Skip to content
2000
image of Pathophysiological and Etiological Corroborations for the Mechanistic Design of

Abstract

The quintessential hallmarks of brain malignancies hinge on their acquired biological traits, which encompass mutations in the epidermal growth factor receptor (EGFR), as well as vasculogenesis and cellular energy reprogramming. Glioblastoma multiforme (GBM) remains a prominent malignant form of brain tumor in humans. GBM patients exhibit a dismal prognosis with a median survival time of only 1-2 years due to the complex pathophysiology, the development of resistance by cancer cells, and the inability of therapeutic components to pass the blood-brain barrier (BBB) and blood-tumor barrier (BTB). BBB, a network of endothelial cells surrounded by astrocyte foot processes, primarily circumvents the transit of therapeutic biomacromolecules and drugs. To address those challenges, targeted therapies to the nose brain drug delivery have emerged as a steadfast framework for mitigating neurological disorders, bypassing the BBB. A myriad of preclinical paradigms based on intranasal drug approaches utilizing conventional drug therapeutics have been designed and tested for delivering both liquid and solid particle formulations that effectively encapsulate therapeutic biomolecules in brain tissues, especially in GBM. However, there are significant gaps in the effective translation of nose-to-brain delivery approaches for achieving higher drug concentrations of anticancer drugs at the targeted regions in pathological states, such as GBM, without causing damage to healthy tissues. Therefore, the current body of literature aims to corroborate the mechanistic understanding in non-invasive designs using intranasal therapies that efficiently penetrate the BBB and circumvent systemic adverse effects while treating GBM.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128373247250529114324
2025-08-01
2025-10-19
Loading full text...

Full text loading...

References

  1. Thorbinson C. Kilday J.P. Childhood malignant brain tumors: Balancing the bench and bedside. Cancers 2021 13 23 6099 10.3390/cancers13236099 34885207
    [Google Scholar]
  2. Kanderi T. Munakomi S. Gupta V. Glioblastoma Multiforme. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  3. Fares J. Wan Y. Mair R. Price S.J. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun. 2024 6 2 fcae108 10.1093/braincomms/fcae108 38646145
    [Google Scholar]
  4. Obrador E. Moreno-Murciano P. Oriol-Caballo M. Glioblastoma therapy: Past, present and future. Int. J. Mol. Sci. 2024 25 5 2529 10.3390/ijms25052529 38473776
    [Google Scholar]
  5. Rodriguez S.M.B. Kamel A. Ciubotaru G.V. An overview of EGFR mechanisms and their implications in targeted therapies for glioblastoma. Int. J. Mol. Sci. 2023 24 13 11110 10.3390/ijms241311110 37446288
    [Google Scholar]
  6. Zhao J. Ma X. Gao P. Advancing glioblastoma treatment by targeting metabolism. Neoplasia 2024 51 100985 10.1016/j.neo.2024.100985 38479191
    [Google Scholar]
  7. Goel H. Kalra V. Verma S.K. Dubey S.K. Tiwary A.K. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J. Control. Release 2022 341 782 811 10.1016/j.jconrel.2021.12.009 34906605
    [Google Scholar]
  8. Kioutchoukova I. Foster D. Thakkar R. Neurocutaneous diseases: Diagnosis, management, and treatment. J. Clin. Med. 2024 13 6 1648 10.3390/jcm13061648 38541874
    [Google Scholar]
  9. Shafi O. Siddiqui G. Tracing the origins of glioblastoma by investigating the role of gliogenic and related neurogenic genes/] signaling pathways in GBM development: A systematic review. World J. Surg. Oncol. 2022 20 1 146 10.1186/s12957‑022‑02602‑5 35538578
    [Google Scholar]
  10. Bakherad H. Sepehrizadeh Z. Setayesh N. Expression of recombinant G-CSF receptor domains and their inhibitory role on G-CSF function. Res. Pharm. Sci. 2020 15 4 381 389 10.4103/1735‑5362.293516 33312216
    [Google Scholar]
  11. Bello-Alvarez C. Camacho-Arroyo I. Impact of sex in the prevalence and progression of glioblastomas: The role of gonadal steroid hormones. Biol. Sex Differ. 2021 12 1 28 10.1186/s13293‑021‑00372‑5 33752729
    [Google Scholar]
  12. Krstanović F. Britt W.J. Jonjić S. Brizić I. Cytomegalovirus infection and inflammation in developing brain. Viruses 2021 13 6 1078 10.3390/v13061078 34200083
    [Google Scholar]
  13. Rong L. Li N. Zhang Z. Emerging therapies for glioblastoma: Current state and future directions. J. Exp. Clin. Cancer Res. 2022 41 1 142 10.1186/s13046‑022‑02349‑7 35428347
    [Google Scholar]
  14. Grochans S. Cybulska A.M. Simińska D. Epidemiology of glioblastoma multiforme-Literature review. Cancers 2022 14 10 2412 10.3390/cancers14102412 35626018
    [Google Scholar]
  15. Kadry H. Noorani B. Cucullo L. A blood–brain barrier overview on structure, function, impairment, and biomarkers of integrity. Fluids Barriers CNS 2020 17 1 69 10.1186/s12987‑020‑00230‑3 33208141
    [Google Scholar]
  16. Archie S.R. Al Shoyaib A. Cucullo L. Blood brain barrier dysfunction in CNS disorders and putative therapeutic targets: An overview. Pharmaceutics 2021 13 11 1779 10.3390/pharmaceutics13111779 34834200
    [Google Scholar]
  17. Ahir B.K. Engelhard H.H. Lakka S.S. Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol. Neurobiol. 2020 57 5 2461 2478 10.1007/s12035‑020‑01892‑8 32152825
    [Google Scholar]
  18. Arvanitis C.D. Ferraro G.B. Jain R.K. The blood–brain barrier and blood-tumour barrier in brain tumours and metastases. Nat. Rev. Cancer 2020 20 1 26 41 10.1038/s41568‑019‑0205‑x 31601988
    [Google Scholar]
  19. Niazi S.K. Non-invasive drug delivery across the blood-brain barrier: A prospective analysis. Pharmaceutics 2023 15 11 2599 10.3390/pharmaceutics15112599 38004577
    [Google Scholar]
  20. Raju R. Abuwatfa W.H. Pitt W.G. Husseini G.A. Liposomes for the treatment of brain cancer-A review. Pharmaceuticals 2023 16 8 1056 10.3390/ph16081056 37630971
    [Google Scholar]
  21. Lim X.Y. Capinpin S.M. Bolem N. Biomimetic nanotherapeutics for targeted drug delivery to glioblastoma multiforme. Bioeng. Transl. Med. 2023 8 3 e10483 10.1002/btm2.10483 37206213
    [Google Scholar]
  22. Wu P. Han J. Gong Y. Liu C. Yu H. Xie N. Nanoparticle based drug delivery systems targeting tumor microenvironment for cancer immunotherapy resistance: Current advances and applications. Pharmaceutics 2022 14 10 1990 10.3390/pharmaceutics14101990 36297426
    [Google Scholar]
  23. Rodriguez S.M.B. Staicu G.A. Sevastre A.S. Glioblastoma stem cells-Useful tools in the battle against cancer. Int. J. Mol. Sci. 2022 23 9 4602 10.3390/ijms23094602 35562993
    [Google Scholar]
  24. Groblewska M. Mroczko B. Pro-and antiangiogenic factors in gliomas: Implications for novel therapeutic possibilities. Int. J. Mol. Sci. 2021 22 11 6126 10.3390/ijms22116126 34200145
    [Google Scholar]
  25. Liu Y.P. Zheng C.C. Huang Y.N. He M.L. Xu W.W. Li B. Molecular mechanisms of chemo‐ and radiotherapy resistance and the potential implications for cancer treatment. MedComm 2021 2 3 315 340 10.1002/mco2.55 34766149
    [Google Scholar]
  26. Emami Nejad A. Najafgholian S. Rostami A. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021 21 1 62 10.1186/s12935‑020‑01719‑5 33472628
    [Google Scholar]
  27. Monteiro A. Hill R. Pilkington G. Madureira P. The Role of hypoxia in glioblastoma invasion. Cells 2017 6 4 45 10.3390/cells6040045 29165393
    [Google Scholar]
  28. Sun Z. Gao C. Gao D. Reduction in pericyte coverage leads to blood–brain barrier dysfunction via endothelial transcytosis following chronic cerebral hypoperfusion. Fluids Barriers CNS 2021 18 1 21 10.1186/s12987‑021‑00255‑2 33952281
    [Google Scholar]
  29. Rabah N. Ait Mohand F.E. Kravchenko-Balasha N. Understanding glioblastoma signaling, heterogeneity, invasiveness, and drug delivery barriers. Int. J. Mol. Sci. 2023 24 18 14256 10.3390/ijms241814256 37762559
    [Google Scholar]
  30. Goebel J. Chmielewski J. Hrycyna C.A. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: Future opportunities for structure-based drug design of inhibitors. Cancer Drug Resist. 2021 4 4 784 804 10.20517/cdr.2021.19 34993424
    [Google Scholar]
  31. Kang Z. Zeng C. Tian L. Transferrin receptor targeting segment T7 containing peptide gene delivery vectors for efficient transfection of brain tumor cells. Drug Deliv. 2022 29 1 2375 2385 10.1080/10717544.2022.2102696 35866298
    [Google Scholar]
  32. Sepasi T. Bani F. Rahbarghazi R. Targeted gene delivery to the brain using CDX-modified chitosan nanoparticles. Bioimpacts 2022 13 2 133 144 10.34172/bi.2022.23876 37193076
    [Google Scholar]
  33. Farkas S. Cioca D. Murányi J. Chlorotoxin binds to both matrix metalloproteinase 2 and neuropilin 1. J. Biol. Chem. 2023 299 9 104998 10.1016/j.jbc.2023.104998 37394009
    [Google Scholar]
  34. De Martini L.B. Sulmona C. Brambilla L. Rossi D. Cell penetrating peptides as valuable tools for nose-to-brain delivery of biological drugs. Cells 2023 12 12 1643 10.3390/cells12121643 37371113
    [Google Scholar]
  35. Dzhumashev D. Timpanaro A. Ali S. Quantum dot based screening identifies F3 peptide and reveals cell surface nucleolin as a therapeutic target for rhabdomyosarcoma. Cancers 2022 14 20 5048 10.3390/cancers14205048 36291832
    [Google Scholar]
  36. Neal CAP León V Quan MC Chibambo NO Calabrese MA Tuning the thermodynamic, optical, and rheological properties of thermoresponsive polymer solutions via silica nanoparticle shape and concentration. J Colloid Interface Sci 2023 629 (PT B) 878 95 10.1016/j.jcis.2022.08.139 36202031
    [Google Scholar]
  37. Guo H. Kim J.C. Reduction sensitive poly(ethylenimine) nanogel bearing dithiodipropionic acid. Chem. Pharm. Bull. 2017 65 8 718 725 10.1248/cpb.c17‑00029 28768925
    [Google Scholar]
  38. Zheng Y. Liu H. Lu B. Effects of ultrasonic cavitation on microstructure and surface properties of Mn–Cu alloy. Mater. Sci. Technol. 2024 40 6 493 500 10.1177/02670836231217187
    [Google Scholar]
  39. Magaletti S. Mayer L. Le X.P. Debuisschert T. Magnetic sensitivity enhancement via polarimetric excitation and detection of an ensemble of NV centers. Sci. Rep. 2024 14 1 11793 10.1038/s41598‑024‑60199‑z 38782955
    [Google Scholar]
  40. Alvarez N. Sevilla A. Current advances in photodynamic therapy (PDT) and the future potential of PDT-combinatorial cancer therapies. Int. J. Mol. Sci. 2024 25 2 1023 10.3390/ijms25021023 38256096
    [Google Scholar]
  41. Lee P.S. MacDonald K.G. Massi E. Improved therapeutic index of an acidic pH-selective antibody. MAbs 2022 14 1 2024642 10.1080/19420862.2021.2024642 35192429
    [Google Scholar]
  42. Huang C.W. Chuang C.P. Chen Y.J. Integrin α2β1-targeting ferritin nanocarrier traverses the blood–brain barrier for effective glioma chemotherapy. J. Nanobiotechnology 2021 19 1 180 10.1186/s12951‑021‑00925‑1 34120610
    [Google Scholar]
  43. Bhunia S. Vangala V. Bhattacharya D. Large amino acid transporter 1 selective liposomes of l -DOPA functionalized amphiphile for combating glioblastoma. Mol. Pharm. 2017 14 11 3834 3847 10.1021/acs.molpharmaceut.7b00569 28958145
    [Google Scholar]
  44. di Polidoro A.C. Cafarchio A. Vecchione D. Donato P. De Nola F. Torino E. Revealing Angiopep-2/LRP1 Molecular interaction for optimal delivery to glioblastoma (GBM). Molecules 2022 27 19 6696 10.3390/molecules27196696 36235232
    [Google Scholar]
  45. Li H Tong Y Bai L Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma. Int J Biol Macromol 2018 107 (PT A) 204 11 10.1016/j.ijbiomac.2017.08.155 28863897
    [Google Scholar]
  46. Hall C. Yu H. Choi E. Insulin receptor endocytosis in the pathophysiology of insulin resistance. Exp. Mol. Med. 2020 52 6 911 920 10.1038/s12276‑020‑0456‑3 32576931
    [Google Scholar]
  47. Shaik F. Cuthbert G. Homer-Vanniasinkam S. Muench S. Ponnambalam S. Harrison M. Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules 2020 10 12 1673 10.3390/biom10121673 33333800
    [Google Scholar]
  48. Sun T. Wu H. Li Y. Targeting transferrin receptor delivery of temozolomide for a potential glioma stem cell-mediated therapy. Oncotarget 2017 8 43 74451 74465 10.18632/oncotarget.20165 29088799
    [Google Scholar]
  49. Jourdain M.A. Eyer J. Recent advances in liposomes and peptide-based therapeutics for glioblastoma treatment. J. Control. Release 2024 376 732 752 10.1016/j.jconrel.2024.10.037 39437968
    [Google Scholar]
  50. Wei G. Zhang S. Yu S. Lu W. Intravital microscopy reveals endothelial transcytosis contributing to significant tumor accumulation of albumin nanoparticles. Pharmaceutics 2023 15 2 519 10.3390/pharmaceutics15020519 36839841
    [Google Scholar]
  51. Kita D.H. de Andrade G.A. Missina J.M. Polyoxovanadates as new P‐glycoprotein inhibitors: Insights into the mechanism of inhibition. FEBS Lett. 2022 596 3 381 399 10.1002/1873‑3468.14265 34939198
    [Google Scholar]
  52. Ashique S. Garg A. Hussain A. Farid A. Kumar P. Taghizadeh-Hesary F. Nanodelivery systems: An efficient and target‐specific approach for drug‐resistant cancers. Cancer Med. 2023 12 18 18797 18825 10.1002/cam4.6502 37668041
    [Google Scholar]
  53. Li Y. Nie J. Dai J. pH/Redox dual-responsive drug delivery system with on-demand RGD exposure for photochemotherapy of tumors. Int. J. Nanomedicine 2022 17 5621 5639 10.2147/IJN.S388342 36447796
    [Google Scholar]
  54. Peterson T.E. Kirkpatrick N.D. Huang Y. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages. Proc. Natl. Acad. Sci. USA 2016 113 16 4470 4475 10.1073/pnas.1525349113 27044097
    [Google Scholar]
  55. Li J. Zhao J. Tan T. Nanoparticle drug delivery system for glioma and its efficacy improvement strategies: A comprehensive review. Int. J. Nanomedicine 2020 15 2563 2582 10.2147/IJN.S243223 32368041
    [Google Scholar]
  56. Thomsen M.S. Johnsen K.B. Kucharz K. Lauritzen M. Moos T. Blood–brain barrier transport of transferrin receptor-targeted nanoparticles. Pharmaceutics 2022 14 10 2237 10.3390/pharmaceutics14102237 36297671
    [Google Scholar]
  57. Sadri E. Khoee S. Moayeri S. Enhanced anti-tumor activity of transferrin/folate dual-targeting magnetic nanoparticles using chemo-thermo therapy on retinoblastoma cancer cells Y79. Sci. Rep. 2023 13 1 22358 10.1038/s41598‑023‑49171‑5 38102193
    [Google Scholar]
  58. Tashima T. Mesenchymal stem cell (MSC)-based drug delivery into the brain across the blood–brain barrier. Pharmaceutics 2024 16 2 289 10.3390/pharmaceutics16020289 38399342
    [Google Scholar]
  59. Augoff K. Hryniewicz-Jankowska A. Tabola R. Stach K. MMP9: A tough target for targeted therapy for cancer. Cancers 2022 14 7 1847 10.3390/cancers14071847 35406619
    [Google Scholar]
  60. Knudson K.M. Hwang S. McCann M.S. Joshi B.H. Husain S.R. Puri R.K. Recent advances in IL-13Rα2-directed cancer immunotherapy. Front. Immunol. 2022 13 878365 10.3389/fimmu.2022.878365 35464460
    [Google Scholar]
  61. Gonzalez T. Muminovic M. Nano O. Vulfovich M. Folate receptor alpha—A novel approach to cancer therapy. Int. J. Mol. Sci. 2024 25 2 1046 10.3390/ijms25021046 38256120
    [Google Scholar]
  62. Kuo Y.C. Chao I.W. Conjugation of melanotransferrin antibody on solid lipid nanoparticles for mediating brain cancer malignancy. Biotechnol. Prog. 2016 32 2 480 490 10.1002/btpr.2214 26701338
    [Google Scholar]
  63. Thom G. Tian M.M. Hatcher J.P. A peptide derived from melanotransferrin delivers a protein-based interleukin 1 receptor antagonist across the BBB and ameliorates neuropathic pain in a preclinical model. J. Cereb. Blood Flow Metab. 2019 39 10 2074 2088 10.1177/0271678X18772998 29845881
    [Google Scholar]
  64. Ghorai S.M. Deep A. Magoo D. Gupta C. Gupta N. Cell-penetrating and targeted peptides delivery systems as potential pharmaceutical carriers for enhanced delivery across the blood-brain barrier (BBB). Pharmaceutics 2023 15 7 1999 10.3390/pharmaceutics15071999 37514185
    [Google Scholar]
  65. Seo S. Kim E.H. Chang W.S. Lee W.S. Kim K.H. Kim J.K. Enhanced proton treatment with a LDLR-ligand peptide-conjugated gold nanoparticles targeting the tumor microenvironment in an infiltrative brain tumor model. Am. J. Cancer Res. 2022 12 1 198 209 [PMID: 35141013
    [Google Scholar]
  66. Jnaidi R. Almeida A.J. Gonçalves L.M. Solid lipid nanoparticles and nanostructured lipid carriers as smart drug delivery systems in the treatment of glioblastoma multiforme. Pharmaceutics 2020 12 9 860 10.3390/pharmaceutics12090860 32927610
    [Google Scholar]
  67. Perumal V. Ravula A.R. Agas A. Transferrin-grafted albumin nanoparticles for the targeted delivery of apocynin and neuroprotection in an in vitro model of the BBB. Micro 2023 3 1 84 106 10.3390/micro3010008
    [Google Scholar]
  68. Yalamarty S.S.K. Filipczak N. Li X. Mechanisms of resistance and current treatment options for glioblastoma multiforme (GBM). Cancers 2023 15 7 2116 10.3390/cancers15072116 37046777
    [Google Scholar]
  69. Bruinsmann F.A. Richter Vaz G. de Cristo Soares Alves A. Nasal drug delivery of anticancer drugs for the treatment of glioblastoma: Preclinical and clinical trials. Molecules 2019 24 23 4312 10.3390/molecules24234312 31779126
    [Google Scholar]
  70. Singh N. Miner A. Hennis L. Mittal S. Mechanisms of temozolomide resistance in glioblastoma - A comprehensive review. Cancer Drug Resist. 2020 4 1 17 43 10.20517/cdr.2020.79 34337348
    [Google Scholar]
  71. Knudsen A.M. Halle B. Cédile O. Surgical resection of glioblastomas induces pleiotrophin-mediated self-renewal of glioblastoma stem cells in recurrent tumors. Neuro-oncol. 2022 24 7 1074 1087 10.1093/neuonc/noab302 34964899
    [Google Scholar]
  72. Noch E.K. Ramakrishna R. Magge R. Challenges in the treatment of glioblastoma: Multisystem mechanisms of therapeutic resistance. World Neurosurg. 2018 116 505 517 10.1016/j.wneu.2018.04.022 30049045
    [Google Scholar]
  73. Petrenko D. Chubarev V. Syzrantsev N. Temozolomide efficacy and metabolism: The implicit relevance of nanoscale delivery systems. Molecules 2022 27 11 3507 10.3390/molecules27113507 35684445
    [Google Scholar]
  74. Fahrer J. Christmann M. DNA alkylation damage by nitrosamines and relevant DNA repair pathways. Int. J. Mol. Sci. 2023 24 5 4684 10.3390/ijms24054684 36902118
    [Google Scholar]
  75. Ohnishi T. Yamashita D. Inoue A. Suehiro S. Ohue S. Kunieda T. Is interstitial chemotherapy with carmustine (BCNU) wafers effective against local recurrence of glioblastoma? A pharmacokinetic study by measurement of BCNU in the tumor resection cavity. Brain Sci. 2022 12 5 567 10.3390/brainsci12050567 35624954
    [Google Scholar]
  76. Cruz N. Herculano-Carvalho M. Roque D. Highlighted advances in therapies for difficult-to-treat brain tumours such as glioblastoma. Pharmaceutics 2023 15 3 928 10.3390/pharmaceutics15030928 36986790
    [Google Scholar]
  77. Cardona A.F. Rojas L. Wills B. A comprehensive analysis of factors related to carmustine/bevacizumab response in recurrent glioblastoma. Clin. Transl. Oncol. 2019 21 10 1364 1373 10.1007/s12094‑019‑02066‑2 30798512
    [Google Scholar]
  78. Ius T. Sabatino G. Panciani P.P. Surgical management of Glioma Grade 4: Technical update from the neuro-oncology section of the Italian Society of Neurosurgery (SINch®): A systematic review. J. Neurooncol. 2023 162 2 267 293 10.1007/s11060‑023‑04274‑x 36961622
    [Google Scholar]
  79. Manrique-Guzmán S Herrada-Pineda T Revilla-Pacheco F. Surgical Management of Glioblastoma 2017
    [Google Scholar]
  80. Zeppa P. De Marco R. Monticelli M. Fluorescence-guided surgery in glioblastoma: 5-ALA, SF or both? Differences between fluorescent dyes in 99 consecutive cases. Brain Sci. 2022 12 5 555 10.3390/brainsci12050555 35624942
    [Google Scholar]
  81. Ballo M.T. Conlon P. Lavy-Shahaf G. Kinzel A. Vymazal J. Rulseh A.M. Association of Tumor Treating Fields (TTFields) therapy with survival in newly diagnosed glioblastoma: A systematic review and meta-analysis. J. Neurooncol. 2023 164 1 1 9 10.1007/s11060‑023‑04348‑w 37493865
    [Google Scholar]
  82. Elebiyo T.C. Rotimi D. Evbuomwan I.O. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun. 2022 32 100620 10.1016/j.ctarc.2022.100620
    [Google Scholar]
  83. Ren X. Ai D. Li T. Xia L. Sun L. Effectiveness of lomustine combined with bevacizumab in glioblastoma: A meta-analysis. Front. Neurol. 2021 11 603947 10.3389/fneur.2020.603947 33551965
    [Google Scholar]
  84. Lassman A.B. Pugh S.L. Wang T.J.C. Depatuxizumab mafodotin in EGFR-amplified newly diagnosed glioblastoma: A phase III randomized clinical trial. Neuro-oncol. 2023 25 2 339 350 10.1093/neuonc/noac173 35849035
    [Google Scholar]
  85. Khalifa E. Chapusot C. Tournier B. Idylla EGFR assay on extracted DNA: Advantages, limits and place in molecular screening according to the latest guidelines for non-small-cell lung cancer (NSCLC) patients. J. Clin. Pathol. 2023 76 10 698 704 10.1136/jcp‑2022‑208325 35820776
    [Google Scholar]
  86. Tang L. Feng Y. Gao S. Mu Q. Liu C. Nanotherapeutics overcoming the blood-brain barrier for glioblastoma treatment. Front. Pharmacol. 2021 12 786700 10.3389/fphar.2021.786700 34899350
    [Google Scholar]
  87. Colardo M. Segatto M. Di Bartolomeo S. Targeting RTK-PI3K-mTOR axis in gliomas: An update. Int. J. Mol. Sci. 2021 22 9 4899 10.3390/ijms22094899 34063168
    [Google Scholar]
  88. Hainsworth J.D. Becker K.P. Mekhail T. Phase I/II study of bevacizumab with BKM120, an oral PI3K inhibitor, in patients with refractory solid tumors (phase I) and relapsed/refractory glioblastoma (phase II). J. Neurooncol. 2019 144 2 303 311 10.1007/s11060‑019‑03227‑7 31392595
    [Google Scholar]
  89. Zhao H. Wang J. Shao W. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: Current preclinical and clinical development. Mol. Cancer 2017 16 1 100 10.1186/s12943‑017‑0670‑3 28592260
    [Google Scholar]
  90. Martinez E. Vazquez N. Lopez A. The PI3K pathway impacts stem gene expression in a set of glioblastoma cell lines. J. Cancer Res. Clin. Oncol. 2020 146 3 593 604 10.1007/s00432‑020‑03133‑w 32030510
    [Google Scholar]
  91. Flores D. Lopez A. Udawant S. Gunn B. Keniry M. The FOXO1 inhibitor AS1842856 triggers apoptosis in glioblastoma multiforme and basal‐like breast cancer cells. FEBS Open Bio 2023 13 2 352 362 10.1002/2211‑5463.13547 36602390
    [Google Scholar]
  92. Avci N.G. Ebrahimzadeh-Pustchi S. Akay Y.M. NF-κB inhibitor with Temozolomide results in significant apoptosis in glioblastoma via the NF-κB(p65) and actin cytoskeleton regulatory pathways. Sci. Rep. 2020 10 1 13352 10.1038/s41598‑020‑70392‑5 32770097
    [Google Scholar]
  93. Giarratana A.O. Prendergast C.M. Salvatore M.M. Capaccione K.M. TGF-β signaling: Critical nexus of fibrogenesis and cancer. J. Transl. Med. 2024 22 1 594 10.1186/s12967‑024‑05411‑4 38926762
    [Google Scholar]
  94. Kamradt M.L. Jung J.U. Pflug K.M. Lee D.W. Fanniel V. Sitcheran R. NIK promotes metabolic adaptation of glioblastoma cells to bioenergetic stress. Cell Death Dis. 2021 12 3 271 10.1038/s41419‑020‑03383‑z 33723235
    [Google Scholar]
  95. Wu Z. Ho W.S. Lu R. Targeting Mitochondrial oxidative phosphorylation in glioblastoma therapy. Neuromolecular Med. 2022 24 1 18 22 10.1007/s12017‑021‑08678‑8 34487301
    [Google Scholar]
  96. Rah B. Rather R.A. Bhat G.R. JAK/STAT signaling: Molecular targets, therapeutic opportunities, and limitations of targeted inhibitions in solid malignancies. Front. Pharmacol. 2022 13 821344 10.3389/fphar.2022.821344 35401182
    [Google Scholar]
  97. Delen E. Doğanlar O. The dose dependent effects of Ruxolitinib on the invasion and tumorigenesis in gliomas cells via inhibition of interferon gamma-depended JAK/STAT signaling pathway. J. Korean Neurosurg. Soc. 2020 63 4 444 454 10.3340/jkns.2019.025 32492985
    [Google Scholar]
  98. Ou A. Ott M. Fang D. Heimberger A. The role and therapeutic targeting of JAK/STAT signaling in glioblastoma. Cancers 2021 13 3 437 10.3390/cancers13030437 33498872
    [Google Scholar]
  99. Jorgensen M.M. de la Puente P. Leukemia inhibitory factor: An important cytokine in pathologies and Cancer. Biomolecules 2022 12 2 217 10.3390/biom12020217 35204717
    [Google Scholar]
  100. Halder S. Parte S. Kshirsagar P. The Pleiotropic role, functions and targeted therapies of LIF/LIFR axis in cancer: Old spectacles with new insights. Biochim. Biophys. Acta Rev. Cancer 2022 1877 4 188737 10.1016/j.bbcan.2022.188737 35680099
    [Google Scholar]
  101. Spencer N. Rodriguez Sanchez A.L. Gopalam R. The LIFR inhibitor EC359 effectively targets type II endometrial cancer by blocking LIF/LIFR oncogenic signaling. Int. J. Mol. Sci. 2023 24 24 17426 10.3390/ijms242417426 38139260
    [Google Scholar]
  102. Rios S.A. Oyervides S. Uribe D. Emerging therapies for glioblastoma. Cancers 2024 16 8 1485 10.3390/cancers16081485 38672566
    [Google Scholar]
  103. Viswanadhapalli S. Dileep K.V. Zhang K.Y.J. Nair H.B. Vadlamudi R.K. Targeting LIF/LIFR signaling in cancer. Genes Dis. 2022 9 4 973 980 10.1016/j.gendis.2021.04.003 35685476
    [Google Scholar]
  104. Min H.Y. Lee H.Y. Molecular targeted therapy for anticancer treatment. Exp. Mol. Med. 2022 54 10 1670 1694 10.1038/s12276‑022‑00864‑3 36224343
    [Google Scholar]
  105. Latour M. Her N.G. Kesari S. Nurmemmedov E. WNT signaling as a therapeutic target for glioblastoma. Int. J. Mol. Sci. 2021 22 16 8428 10.3390/ijms22168428 34445128
    [Google Scholar]
  106. Qiu J. Shi Z. Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov. Today 2017 22 1 148 156 10.1016/j.drudis.2016.09.017 27693715
    [Google Scholar]
  107. Zhang Y. Wang X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol. 2020 13 1 165 10.1186/s13045‑020‑00990‑3 33276800
    [Google Scholar]
  108. Wang S. Gu S. Chen J. Yuan Z. Liang P. Cui H. Mechanism of Notch signaling pathway in malignant progression of glioblastoma and targeted therapy. Biomolecules 2024 14 4 480 10.3390/biom14040480 38672496
    [Google Scholar]
  109. Zhou B. Lin W. Long Y. Notch signaling pathway: Architecture, disease, and therapeutics. Signal Transduct. Target. Ther. 2022 7 1 95 10.1038/s41392‑022‑00934‑y 35332121
    [Google Scholar]
  110. Jing J. Wu Z. Wang J. Hedgehog signaling in tissue homeostasis, cancers and targeted therapies. Signal Transduct. Target. Ther. 2023 8 1 315 10.1038/s41392‑023‑01559‑5 37596267
    [Google Scholar]
  111. Sloan A.E. Nock C.J. Ye X. ABTC-0904: Targeting glioma stem cells in GBM: A phase 0/II study of hedgehog pathway inhibitor GDC-0449. J. Neurooncol. 2023 161 1 33 43 10.1007/s11060‑022‑04193‑3 36581779
    [Google Scholar]
  112. Wang H. Lai Q. Wang D. Hedgehog signaling regulates the development and treatment of glioblastoma. (Review) Oncol. Lett. 2022 24 3 294 10.3892/ol.2022.13414 35949611
    [Google Scholar]
  113. Chen J. Ding Z. Li S. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021 11 3 1345 1363 10.7150/thno.51383 33391538
    [Google Scholar]
  114. Teicher B.A. TGFβ-Directed Therapeutics: 2020. Pharmacol. Ther. 2021 217 107666 10.1016/j.pharmthera.2020.107666 32835827
    [Google Scholar]
  115. Goel H. Siddiqui L. Mahtab A. Talegaonkar S. Fabrication design, process technologies and convolutions in the scale-up of nanotherapeutic delivery systems. In:Nanoparticle Therapeutics. Academic Press 2022 47 131
    [Google Scholar]
  116. Goel H. Saini K. Razdan K. Khurana R.K. Elkordy A.A. Singh K.K. In vitro physicochemical characterization of nanocarriers: A road to optimization. In:Nanoparticle Therapeutics. Cambridge, MA, USA Academic Press 2022 133 179
    [Google Scholar]
  117. Goel H. Razdan K. Singla R. Engineered site-specific vesicular systems for colonic delivery: Trends and implications. Curr. Pharm. Des. 2020 26 42 5441 5455 10.2174/1381612826666200813132301 32787754
    [Google Scholar]
  118. Shen H. Aggarwal N. Cui B. Engineered commensals for targeted nose-to-brain drug delivery. Cell 2025 188 6 1545 1562 10.1016/j.cell.2025.01.017 39914382
    [Google Scholar]
  119. Gandhi S. Shastri D.H. Shah J. Nair A.B. Jacob S. Nasal delivery to the brain: Harnessing nanoparticles for effective drug transport. Pharmaceutics 2024 16 4 481 10.3390/pharmaceutics16040481 38675142
    [Google Scholar]
  120. Sobiesk J.L. Munakomi S. Anatomy, Head and Neck, Nasal Cavity. Treasure Island, FL StatPearls Publishing 2019
    [Google Scholar]
  121. Gänger S. Schindowski K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics 2018 10 3 116 10.3390/pharmaceutics10030116 30081536
    [Google Scholar]
  122. Patel V. Chavda V. Shah J. Nanotherapeutics in neuropathologies: Obstacles, challenges and recent advancements in CNS targeted drug delivery systems. Curr. Neuropharmacol. 2021 19 5 693 710 10.2174/1570159X18666200807143526 32851949
    [Google Scholar]
  123. Koo J. Lim C. Oh K.T. Recent advances in intranasal administration for brain-targeting delivery: A comprehensive review of lipid-based nanoparticles and stimuli-responsive gel formulations. Int. J. Nanomedicine 2024 19 1767 1807 10.2147/IJN.S439181 38414526
    [Google Scholar]
  124. Chen T.C. da Fonseca C.O. Schönthal A.H. Bringing intranasal drug delivery for malignancies in the brain to market. Expert Opin. Drug Deliv. 2025 22 3 311 314 10.1080/17425247.2025.2464714 39917831
    [Google Scholar]
  125. Caraway C.A. Gaitsch H. Wicks E.E. Kalluri A. Kunadi N. Tyler B.M. Polymeric nanoparticles in brain cancer therapy: A review of current approaches. Polymers 2022 14 14 2963 10.3390/polym14142963 35890738
    [Google Scholar]
  126. Chuffa L.G.A. Seiva F.R.F. Novais A.A. Melatonin-loaded nanocarriers: New horizons for therapeutic applications. Molecules 2021 26 12 3562 10.3390/molecules26123562 34200947
    [Google Scholar]
  127. Madani F. Morovvati H. Webster T.J. Combination chemotherapy via poloxamer 188 surface-modified PLGA nanoparticles that traverse the blood–brain–barrier in a glioblastoma model. Sci. Rep. 2024 14 1 19516 10.1038/s41598‑024‑69888‑1 39174603
    [Google Scholar]
  128. Wang C. Li Q. Song K. Nanoparticle co-delivery of carboplatin and PF543 restores platinum sensitivity in ovarian cancer models through inhibiting platinum-induced pro-survival pathway activation. Nanoscale Adv. 2024 6 16 4082 4093 10.1039/D4NA00227J 39114142
    [Google Scholar]
  129. de Almeida Campos L.A. de Souza J.B. de Queiroz Macêdo H.L.R. Borges J.C. de Oliveira D.N. Cavalcanti I.M.F. Synthesis of polymeric nanoparticles by double emulsion and pH-driven: Encapsulation of antibiotics and natural products for combating Escherichia coli infections. Appl. Microbiol. Biotechnol. 2024 108 1 351 10.1007/s00253‑024‑13114‑5 38819646
    [Google Scholar]
  130. Bahadur S. Pardhi D.M. Rautio J. Rosenholm J.M. Pathak K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharmaceutics 2020 12 12 1230 10.3390/pharmaceutics12121230 33352959
    [Google Scholar]
  131. Pınar S.G. Oktay A.N. Karaküçük A.E. Çelebi N. Formulation strategies of nanosuspensions for various administration routes. Pharmaceutics 2023 15 5 1520 10.3390/pharmaceutics15051520 37242763
    [Google Scholar]
  132. Misra S.K. Pathak K. Nose-to-brain targeting via nanoemulsion: Significance and evidence. Colloids and Interfaces 2023 7 1 23 10.3390/colloids7010023
    [Google Scholar]
  133. Negut I. Bita B. Polymeric micellar systems-A special emphasis on “smart” drug delivery. Pharmaceutics 2023 15 3 976 10.3390/pharmaceutics15030976 36986837
    [Google Scholar]
  134. Yu W.J. Huang D.X. Liu S. Sha Y.L. Gao F. Liu H. Polymeric nanoscale drug carriers mediate the delivery of methotrexate for developing therapeutic interventions against cancer and rheumatoid arthritis. Front. Oncol. 2020 10 1734 10.3389/fonc.2020.01734 33042817
    [Google Scholar]
  135. Al-Absi M.Y. Caprifico A.E. Calabrese G. Chitosan and its structural modifications for siRNA delivery. Adv. Pharm. Bull. 2023 13 2 275 282 10.34172/apb.2023.030 37342385
    [Google Scholar]
  136. Albasri O.W.A. Kumar P.V. Rajagopal M.S. Development of computational in silico model for nano lipid carrier formulation of curcumin. Molecules 2023 28 4 1833 10.3390/molecules28041833 36838817
    [Google Scholar]
  137. Di Filippo L.D. Duarte J.L. Luiz M.T. de Araújo J.T.C. Chorilli M. Drug delivery nanosystems in glioblastoma multiforme treatment: Current state of the art. Curr. Neuropharmacol. 2021 19 6 787 812 10.2174/1570159X18666200831160627 32867643
    [Google Scholar]
  138. Ciuca M.D. Racovita R.C. Curcumin: Overview of extraction methods, health benefits, and encapsulation and delivery using microemulsions and nanoemulsions. Int. J. Mol. Sci. 2023 24 10 8874 10.3390/ijms24108874 37240220
    [Google Scholar]
  139. Xinchen Y. Jing T. Jiaoqiong G. Lipid-based nanoparticles via nose-to-brain delivery: A mini review. Front. Cell Dev. Biol. 2023 11 1214450 10.3389/fcell.2023.1214450 37675144
    [Google Scholar]
  140. Satapathy M.K. Yen T.L. Jan J.S. Solid lipid nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics 2021 13 8 1183 10.3390/pharmaceutics13081183 34452143
    [Google Scholar]
  141. Morales D.E. Mousa S. Intranasal delivery in glioblastoma treatment: Prospective molecular treatment modalities. Heliyon 2022 8 5 e09517 10.1016/j.heliyon.2022.e09517 35647354
    [Google Scholar]
  142. Liu J. Yang F. Hu J. Zhang X. Nanoparticles for efficient drug delivery and drug resistance in glioma: New perspectives. CNS Neurosci. Ther. 2024 30 5 e14715 10.1111/cns.14715 38708806
    [Google Scholar]
  143. Gareev K. Tagaeva R. Bobkov D. Passing of nanocarriers across the histohematic barriers: Current approaches for tumor theranostics. Nanomaterials 2023 13 7 1140 10.3390/nano13071140 37049234
    [Google Scholar]
  144. Sanad S.M. Farouk R. Nassar S.E. The neuroprotective effect of quercetin nanoparticles in the therapy of neuronal damage stimulated by acrolein. Saudi J. Biol. Sci. 2023 30 11 103792 10.1016/j.sjbs.2023.103792 37711970
    [Google Scholar]
  145. Ahmad E. Feng Y. Qi J. Evidence of nose-to-brain delivery of nanoemulsions: Cargoes but not vehicles. Nanoscale 2017 9 3 1174 1183 10.1039/C6NR07581A 28009915
    [Google Scholar]
  146. Huang Q. Chen X. Yu S. Gong G. Shu H. Research progress in brain-targeted nasal drug delivery. Front. Aging Neurosci. 2024 15 1341295 10.3389/fnagi.2023.1341295 38298925
    [Google Scholar]
  147. Riccardi C. Napolitano F. Montesarchio D. Sampaolo S. Melone M.A.B. Nanoparticle-guided brain drug delivery: Expanding the therapeutic approach to neurodegenerative diseases. Pharmaceutics 2021 13 11 1897 10.3390/pharmaceutics13111897 34834311
    [Google Scholar]
  148. Tiwari H. Rai N. Singh S. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering 2023 10 7 760 10.3390/bioengineering10070760 37508788
    [Google Scholar]
  149. Sahu U. Barth R.F. Otani Y. McCormack R. Kaur B. Rat and mouse brain tumor models for experimental neuro-oncology research. J. Neuropathol. Exp. Neurol. 2022 81 5 312 329 10.1093/jnen/nlac021 35446393
    [Google Scholar]
  150. Wu D.D. Salah Y.A. Ngowi E.E. Nanotechnology prospects in brain therapeutics concerning gene-targeting and nose-to-brain administration. iScience 2023 26 8 107321 10.1016/j.isci.2023.107321 37554468
    [Google Scholar]
  151. Shah P. Lalan M. Barve K. Intranasal delivery: An attractive route for the administration of nucleic acid based therapeutics for CNS disorders. Front. Pharmacol. 2022 13 974666 10.3389/fphar.2022.974666 36110526
    [Google Scholar]
  152. Pinheiro R.G.R. Coutinho A.J. Pinheiro M. Neves A.R. Nanoparticles for targeted brain drug delivery: What do we know? Int. J. Mol. Sci. 2021 22 21 11654 10.3390/ijms222111654 34769082
    [Google Scholar]
  153. Van Woensel M. Wauthoz N. Rosière R. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release 2016 227 71 81 10.1016/j.jconrel.2016.02.032 26902800
    [Google Scholar]
  154. Adelusi T.I. Oyedele A.K. Boyenle I.D. Molecular modeling in drug discovery. Inform Med Unlocked 2022 29 10.1016/j.imu.2022.100880
    [Google Scholar]
  155. Videla-Richardson G.A. Morris-Hanon O. Torres N.I. Galectins as emerging glyco-checkpoints and therapeutic targets in glioblastoma. Int. J. Mol. Sci. 2021 23 1 316 10.3390/ijms23010316 35008740
    [Google Scholar]
  156. Van Woensel M. Mathivet T. Wauthoz N. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci. Rep. 2017 7 1 1217 10.1038/s41598‑017‑01279‑1 28450700
    [Google Scholar]
  157. Chang H. Wen X. Li Z. Ling Z. Zheng Y. Xu C. Co‐delivery of dendritic cell vaccine and anti‐PD ‐1 antibody with cryomicroneedles for combinational immunotherapy. Bioeng. Transl. Med. 2023 8 5 e10457 10.1002/btm2.10457 37693072
    [Google Scholar]
  158. Ferreira N.N. de Oliveira E. Junior Granja S. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int. J. Pharm. 2021 603 120714 10.1016/j.ijpharm.2021.120714 34015380
    [Google Scholar]
  159. Mohammed P.N. Hussen N.H. Hasan A.H. A review on the role of nanoparticles for targeted brain drug delivery: Synthesis, characterization, and applications. EXCLI J. 2025 24 34 59 10.17179/excli2024‑7163 39967907
    [Google Scholar]
  160. Rodà F. Caraffi R. Picciolini S. Recent advances on surface-modified GBM targeted nanoparticles: Targeting strategies and surface characterization. Int. J. Mol. Sci. 2023 24 3 2496 10.3390/ijms24032496 36768820
    [Google Scholar]
  161. Ortiz R. Perazzoli G. Cabeza L. Temozolomide: An updated overview of resistance mechanisms, nanotechnology advances and clinical applications. Curr. Neuropharmacol. 2021 19 4 513 537 10.2174/1570159X18666200626204005 32589560
    [Google Scholar]
  162. Gessner I. Neundorf I. Nanoparticles modified with cell-penetrating peptides: Conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int. J. Mol. Sci. 2020 21 7 2536 10.3390/ijms21072536 32268473
    [Google Scholar]
  163. Chavarria V. Ortiz-Islas E. Salazar A. Lactate-loaded nanoparticles induce glioma cytotoxicity and increase the survival of rats bearing malignant glioma brain tumor. Pharmaceutics 2022 14 2 327 10.3390/pharmaceutics14020327 35214059
    [Google Scholar]
  164. Li F. Jiang T. Li Q. Ling X. Camptothecin (CPT) and its derivatives are known to target topoisomerase I (Top1) as their mechanism of action: Did we miss something in CPT analogue molecular targets for treating human disease such as cancer? Am. J. Cancer Res. 2017 7 12 2350 2394 [PMID: 29312794
    [Google Scholar]
  165. Ghanbari-Movahed M. Kaceli T. Mondal A. Farzaei M.H. Bishayee A. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines 2021 9 5 480 10.3390/biomedicines9050480 33925750
    [Google Scholar]
  166. Prencipe F. Diaferia C. Rossi F. Ronga L. Tesauro D. Forward precision medicine: Micelles for active targeting driven by peptides. Molecules 2021 26 13 4049 10.3390/molecules26134049 34279392
    [Google Scholar]
  167. Lin T. Liu E. He H. Nose-to-brain delivery of macromolecules mediated by cell-penetrating peptides. Acta Pharm. Sin. B 2016 6 4 352 358 10.1016/j.apsb.2016.04.001 27471676
    [Google Scholar]
  168. Do A.D. Kurniawati I. Hsieh C.L. Wong T.T. Lin Y.L. Sung S.Y. Application of mesenchymal stem cells in targeted delivery to the brain: Potential and challenges of the extracellular vesicle-based approach for brain tumor treatment. Int. J. Mol. Sci. 2021 22 20 11187 10.3390/ijms222011187 34681842
    [Google Scholar]
  169. Thanaskody K. Jusop A.S. Tye G.J. Wan Kamarul Zaman W.S. Dass S.A. Nordin F. MSCs vs. iPSCs: Potential in therapeutic applications. Front. Cell Dev. Biol. 2022 10 1005926 10.3389/fcell.2022.1005926 36407112
    [Google Scholar]
  170. Zhang L. Xiang J. Zhang F. Liu L. Hu C. MSCs can be a double-edged sword in tumorigenesis. Front. Oncol. 2022 12 1047907 10.3389/fonc.2022.1047907 36439438
    [Google Scholar]
  171. Benmelouka A.Y. Munir M. Sayed A. Neural stem cell-based therapies and glioblastoma management: Current evidence and clinical challenges. Int. J. Mol. Sci. 2021 22 5 2258 10.3390/ijms22052258 33668356
    [Google Scholar]
  172. Zhang Y.T. He K.J. Zhang J.B. Ma Q.H. Wang F. Liu C.F. Advances in intranasal application of stem cells in the treatment of central nervous system diseases. Stem Cell Res. Ther. 2021 12 1 210 10.1186/s13287‑021‑02274‑0 33762014
    [Google Scholar]
  173. Hamad A. Yusubalieva G.M. Baklaushev V.P. Chumakov P.M. Lipatova A.V. Recent developments in glioblastoma therapy: Oncolytic viruses and emerging future strategies. Viruses 2023 15 2 547 10.3390/v15020547 36851761
    [Google Scholar]
  174. Park S. Han H. Ahn S. Ryu C. Jeun S.S. Combination treatment with VPA and MSCs TRAIL could increase anti tumor effects against intracranial glioma. Oncol. Rep. 2021 45 3 869 878 10.3892/or.2021.7937 33469674
    [Google Scholar]
  175. Ghasempour E. Hesami S. Movahed E. keshel SH, Doroudian M. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy in the brain tumors. Stem Cell Res. Ther. 2022 13 1 527 10.1186/s13287‑022‑03212‑4 36536420
    [Google Scholar]
  176. Karlsson J. Luly K.M. Tzeng S.Y. Green J.J. Nanoparticle designs for delivery of nucleic acid therapeutics as brain cancer therapies. Adv. Drug Deliv. Rev. 2021 179 113999 10.1016/j.addr.2021.113999 34715258
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128373247250529114324
Loading
/content/journals/cpd/10.2174/0113816128373247250529114324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test