Skip to content
2000
image of Ginkgolide as a Promising Multi-Target Therapeutic for Alzheimer's Disease: Targeting ApoE4 and Beyond

Abstract

Introduction

The progressive neurodegenerative disease known as Alzheimer's disease (AD) is typified by neuroinflammation, amyloid-beta buildup, and cognitive impairment. Current pharmacological treatments merely alleviate symptoms, despite extensive research, which underscores the need for innovative, multi-target medicines. Since apolipoprotein E4 (ApoE4) is a significant genetic risk factor linked to the development of AD, it is a potentially effective treatment target. With their neuroprotective qualities, natural substances like Ginkgolide may help treat some diseases. This study investigates Ginkgolide's potential as a multi-target treatment for AD, with a particular emphasis on how it interacts with the ApoE4 N-terminal domain.

Methods

The interaction between Ginkgolide and ApoE4 (PDB ID: 8AX8) was assessed using pharmacokinetic profiling, molecular docking, and molecular dynamics (MD) simulations. MD simulations were used to determine stability, and AutoDock Vina was used to obtain the binding affinity. To predict pharmacokinetics and toxicity, SwissADME and PkCSM were employed. The effectiveness of ginkgolide was contextualized using comparative docking with curcumin and resveratrol.

Results

Ginkgolide formed sustained hydrophobic contacts with important sites and demonstrated a substantial binding affinity (-7.1 kcal/mol) to ApoE4. MD simulations verified negligible fluctuations and complex stability over 100 ns. Pharmacokinetics showed no significant toxicity risks, good gastrointestinal absorption, and favorable blood-brain barrier permeability. In terms of binding affinity and stability, ginkgolide fared better than curcumin and resveratrol, indicating its greater therapeutic potential.

Discussion

The results indicate that ginkgolide effectively binds and stabilizes the ApoE4 N-terminal domain, supporting its potential role in modulating a key pathological factor in Alzheimer’s disease. Its superior pharmacokinetic profile and interaction dynamics compared to curcumin and resveratrol suggest a broader therapeutic relevance. These insights provide a mechanistic basis for further investigation into ginkgolide’s neuroprotective effects.

Conclusion

The results demonstrated ginkgolide as a potentially effective multi-target treatment for AD through ApoE4 regulation. It is a better option than other natural chemicals because of its potent binding affinity, stability, and pharmacokinetics. These findings highlight the value of methods in the early stages of drug discovery and the need for additional experimental support before they can be used in clinical settings.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128386836250723134001
2025-07-31
2025-10-19
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128386836250723134001/BMS-CPD-2025-94.html?itemId=/content/journals/cpd/10.2174/0113816128386836250723134001&mimeType=html&fmt=ahah

References

  1. Jones D. Lowe V. Graff-Radford J. A computational model of neurodegeneration in Alzheimer’s disease. Nat. Commun. 2022 13 1 1643 10.1038/s41467‑022‑29047‑4 35347127
    [Google Scholar]
  2. Xia X. Jiang Q. McDermott J. Han J.D.J. Aging and Alzheimer’s disease: Comparison and associations from molecular to system level. Aging Cell 2018 17 5 e12802 10.1111/acel.12802 29963744
    [Google Scholar]
  3. Gulisano W. Maugeri D. Baltrons M.A. Role of amyloid-β and tau proteins in Alzheimer’s disease: Confuting the amyloid cascade. J. Alzheimers Dis. 2018 64 s1 S611 S631 10.3233/JAD‑179935 29865055
    [Google Scholar]
  4. Dhikav V. Anand K.S. Hippocampus in health and disease: An overview. Ann. Indian Acad. Neurol. 2012 15 4 239 246 10.4103/0972‑2327.104323 23349586
    [Google Scholar]
  5. Jurcău M.C. Andronie-Cioara F.L. Jurcău A. The link between oxidative stress, mitochondrial dysfunction and neuroinflammation in the pathophysiology of Alzheimer’s disease: Therapeutic implications and future perspectives. Antioxidants 2022 11 11 2167 10.3390/antiox11112167 36358538
    [Google Scholar]
  6. Iqbal K. Grundke-Iqbal I. Alzheimer’s disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement. 2010 6 5 420 424 10.1016/j.jalz.2010.04.006 20813343
    [Google Scholar]
  7. Ringman J.M. Goate A. Masters C.L. Genetic heterogeneity in Alzheimer disease and implications for treatment strategies. Curr. Neurol. Neurosci. Rep. 2014 14 11 499 10.1007/s11910‑014‑0499‑8 25217249
    [Google Scholar]
  8. Martínez-Martínez A.B. Torres-Perez E. Devanney N. Del Moral R. Johnson L.A. Arbones-Mainar J.M. Beyond the CNS: The many peripheral roles of APOE. Neurobiol. Dis. 2020 138 104809 10.1016/j.nbd.2020.104809 32087284
    [Google Scholar]
  9. Ning Z. Liu Y. Wan M. ApoE2 protects against Aβ pathology by improving neuronal mitochondrial function through ERRα signaling. Cell. Mol. Biol. Lett. 2024 29 1 87 10.1186/s11658‑024‑00600‑x 38867189
    [Google Scholar]
  10. Steele O.G. Stuart A.C. Minkley L. A multi-hit hypothesis for an ApoE4-dependent pathophysiological state. Eur. J. Neurosci. 2022 56 9 5476 5515 10.1111/ejn.15685 35510513
    [Google Scholar]
  11. Palmer J.M. Huentelman M. Ryan L. More than just risk for Alzheimer’s disease: APOE ε4's impact on the aging brain. Trends Neurosci. 2023 46 9 750 763 10.1016/j.tins.2023.06.003 37460334
    [Google Scholar]
  12. Moon H.J. Haroutunian V. Zhao L. Human apolipoprotein E isoforms are differentially sialylated and the sialic acid moiety in ApoE2 attenuates ApoE2-Aβ interaction and Aβ fibrillation. Neurobiol. Dis. 2022 164 105631 10.1016/j.nbd.2022.105631 35041991
    [Google Scholar]
  13. Dias D. Portugal C.C. Relvas J. Socodato R. From genetics to neuroinflammation: The impact of ApoE4 on microglial function in Alzheimer’s disease. Cells 2025 14 4 243 10.3390/cells14040243 39996715
    [Google Scholar]
  14. Huang Y Mahley RW Apolipoprotein E: Structure and function in lipid metabolism, neurobiology, and Alzheimer's diseases. Neurobiol Dis 2014 73 Pt A 3 12 10.1016/j.nbd.2014.08.025 25173806
    [Google Scholar]
  15. Lane R.M. Farlow M.R. Lipid homeostasis and apolipoprotein E in the development and progression of Alzheimer’s disease. J. Lipid Res. 2005 46 5 949 968 10.1194/jlr.M400486‑JLR200 15716586
    [Google Scholar]
  16. Nazir S. Jankowski V. Bender G. Zewinger S. Rye K.A. van der Vorst E.P.C. Interaction between high-density lipoproteins and inflammation: Function matters more than concentration. Adv. Drug Deliv. Rev. 2020 159 94 119 10.1016/j.addr.2020.10.006 33080259
    [Google Scholar]
  17. Alkhalifa A.E. Al-Ghraiybah N.F. Odum J. Shunnarah J.G. Austin N. Kaddoumi A. Blood-brain barrier breakdown in Alzheimer’s disease: Mechanisms and targeted strategies. Int. J. Mol. Sci. 2023 24 22 16288 10.3390/ijms242216288 38003477
    [Google Scholar]
  18. Kirchner K. Garvert L. Kühn L. Bonk S. Grabe H.J. Van der Auwera S. Detrimental effects of Apoe E4 on blood-brain barrier integrity and their potential implications on the pathogenesis of Alzheimer’s disease. Cells 2023 12 21 2512 10.3390/cells12212512 37947590
    [Google Scholar]
  19. Serrano-Pozo A. Das S. Hyman B.T. APOE and Alzheimer’s disease: Advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol. 2021 20 1 68 80 10.1016/S1474‑4422(20)30412‑9 33340485
    [Google Scholar]
  20. Husain M.A. Laurent B. Plourde M. APOE and Alzheimer’s disease: From lipid transport to physiopathology and therapeutics. Front. Neurosci. 2021 15 630502 10.3389/fnins.2021.630502 33679311
    [Google Scholar]
  21. Yamazaki Y. Zhao N. Caulfield T.R. Liu C.C. Bu G. Apolipoprotein E and Alzheimer disease: Pathobiology and targeting strategies. Nat. Rev. Neurol. 2019 15 9 501 518 10.1038/s41582‑019‑0228‑7 31367008
    [Google Scholar]
  22. Li Z. Shue F. Zhao N. Shinohara M. Bu G. APOE2: Protective mechanism and therapeutic implications for Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 63 10.1186/s13024‑020‑00413‑4 33148290
    [Google Scholar]
  23. Yegambaram M. Manivannan B. Beach T. Halden R. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res. 2015 12 2 116 146 10.2174/1567205012666150204121719 25654508
    [Google Scholar]
  24. Reichman W.E. Current pharmacologic options for patients with Alzheimer’s disease. Ann. Gen. Hosp. Psychiatry 2003 2 1 1 10.1186/1475‑2832‑2‑1 12605726
    [Google Scholar]
  25. Yiannopoulou K.G. Anastasiou A.I. Zachariou V. Pelidou S.H. Reasons for failed trials of disease-modifying treatments for Alzheimer disease and their contribution in recent research. Biomedicines 2019 7 4 97 10.3390/biomedicines7040097 31835422
    [Google Scholar]
  26. Andrade S. Ramalho M.J. Loureiro J.A. Pereira M.C. Natural compounds for Alzheimer’s disease therapy: A systematic review of preclinical and clinical studies. Int. J. Mol. Sci. 2019 20 9 2313 10.3390/ijms20092313 31083327
    [Google Scholar]
  27. Li C. Wong Y. The bioavailability of ginkgolides in Ginkgo biloba extracts. Planta Med. 1997 63 6 563 565 10.1055/s‑2006‑957768 9434615
    [Google Scholar]
  28. Nowak A. Kojder K. Zielonka-Brzezicka J. The use of Ginkgo biloba L. as a neuroprotective agent in the Alzheimer’s disease. Front. Pharmacol. 2021 12 775034 10.3389/fphar.2021.775034 34803717
    [Google Scholar]
  29. Guan L. Yang H. Cai Y. ADMET-score - A comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm 2019 10 1 148 157 10.1039/C8MD00472B 30774861
    [Google Scholar]
  30. Raulin A.C. Doss S.V. Trottier Z.A. Ikezu T.C. Bu G. Liu C.C. ApoE in Alzheimer’s disease: Pathophysiology and therapeutic strategies. Mol. Neurodegener. 2022 17 1 72 10.1186/s13024‑022‑00574‑4 36348357
    [Google Scholar]
  31. Yamazaki Y. Painter M.M. Bu G. Kanekiyo T. Apolipoprotein E as a therapeutic target in Alzheimer’s disease: A review of basic research and clinical evidence. CNS Drugs 2016 30 9 773 789 10.1007/s40263‑016‑0361‑4 27328687
    [Google Scholar]
  32. Shi C. Liu J. Wu F. Yew D. Ginkgo biloba extract in Alzheimer’s disease: From action mechanisms to medical practice. Int. J. Mol. Sci. 2010 11 1 107 123 10.3390/ijms11010107 20162004
    [Google Scholar]
  33. Arafah A. Khatoon S. Rasool I. The future of precision medicine in the cure of Alzheimer’s disease. Biomedicines 2023 11 2 335 10.3390/biomedicines11020335 36830872
    [Google Scholar]
  34. Singh S.K. Srivastav S. Castellani R.J. Plascencia-Villa G. Perry G. Neuroprotective and antioxidant effect of Ginkgo biloba extract against AD and other neurological disorders. Neurotherapeutics 2019 16 3 666 674 10.1007/s13311‑019‑00767‑8 31376068
    [Google Scholar]
  35. Kim S. Thiessen P.A. Bolton E.E. PubChem substance and compound databases. Nucleic Acids Res. 2016 44 D1 D1202 D1213 10.1093/nar/gkv951 26400175
    [Google Scholar]
  36. Webb B Sali A Comparative protein structure modeling using MODELLER. Curr Protoc Bioinform 2016 54 5.6.1 5.6.37 10.1002/cpbi.3 27322406
    [Google Scholar]
  37. Chen Y. Zhang H. Wang W. Shen Y. Ping Z. Rapid generation of high-quality structure figures for publication with PyMOL-PUB. Bioinformatics 2024 40 3 btae139 10.1093/bioinformatics/btae139 38449297
    [Google Scholar]
  38. Guex N. Peitsch M.C. SWISS‐MODEL and the swiss‐Pdb viewer: An environment for comparative protein modeling. Electrophoresis 1997 18 15 2714 2723 10.1002/elps.1150181505 9504803
    [Google Scholar]
  39. Burley S.K. Berman H.M. Kleywegt G.J. Markley J.L. Nakamura H. Velankar S. Protein data bank (PDB): The single global macromolecular structure archive. Methods Mol. Biol. 2017 1607 627 641 10.1007/978‑1‑4939‑7000‑1_26 28573592
    [Google Scholar]
  40. Sahu N. Madan S. Walia R. Multi-target mechanism of Solanum xanthocarpum for treatment of psoriasis based on network pharmacology and molecular docking. Saudi Pharm. J. 2023 31 11 101788 10.1016/j.jsps.2023.101788 37811124
    [Google Scholar]
  41. Pires D.E.V. Blundell T.L. Ascher D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem. 2015 58 9 4066 4072 10.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  42. Dhawan A. Sharma V. Toxicity assessment of nanomaterials: Methods and challenges. Anal. Bioanal. Chem. 2010 398 2 589 605 10.1007/s00216‑010‑3996‑x 20652549
    [Google Scholar]
  43. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  44. Pettersen E.F. Goddard T.D. Huang C.C. UCSF Chimera — A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  45. Yasir M. Park J. Han E.T. Discovery of novel TACE inhibitors using graph convolutional network, molecular docking, molecular dynamics simulation, and biological evaluation. PLoS One 2024 19 12 e0315245 10.1371/journal.pone.0315245 39729480
    [Google Scholar]
  46. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  47. Kinney J.W. Bemiller S.M. Murtishaw A.S. Leisgang A.M. Salazar A.M. Lamb B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimers Dement. 2018 4 1 575 590 10.1016/j.trci.2018.06.014 30406177
    [Google Scholar]
  48. Salloway S.P. Sevingy J. Budur K. Advancing combination therapy for Alzheimer’s disease. Alzheimers Dement. 2020 6 1 e12073 10.1002/trc2.12073 33043108
    [Google Scholar]
  49. Goldberg T.E. Huey E.D. Devanand D.P. Association of APOE e2 genotype with Alzheimer’s and non-Alzheimer’s neurodegenerative pathologies. Nat. Commun. 2020 11 1 4727 10.1038/s41467‑020‑18198‑x 32948752
    [Google Scholar]
  50. Palleria C. Di Paolo A. Giofrè C. Pharmacokinetic drug-drug interaction and their implication in clinical management. J. Res. Med. Sci. 2013 18 7 601 610 24516494
    [Google Scholar]
  51. Garbett N.C. Chaires J.B. Thermodynamic studies for drug design and screening. Expert Opin. Drug Discov. 2012 7 4 299 314 10.1517/17460441.2012.666235 22458502
    [Google Scholar]
  52. Miculas D.C. Negru P.A. Bungau S.G. Behl T. Hassan S.S. Tit D.M. Pharmacotherapy evolution in Alzheimer’s disease: Current framework and relevant directions. Cells 2022 12 1 131 10.3390/cells12010131 36611925
    [Google Scholar]
  53. Liu Q Jin Z Xu Z Antioxidant effects of Ginkgolides and bilobalide against cerebral ischemia injury by activating the Akt/Nrf2 pathway in vitro and in vivo. 2019 24 2 441 52 10.1007/s12192‑019‑00977‑1 30815818
    [Google Scholar]
  54. Mazzanti G. Di Giacomo S. Curcumin and resveratrol in the management of cognitive disorders: What is the clinical evidence? Molecules 2016 21 9 1243 10.3390/molecules21091243 27649135
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128386836250723134001
Loading
/content/journals/cpd/10.2174/0113816128386836250723134001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test