Skip to content
2000
image of Green Tea Catechins and COVID-19: Epidemiological Trends and Therapeutic Perspectives

Abstract

Introduction

Pharmacological studies demonstrate the preventive and therapeutic potential of green tea and its constituent epigallocatechin-3-gallate (EGCG) in the fight against coronavirus disease 2019 (COVID-19). Previously reported correlations between green tea consumption and COVID-19 morbidity/mortality suggest similar effects . Considering that some recent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) sub-variants are less influenced by EGCG, this study aimed to determine whether this affects the aforementioned correlations, focusing on comparisons between the periods before (2021) and after (2022-2024) the emergence of the Omicron variant.

Methods

Correlations between green tea consumption and COVID-19 morbidity/mortality were calculated using multiple regression models accounting for several confounding factors in a subset (n=84) of countries/territories worldwide with Human Development Index (HDI) above 0.55.

Results

Higher green tea consumption was associated with lower COVID-19 morbidity and mortality. Statistically significant correlations were observed in 2021-2024. Compared with 2021, the strength of both correlations decreased; the relative decrease in the strength of the correlation between green tea consumption and COVID-19 mortality was notably less pronounced.

Discussion

This differential decrease at the epidemiological level supports the idea that green tea consumption may have not only preventive but also therapeutic value regarding COVID-19. This aligns with in pharmacological evidence indicating that green tea constituents target distinct molecular pathways responsible for the entry of the virus and its replication.

Conclusion

While promising, these findings require further assessment in observational and interventional studies focused on potential therapeutic benefits.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128412495250824132514
2025-09-01
2025-10-19
Loading full text...

Full text loading...

References

  1. Prajapati S.K. Malaiya A. Mishra G. An exhaustive comprehension of the role of herbal medicines in Pre- and Post-COVID manifestations. J. Ethnopharmacol. 2022 296 115420 10.1016/j.jep.2022.115420 35654349
    [Google Scholar]
  2. Zhang Z. Hao M. Zhang X. Potential of green tea EGCG in neutralizing SARS-CoV-2 Omicron variant with greater tropism toward the upper respiratory tract. Trends Food Sci. Technol. 2023 132 40 53 10.1016/j.tifs.2022.12.012 36594074
    [Google Scholar]
  3. Ge J. Song T. Li M. The medicinal value of tea drinking in the management of COVID-19. Heliyon 2023 9 1 12968 10.1016/j.heliyon.2023.e12968 36647394
    [Google Scholar]
  4. Chen J.T. Anti-SARS-CoV-2 activity of flavonoids. Boca Raton, Florida CRC Press 2024 10.1201/9781003433200
    [Google Scholar]
  5. Kiba Y. Tanikawa T. Hayashi T. Inhibitory effects of senkyuchachosan on SARS-CoV-2 papain-like protease activity in vitro. J. Nat. Med. 2024 78 3 784 791 10.1007/s11418‑024‑01788‑0 38512650
    [Google Scholar]
  6. Kicker E. Tittel G. Schaller T. Pferschy-Wenzig E.M. Zatloukal K. Bauer R. SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. Phytomedicine 2022 98 153970 10.1016/j.phymed.2022.153970 35144138
    [Google Scholar]
  7. Al-Shuhaib M.B.S. Hashim H.O. Al-Shuhaib J.M.B. Epicatechin is a promising novel inhibitor of SARS-CoV-2 entry by disrupting interactions between angiotensin-converting enzyme type 2 and the viral receptor binding domain: A computational/simulation study. Comput. Biol. Med. 2022 141 105155 10.1016/j.compbiomed.2021.105155 34942397
    [Google Scholar]
  8. Kato Y. Suzuki S. Higashiyama A. Tea catechins in green tea inhibit the activity of SARS-CoV-2 main protease via covalent adduction. J. Agric. Food Chem. 2025 73 7 4116 4125 10.1021/acs.jafc.4c11685 39907399
    [Google Scholar]
  9. Roy A.V. Chan M. Banadyga L. Quercetin inhibits SARS-CoV-2 infection and prevents syncytium formation by cells co-expressing the viral spike protein and human ACE2. Virol. J. 2024 21 1 29 10.1186/s12985‑024‑02299‑w 38273400
    [Google Scholar]
  10. Ishimoto K. Hatanaka N. Otani S. Tea crude extracts effectively inactivate severe acute respiratory syndrome coronavirus 2. Lett. Appl. Microbiol. 2022 74 1 2 7 10.1111/lam.13591 34695222
    [Google Scholar]
  11. Nishimura H. Okamoto M. Dapat I. Katsumi M. Oshitani H. Inactivation of SARS-CoV-2 by catechins from green tea. Jpn. J. Infect. Dis. 2021 74 5 421 423 10.7883/yoken.JJID.2020.902 33518628
    [Google Scholar]
  12. Henss L. Auste A. Sch Ã. The green tea catechin epigallocatechin gallate inhibits SARS-CoV-2 infection. J. Gen. Virol. 2021 102 4 001574 10.1099/jgv.0.001574
    [Google Scholar]
  13. Man G.C.W. Zheng X. Hung S.W. Antiviral effects and mechanisms of green tea catechins on influenza: A perception on combating symptoms from COVID-19. Curr. Top. Med. Chem. 2024 24 1 60 73 10.2174/0115680266251803230925075508 38291871
    [Google Scholar]
  14. Mohammadi R. Forouzanfar H. Rahimi H. Mohamadi-Zarch S.M. Jamhiri K. Bagheri S.M. Antiviral effect of Ferula plants and their potential for treatment of COVID-19: A comprehensive review. Curr. Pharm. Biotechnol. 2025 26 8 1221 1231 10.2174/0113892010285343240530040218 38967074
    [Google Scholar]
  15. Sopjani M. Falco F. Impellitteri F. Flavonoids derived from medicinal plants as a COVID ‐19 treatment. Phytother. Res. 2024 38 3 1589 1609 10.1002/ptr.8123 38284138
    [Google Scholar]
  16. Sharma K.K. Devi S. Kumar D. Role of natural products against the spread of SARS-CoV-2 by inhibition of ACE-2 receptor: A review. Curr. Pharm. Des. 2024 30 32 2562 2573 10.2174/0113816128320161240703092622 39041269
    [Google Scholar]
  17. Ghazaee S.P. Sereda P. Marchenko-Tolsta K. Hameed M. Exploring phytotherapy’s preventive and therapeutic impact on global COVID-19 management: A narrative review. Emir. Med. J. 2024 5 02506882300219 10.2174/0102506882300219240315061704
    [Google Scholar]
  18. Shahali A. Azar Z.J. Ardeshir R.A. A comprehensive review on potentially therapeutic agents against COVID-19 from natural sources. Curr. Tradit. Med. 2024 10 1 030223213428 10.2174/2215083809666230203142343
    [Google Scholar]
  19. Saamisha P. Swathi K. Velayuthaprabhu S. Herbal medicines for COVID-19: The impact of flavonoids on protein targets traditional and herbal medicines for COVID-19. Boca Raton, Florida CRC Press 2024 221 238 10.1201/9781003452621‑12
    [Google Scholar]
  20. Lu C.K. Lung J. Shu L.H. The inhibiting effect of GB-2, (+)-catechin, theaflavin, and theaflavin 3-gallate on interaction between ACE2 and SARS-COV-2 eg.5.1 and hv.1 variants. Int. J. Mol. Sci. 2024 25 17 9498 10.3390/ijms25179498 39273444
    [Google Scholar]
  21. Chopade V.V. Phatak A.A. Upaganlawar A.B. Tankar A.A. Green tea (Camellia sinensis): Chemistry, traditional, medicinal uses and its pharmacological. Pharmacogn. Rev. 2008 2 157 162
    [Google Scholar]
  22. Park J. Park R. Jang M. Park Y.I. Therapeutic potential of EGCG, a green tea polyphenol, for treatment of coronavirus diseases. Life 2021 11 3 197 10.3390/life11030197 33806274
    [Google Scholar]
  23. Park J. Park R. Jang M. Park Y.I. Park Y. Coronavirus enzyme inhibitors-experimentally proven natural compounds from plants. J. Microbiol. 2022 60 3 347 354 10.1007/s12275‑022‑1499‑z 35089586
    [Google Scholar]
  24. Rana S. Jhagta C. Parashar A. Preventive and therapeutic potentials of epigallocatechin gallate for the management of COVID-19: A mechanistic insight anti-SARS-CoV-2 activity of flavonoids. Boca Raton, Florida CRC Press 2024 187 197 10.1201/9781003433200‑15
    [Google Scholar]
  25. Liu J. Bodnar B.H. Meng F. Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell Biosci. 2021 11 1 168 10.1186/s13578‑021‑00680‑8 34461999
    [Google Scholar]
  26. Shin-Ya M. Nakashio M. Ohgitani E. Effects of tea, catechins and catechin derivatives on Omicron subvariants of SARS-CoV-2. Sci. Rep. 2023 13 1 16577 10.1038/s41598‑023‑43563‑3 37789046
    [Google Scholar]
  27. Yang C.C. Wu C.J. Chien C.Y. Chien C.T. Green tea polyphenol catechins inhibit coronavirus replication and potentiate the adaptive immunity and autophagy-dependent protective mechanism to improve acute lung injury in mice. Antioxidants 2021 10 6 928 10.3390/antiox10060928 34200327
    [Google Scholar]
  28. Chiou W.C. Chen J.C. Chen Y.T. The inhibitory effects of PGG and EGCG against the SARS-CoV-2 3C-like protease. Biochem. Biophys. Res. Commun. 2022 591 130 136 10.1016/j.bbrc.2020.12.106
    [Google Scholar]
  29. Park R. Jang M. Park Y.I. Epigallocatechin gallate (EGCG), a green tea polyphenol, reduces coronavirus replication in a mouse model. Viruses 2021 13 12 2533 10.3390/v13122533 34960802
    [Google Scholar]
  30. Bettuzzi S. Gabba L. Cataldo S. Efficacy of a polyphenolic, standardized green tea extract for the treatment of COVID-19 syndrome: A proof-of-principle study. COVID 2021 1 1 2 12 10.3390/covid1010002
    [Google Scholar]
  31. Nanri A. Yamamoto S. Konishi M. Ohmagari N. Mizoue T. Green tea consumption and SARS-CoV-2 infection among staff of a referral hospital in Japan. Clin Nutr Open Sci 2022 42 1 5 10.1016/j.nutos.2022.01.002 35039809
    [Google Scholar]
  32. Islam Z. Yamamoto S. Mizoue T. Konishi M. Ohmagari N. Coffee and green tea consumption with the risk of Covid-19 among the vaccine recipients in japan: A prospective study. J. Epidemiol. 2024 34 9 444 452 10.2188/jea.JE20230231 38346747
    [Google Scholar]
  33. Storozhuk M.V. COVID -19: Could green tea catechins reduce the risks? medRxiv 2020 1 6 10.1101/2020.10.23.20218479
    [Google Scholar]
  34. Storozhuk M. Green tea catechins against COVID-19: Lower COVID-19 morbidity and mortality in countries with higher per capita green tea consumption. Coronaviruses 2022 3 3 240122200469 10.2174/2666796703666220124103039
    [Google Scholar]
  35. Storozhuk M. Lee S. Lee J.I. Park J. Green tea consumption and the COVID-19 omicron pandemic era: Pharmacology and epidemiology. Life (Basel) 2023 13 3 852 10.3390/life13030852 36984007
    [Google Scholar]
  36. COVID-19 coronavirus pandemic. 2020 Available from:https://www.worldometers.info/coronavirus/
  37. Urashima M. Otani K. Hasegawa Y. Akutsu T. BCG vaccination and mortality of COVID-19 across 173 countries: An ecological study. Int. J. Environ. Res. Public Health 2020 17 15 5589 10.3390/ijerph17155589 32756371
    [Google Scholar]
  38. Dasic B. Devic Z. Denic N. Human development index in a context of human development: Review on the Western Balkans countries. Brain Behav. 2020 10 9 01755 10.1002/brb3.1755 33460259
    [Google Scholar]
  39. Escobar L.E. Molina-Cruz A. Barillas-Mury C. BCG vaccine protection from severe coronavirus disease 2019 (COVID-19). Proc. Natl. Acad. Sci. USA 2020 117 30 17720 17726 10.1073/pnas.2008410117 32647056
    [Google Scholar]
  40. Yoshioka K. KyPlot as a tool for graphical data analysis. In: Härdle W, Rönz B, Eds. Compstat 2002 Härdle W. Rönz B. 2002 10.1007/978‑3‑642‑57489‑4_4
    [Google Scholar]
  41. Parry P.I. Lefringhausen A. Turni C. ‘Spikeopathy’: COVID-19 spike protein is pathogenic, from both virus and vaccine mRNA. Biomedicines 2023 11 8 2287 10.3390/biomedicines11082287 37626783
    [Google Scholar]
  42. Ferri C. Gragnani L. Raimondo V. Absent or suboptimal response to booster dose of COVID-19 vaccine in patients with autoimmune systemic diseases. J. Autoimmun. 2022 131 102866 10.1016/j.jaut.2022.102866 35841684
    [Google Scholar]
  43. Mori M. Quaglio D. Calcaterra A. Natural flavonoid derivatives have pan-coronavirus antiviral activity. Microorganisms 2023 11 2 314 10.3390/microorganisms11020314 36838279
    [Google Scholar]
  44. Jose J. Ndang K. Chethana M.B. Opportunities and regulatory challenges of functional foods and nutraceuticals during COVID-19 pandemic. Curr. Nutr. Food Sci. 2024 20 10 1252 1271 10.2174/0115734013276165231129102513
    [Google Scholar]
  45. Mahmoodi S. Yousefi M. Sadeghi O. Green tea intake and its effect on laboratory parameters and disease symptoms in hospitalised patients with COVID-19: A structured protocol for a randomized controlled trial. Trials 2021 22 1 514 10.1186/s13063‑021‑05462‑8 34344427
    [Google Scholar]
  46. Previfenon® as Chemoprophylaxis of COVID-19 in Health Workers (HERD). NCT Patent 04446065 2020
    [Google Scholar]
  47. Ferri C. Raimondo V. Gragnani L. Prevalence and death rate of COVID-19 in autoimmune systemic diseases in the first three pandemic waves. relationship with disease subgroups and ongoing therapies. Curr. Pharm. Des. 2022 28 24 2022 2028 10.2174/1381612828666220614151732 35726427
    [Google Scholar]
  48. Nasrolahi A. Haghani K. Gheysarzadeh A. Bakhtiyari S. Do genetic factors predispose people to COVID-19: A review article. Curr. Mol. Med. 2021 21 6 457 461 10.2174/1566524020999201113102145 33191884
    [Google Scholar]
  49. Yildirim Z. Sahin O.S. Yazar S. Cetintas V.B. Genetic and epigenetic factors associated with increased severity of COVID‐19. Cell Biol. Int. 2021 45 6 1158 1174 10.1002/cbin.11572 33590936
    [Google Scholar]
  50. Bentlage E. Ammar A. How D. Practical recommendations for maintaining active lifestyle during the COVID-19 pandemic: A systematic literature review. Int. J. Environ. Res. Public Health 2020 17 17 6265 10.3390/ijerph17176265 32872154
    [Google Scholar]
  51. Annweiler C. Hanotte B. Grandin de l’Eprevier C. Sabatier J.M. Lafaie L. Célarier T. Vitamin D and survival in COVID-19 patients: A quasi-experimental study. J. Steroid Biochem. Mol. Biol. 2020 204 105771 10.1016/j.jsbmb.2020.105771 33065275
    [Google Scholar]
  52. Efird J.T. Anderson E.J. Jindal C. Suzuki A. Interaction of vitamin D and corticosteroid use in hospitalized COVID-19 patients: A potential explanation for inconsistent findings in the literature. Curr. Pharm. Des. 2022 28 21 1695 1702 10.2174/1381612828666220418132847 35440302
    [Google Scholar]
  53. Cross T.J. Isautier J.M.J. Morris S.J. Johnson B.D. Wheatley-Guy C.M. Taylor B.J. The influence of social distancing behaviors and psychosocial factors on physical activity during the COVID-19 pandemic: Cross-sectional survey study. JMIR Public Health Surveill. 2021 7 9 31278 10.2196/31278 34509976
    [Google Scholar]
  54. Abe S.K. Inoue M. Green tea and cancer and cardiometabolic diseases: A review of the current epidemiological evidence. Eur. J. Clin. Nutr. 2021 75 6 865 876 10.1038/s41430‑020‑00710‑7
    [Google Scholar]
  55. Khan N. Mukhtar H. Tea and health: Studies in humans. Curr. Pharm. Des. 2013 19 34 6141 6147 10.2174/1381612811319340008 23448443
    [Google Scholar]
  56. Tilaki K.H. Methodological issues of confounding in analytical epidemiologic studies. Caspian J. Intern. Med. 2012 3 3 488 495 24009920
    [Google Scholar]
  57. Momose Y. Maeda-Yamamoto M. Nabetani H. Systematic review of green tea epigallocatechin gallate in reducing low-density lipoprotein cholesterol levels of humans. Int. J. Food Sci. Nutr. 2016 67 6 606 613 10.1080/09637486.2016.1196655 27324590
    [Google Scholar]
  58. Lin Y. Shi D. Su B. The effect of green tea supplementation on obesity: A systematic review and dose-response meta‐analysis of randomized controlled trials. Phytother. Res. 2020 34 10 2459 2470 10.1002/ptr.6697
    [Google Scholar]
  59. Landini L. Rebelos E. Honka M.J. Green tea from the far east to the drug store: Focus on the beneficial cardiovascular effects. Curr. Pharm. Des. 2021 27 16 1931 1940 10.2174/1381612826666201102104902 33138757
    [Google Scholar]
  60. Liu B. Gu S. Zhang J. Green tea consumption and incidence of cardiovascular disease in type 2 diabetic patients with overweight/obesity: A community-based cohort study. Arch. Public Health 2024 82 1 18 10.1186/s13690‑024‑01242‑3 38308353
    [Google Scholar]
  61. Nie J. Yu C. Guo Y. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: A cohort study of 0.5 million Chinese adults. Am. J. Clin. Nutr. 2021 114 1 194 202 10.1093/ajcn/nqab006 33709113
    [Google Scholar]
  62. Zamani M. Kelishadi M.R. Ashtary-Larky D. The effects of green tea supplementation on cardiovascular risk factors: A systematic review and meta-analysis. Front. Nutr. 2023 9 1084455 10.3389/fnut.2022.1084455 36704803
    [Google Scholar]
  63. Zhang D. Hamdoun S. Chen R. Identification of natural compounds as SARS-CoV-2 entry inhibitors by molecular docking-based virtual screening with bio-layer interferometry. Pharmacol. Res. 2021 172 105820 10.1016/j.phrs.2021.105820 34403732
    [Google Scholar]
  64. Mhatre S. Gurav N. Shah M. Patravale V. Entry-inhibitory role of catechins against SARS-CoV-2 and its UK variant. Comput. Biol. Med. 2021 135 104560 10.1016/j.compbiomed.2021.104560 34147855
    [Google Scholar]
  65. Wu C. Liu Y. Yang Y. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B 2020 10 5 766 788 10.1016/j.apsb.2020.02.008 32292689
    [Google Scholar]
  66. Jena A.B. Kanungo N. Nayak V. Chainy G.B.N. Dandapat J. Catechin and curcumin interact with S protein of SARS-CoV2 and ACE2 of human cell membrane: Insights from computational studies. Sci. Rep. 2021 11 1 2043 10.1038/s41598‑021‑81462‑7 33479401
    [Google Scholar]
  67. Chatterjee S. Pyne N. Paul S. In silico screening of flavonoids unearthed Apigenin and Epigallocatechin Gallate, possessing antiviral potentiality against Delta and Omicron variants of SARS-CoV-2. Nucleus 2024 67 2 359 369 10.1007/s13237‑023‑00431‑9
    [Google Scholar]
  68. Ohgitani E. Shin-Ya M. Ichitani M. Rapid inactivation in vitro of SARS-CoV-2 in saliva by black tea and green tea. Pathogens 2021 10 6 721 10.3390/pathogens10060721 34201131
    [Google Scholar]
  69. Williams R. COVID-19 Humic/Fulvic acid plus epigallocatechin gallate treatment: A retrospective chart review. Cureus 2025 17 1 77188 10.7759/cureus.77188 39925527
    [Google Scholar]
  70. Ngwe Tun M.M. Luvai E. Nwe K.M. Anti-SARS-CoV-2 activity of various PET-bottled Japanese green teas and tea compounds in vitro. Arch. Virol. 2022 167 7 1547 1557 10.1007/s00705‑022‑05483‑x 35606466
    [Google Scholar]
  71. Furushima D. Otake Y. Koike N. Investigation of the oral retention of tea catechins in humans: An exploratory interventional study. Nutrients 2021 13 9 3024 10.3390/nu13093024 34578903
    [Google Scholar]
  72. Tominaga T. Ikukawa T. Furushima D. Nakamura T.J. Yamada H. An exploratory randomized controlled study to investigate concentration-dependence of green tea catechin gargling on acute upper respiratory tract infections. Biol. Pharm. Bull. 2024 47 7 1331 1337 10.1248/bpb.b24‑00113 39048354
    [Google Scholar]
  73. Priyandoko D. Widowati W. Lenny L. Green tea extract reduced lipopolysaccharide-induced inflammation in l2 cells as acute respiratory distress syndrome model through genes and cytokine pro-inflammatory. Avicenna J. Med. Biotechnol. 2024 16 1 57 65 38605739
    [Google Scholar]
  74. Widowati W. Priyandoko D. Lenny L. Camellia sinensis L. extract suppresses inflammation on acute respiratory distress syndrome cells models via decreasing IL-1ß, IL-6 and COX-2 expressions. Trends Sci 2023 21 1 7010 10.48048/tis.2024.7010
    [Google Scholar]
  75. Frank N. Dickinson D. Lovett G. Evaluation of novel nasal mucoadhesive nanoformulations containing lipid-soluble egcg for long COVID treatment. Pharmaceutics 2024 16 6 791 10.3390/pharmaceutics16060791 38931912
    [Google Scholar]
  76. Yin X. Zhu W. Tang X. Phase I/II clinical trial of efficacy and safety of EGCG oxygen nebulization inhalation in the treatment of COVID-19 pneumonia patients with cancer. BMC Cancer 2024 24 1 486 10.1186/s12885‑024‑12228‑3 38632501
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128412495250824132514
Loading
/content/journals/cpd/10.2174/0113816128412495250824132514
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test