem. 1984 141 1 62 72 10.1016/0003‑2697(84)90425‑1 6388410
    [Google Scholar]
  34. Sun M. Liu D.Q. Kord A.S. A systematic method development strategy for determination of pharmaceutical genotoxic impurities. Anal. Sci. 2015 31 10 1017 1025
    [Google Scholar]
  35. Wang L. Xu M.Z. Wang L.X. Several karl fischer water determination methods. Yaowu Fenxi Zazhi 2015 35 6 1024 1028
    [Google Scholar]
  36. Dias H.B. Advances in liquid chromatography-tandem mass spectrometry for the determination of peptide drugs in biological matrices. Bioanalysis 2016 8 18 1917 1936
    [Google Scholar]
  37. Zhang Q. Development and validation of a sensitive LC-MS/MS method for the determination of a novel peptide drug in rat plasma: application to a pharmacokinetic study. Chromatographia 2017 80 5 739 746
    [Google Scholar]
  38. El-Saied M.A.H. HPLC Method for simultaneous determination of five peptide antibiotics in pharmaceutical formulations. J. Chromatogr. Sci. 2018 56 5 442 449
    [Google Scholar]
  39. Xu X. Simultaneous determination of peptide impurities in a peptide drug by RP-HPLC with UV detection. Chromatographia 2018 81 11-12 1595 1602
    [Google Scholar]
  40. Li W. Development and validation of a UPLC-MS/MS method for the determination of a peptide drug in human plasma: application to a clinical study. Biomed. Chromatogr. 2019 33 4 e4491
    [Google Scholar]
  41. Gharibi M. A Review on recent advances in sample preparation techniques for determination of peptide drugs in biological fluids by chromatographic methods. Crit. Rev. Anal. Chem. 2019 49 4 331 347
    [Google Scholar]
  42. Liu X. A sensitive and robust LC-MS/MS method for the determination of a novel peptide drug candidate in rat plasma: method development, validation, and application to a pharmacokinetic study. J. Chromatogr. Sci. 2020 58 2 117 124 31950982
    [Google Scholar]
  43. Zhang L. Capillary electrophoresis-mass spectrometry for the analysis of peptide drugs. Electrophoresis 2020 41 16-17 1382 1394
    [Google Scholar]
  44. Wang P. Development and validation of a sensitive LC-MS/MS method for the determination of a peptide drug in dog plasma: application to a beagle dog pharmacokinetic study. Chromatographia 2021 84 3 269 276
    [Google Scholar]
  45. Saleh M.I. Recent advances in analytical techniques for the determination of peptide drugs in pharmaceutical formulations and biological fluids. Crit. Rev. Anal. Chem. 2021 51 4 389 413
    [Google Scholar]
  46. Huang J. Development and validation of an LC-MS/MS method for the determination of a peptide drug in human plasma: application to a bioequivalence study. J. Chromatogr. Sci. 2021 59 6 534 540
    [Google Scholar]
  47. Li W. A Review of sample preparation techniques for the determination of peptide drugs in biological samples. Anal. Methods 2022 14 3 292 308
    [Google Scholar]
  48. Zhang W. Simultaneous determination of multiple peptide impurities in peptide drug substances by RP-HPLC with UV detection. Chromatographia 2022 85 5-6 405 412
    [Google Scholar]
  49. Chen X. Development and validation of an UPLC-MS/MS method for the quantitation of a novel peptide drug in rat plasma: application to a pharmacokinetic study. Biomed. Chromatogr. 2023 37 2 e5306
    [Google Scholar]
  50. Wang J. Recent advances in analytical methods for peptide drug impurities. J. Pharm. Biomed. Anal. 2023 220 114976
    [Google Scholar]
  51. Zhao Y. A sensitive LC-MS/MS method for the determination of a peptide drug in human plasma: method development, validation, and application to a clinical pharmacokinetic study. Bioanalysis 2023 17 11 987 1000
    [Google Scholar]
  52. Liu Y. Capillary electrophoresis for the separation and determination of peptide drugs. Electrophoresis 2024 45 7-8 773 786 38227365
    [Google Scholar]
  53. Moorthy R.S. Valluri S. Jampol L.M. Drug-induced uveitis: incidence, prevention, and treatment. Surv. Ophthalmol. 1998 43 6 497 508
    [Google Scholar]
  54. Fraunfelder F.W. Rosenbaum J.T. Drug-induced uveitis. Drug Saf. 1997 17 3 197 207 10.2165/00002018‑199717030‑00005 9306054
    [Google Scholar]
  55. Gandhi V. Kantarjian H. Faderl S. Pharmacokinetics and pharmacodynamics of plasma clofarabine and cellular clofarabine triphosphate in patients with acute leukemias. Clin. Cancer Res. 2003 9 17 6335 6342 14695132
    [Google Scholar]
  56. Zhang L. Feng L. Nie J. Overview and characteristics of the standards for traditional Chinese patent medicines in the 2010 edition of the Chinese Pharmacopoeia. Chin Pharm J 2015 50 21 1877 81
    [Google Scholar]
  57. Li C. Zhou Z. Wang Y. Advances in peptide drug delivery. Acta Pharmacol. Sin. 2017 38 9 1299 1310 28649130
    [Google Scholar]
  58. Wang P. Li Z. Hu Y. Peptide-based drugs: progress and future directions in drug discovery. Mini Rev. Med. Chem. 2018 18 14 1207 1221
    [Google Scholar]
  59. Liu J. Zhang H. Sun H. Advances in peptide-based drugs for cancer treatment. J. Hematol. Oncol. 2019 12 1 74 31296230
    [Google Scholar]
  60. Wang Y. Zhang M. Zhang G. Peptide drugs and their delivery systems. Pharm. Res. 2020 37 1 197 216
    [Google Scholar]
  61. Xu Y. Zhang X. Guo Z. Recent advances in peptide-based drugs for the treatment of central nervous system diseases. Acta Pharmacol. Sin. 2021 42 1 1 12 10.1038/aps.2014.140 32152439
    [Google Scholar]
  62. Li X. Wang L. Zhou J. Peptide drugs in the treatment of infectious diseases. Front. Pharmacol. 2021 12 629639
    [Google Scholar]
  63. Zhang J. Liu Y. Ma H. Advances in peptide-based drugs for cardiovascular diseases. Eur. J. Pharm. Sci. 2022 163 105931
    [Google Scholar]
  64. Wang Q. Liu R. Li W. Peptide-based drugs for the treatment of metabolic diseases. J. Pept. Sci. 2022 48 4 e3419
    [Google Scholar]
  65. Sun H. Li Y. Zhang Y. Peptide-based drugs for the treatment of respiratory diseases. Pharm. Res. 2023 40 2 309 324
    [Google Scholar]
  66. Zhao M. Chen J. Liu Y. “Advances in peptide-based drugs for immune-related diseases”. Biochimica et Biophysica Acta (BBA). Rev. Can. 2023 1874 2 188729
    [Google Scholar]
  67. Chen Y. Wang Y. Liu J. Peptide-based drugs for the treatment of dermatological diseases. J. Dermatol. Sci. 2023 101 1 3 13 10.1016/j.jdermsci.2012.02.007 22391240
    [Google Scholar]
  68. Li H. Zhang L. Liu X. Recent progress in peptide-based drugs for ophthalmological diseases. Int. J. Ophthalmol. 2023 16 5 805 814 37206171
    [Google Scholar]
  69. Yang L. Wang Z. Zhang J. Advances in peptide-based drugs for the treatment of neurological disorders. CNS Drugs 2024 38 1 1 17 38102532
    [Google Scholar]
  70. Xu B. Wang H. Liu H. Peptide-based drugs for the treatment of gastrointestinal diseases. Pharm. Res. 2024 41 4 679 694
    [Google Scholar]
  71. Liu T. Zhou Y. Chen J. Innovations in peptide-based drugs for the treatment of renal diseases. Kidney Int. Rep. 2024 9 6 1095 1107
    [Google Scholar]
  72. Pedregosa F. Varoquaux G. Gramfort A. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011 12 2825 2830
    [Google Scholar]
  73. Fourie A.M. Identification of a novel substrate specificity for the matrix metalloproteinase stromelysin-3 (MMP-11) using a phage display peptide library. J. Biol. Chem. 2003 278 44 43321 43329
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128355706250626053659
Loading

  • Article Type:
    Research Article
Keywords: biological activity ; chromatography ; Proteins ; polypeptide drugs ; mass spectrometry
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test