Skip to content
2000
image of Para-probiotics as Novel Anti-Inflammatory Agents: Insight into Health Benefits and Therapeutic Applications

Abstract

Para-probiotics, also referred to as non-viable microbial cells or cell components that confer health benefits, are emerging as promising agents in the prevention and management of inflammation-associated diseases. Unlike traditional probiotics, which require viability for efficacy, these inactivated forms offer significant advantages in terms of safety, stability, and applicability in vulnerable populations, including immunocompromised individuals. Recent studies have highlighted their capacity to modulate immune responses, enhance mucosal defense mechanisms, and reinforce intestinal barrier integrity through interactions involving microbial-associated molecular patterns (MAMPs) and host pattern recognition receptors. Such interactions influence signaling cascades like NF-κB, MAPKs, and inflammasome pathways, contributing to anti-inflammatory and immunomodulatory effects. One of the key advantages is the reduced risk of adverse effects and concerns associated with live probiotic use. In addition, their robust physicochemical stability under industrial processing conditions supports their incorporation into a range of functional foods and nutraceuticals. Despite these advantages, their mechanisms of action remain incompletely understood and require further investigation. This review synthesizes current evidence on their anti-inflammatory properties, highlights preclinical and clinical studies, and discusses technological approaches for their production. Overall, these bioactives represent a safe, stable, and efficacious alternative to traditional probiotics in managing inflammatory disorders.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128411949250909113034
2025-09-29
2025-11-09
Loading full text...

Full text loading...

References

  1. Lê A. Mantel M. Marchix J. Bodinier M. Jan G. Rolli-Derkinderen M. Inflammatory bowel disease therapeutic strategies by modulation of the microbiota: How and when to introduce pre-, pro-, syn-, or postbiotics? Am. J. Physiol. Gastrointest. Liver Physiol. 2022 323 6 G523 G553 10.1152/ajpgi.00002.2022 36165557
    [Google Scholar]
  2. Vallejo-Cordoba B. Castro-López C. García H.S. González-Córdova A.F. Hernández-Mendoza A. Postbiotics and paraprobiotics: A review of current evidence and emerging trends. Adv. Food Nutr. Res. 2020 94 1 34 10.1016/bs.afnr.2020.06.001 32892831
    [Google Scholar]
  3. Hussain M.S. Sharma A. Kumar R. Prebiotics and probiotics: A focused review of applications in respiratory disorders. Carpath J Food Sci Technol 2023 15 1 183 207
    [Google Scholar]
  4. Puebla-Barragan S. Reid G. Forty-five-year evolution of probiotic therapy. Microb. Cell 2019 6 4 184 196 10.15698/mic2019.04.673 30956971
    [Google Scholar]
  5. Kim S.K. Guevarra R.B. Kim Y.T. Role of probiotics in human gut microbiome-Associated diseases. J. Microbiol. Biotechnol. 2019 29 9 1335 1340 10.4014/jmb.1906.06064 31434172
    [Google Scholar]
  6. Huang B. An H. Gui M. Qingjie Fuzheng Granule prevents colitis-associated colorectal cancer by inhibiting abnormal activation of NOD2/NF-κB signaling pathway mediated by gut microbiota disorder. Chin. Herb. Med. 2025 17 10.1016/j.chmed.2025.04.001
    [Google Scholar]
  7. Bordoni A. Amaretti A. Leonardi A. Cholesterol-lowering probiotics: In vitro selection and in vivo testing of bifidobacteria. Appl. Microbiol. Biotechnol. 2013 97 18 8273 8281 10.1007/s00253‑013‑5088‑2 23872958
    [Google Scholar]
  8. Cuevas-González P.F. Liceaga A.M. Aguilar-Toalá J.E. Postbiotics and paraprobiotics: From concepts to applications. Food Res. Int. 2020 136 109502 10.1016/j.foodres.2020.109502 32846581
    [Google Scholar]
  9. Wang K. Yin J. Chen J. Ma J. Si H. Xia D. Inhibition of inflammation by berberine: Molecular mechanism and network pharmacology analysis. Phytomedicine 2024 128 155258 10.1016/j.phymed.2023.155258 38522318
    [Google Scholar]
  10. Wang J. Tao X. Liu Z. Noncoding RNAs in sepsis-associated acute liver injury: Roles, mechanisms, and therapeutic applications. Pharmacol. Res. 2025 212 107596 10.1016/j.phrs.2025.107596 39800175
    [Google Scholar]
  11. Wang C. Liu Z. Zhou T. Gut microbiota‐derived butyric acid regulates calcific aortic valve disease pathogenesis by modulating GAPDH lactylation and butyrylation. iMeta 2025 70048 10.1002/imt2.70048
    [Google Scholar]
  12. Mehta J.P. Ayakar S. Singhal R.S. The potential of paraprobiotics and postbiotics to modulate the immune system: A review. Microbiol. Res. 2023 275 127449 10.1016/j.micres.2023.127449 37454427
    [Google Scholar]
  13. Teame T. Wang A. Xie M. Paraprobiotics and postbiotics of probiotic Lactobacilli, their positive effects on the host and action mechanisms: A review. Front. Nutr. 2020 7 570344 10.3389/fnut.2020.570344 33195367
    [Google Scholar]
  14. Guinane C.M. Cotter P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 2013 6 4 295 308 10.1177/1756283X13482996 23814609
    [Google Scholar]
  15. da Silva Duarte A.J. Sanabani S.S. Deciphering epigenetic regulations in the inflammatory pathways of atopic dermatitis. Life Sci. 2024 348 122713 10.1016/j.lfs.2024.122713 38735367
    [Google Scholar]
  16. Hussain M.S. Bisht A.S. Gupta G. Reduced interleukin-2 receptor subunit γ expression in Crohn’s disease: A potential mechanism for γδ T cell deficiency. World J. Gastroenterol. 2025 31 13 103180 10.3748/wjg.v31.i13.103180 40248067
    [Google Scholar]
  17. Bezzio C. Della Corte C. Vernero M. Di Luna I. Manes G. Saibeni S. Inflammatory bowel disease and immune-mediated inflammatory diseases: Looking at the less frequent associations. Therap. Adv. Gastroenterol. 2022 15 17562848221115312 10.1177/17562848221115312 35924080
    [Google Scholar]
  18. Hu E. Li Z. Li T. A novel microbial and hepatic biotransformation-integrated network pharmacology strategy explores the therapeutic mechanisms of bioactive herbal products in neurological diseases: The effects of Astragaloside IV on intracerebral hemorrhage as an example. Chin. Med. 2023 18 1 40 10.1186/s13020‑023‑00745‑5 37069580
    [Google Scholar]
  19. Tufail M. Wu C. Hussain M.S. Dietary, addictive and habitual factors, and risk of colorectal cancer. Nutrition 2024 120 112334 10.1016/j.nut.2023.112334 38271761
    [Google Scholar]
  20. Raftery A.L. Tsantikos E. Harris N.L. Hibbs M.L. Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front. Immunol. 2020 11 2144 10.3389/fimmu.2020.02144 33042125
    [Google Scholar]
  21. Cai Z. Wang S. Li J. Treatment of inflammatory bowel disease: A comprehensive review. Front. Med. 2021 8 765474 10.3389/fmed.2021.765474 34988090
    [Google Scholar]
  22. Gareau M.G. Sherman P.M. Walker W.A. Probiotics and the gut microbiota in intestinal health and disease. Nat. Rev. Gastroenterol. Hepatol. 2010 7 9 503 514 10.1038/nrgastro.2010.117 20664519
    [Google Scholar]
  23. Zocco M.A. Dal Verme L.Z. Cremonini F. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment. Pharmacol. Ther. 2006 23 11 1567 1574 10.1111/j.1365‑2036.2006.02927.x 16696804
    [Google Scholar]
  24. Kato K. Mizuno S. Umesaki Y. Randomized placebo‐controlled trial assessing the effect of bifidobacteria‐fermented milk on active ulcerative colitis. Aliment. Pharmacol. Ther. 2004 20 10 1133 1141 10.1111/j.1365‑2036.2004.02268.x 15569116
    [Google Scholar]
  25. Jonkers D. Penders J. Masclee A. Pierik M. Probiotics in the management of inflammatory bowel disease: A systematic review of intervention studies in adult patients. Drugs 2012 72 6 803 823 10.2165/11632710‑000000000‑00000 22512365
    [Google Scholar]
  26. Naidoo K. Gordon M. Fagbemi A.O. Thomas A.G. Akobeng A.K. Probiotics for maintenance of remission in ulcerative colitis. Cochrane Libr. 2011 12 CD007443 10.1002/14651858.CD007443.pub2 22161412
    [Google Scholar]
  27. Shen J. Ran H.Z. Yin M.H. Zhou T.X. Xiao D.S. Meta‐analysis: The effect and adverse events of Lactobacilli versus placebo in maintenance therapy for Crohn disease. Intern. Med. J. 2009 39 2 103 109 10.1111/j.1445‑5994.2008.01791.x 19220543
    [Google Scholar]
  28. Siciliano R.A. Reale A. Mazzeo M.F. Morandi S. Silvetti T. Brasca M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021 13 4 1225 10.3390/nu13041225 33917707
    [Google Scholar]
  29. Nataraj B.H. Ali S.A. Behare P.V. Yadav H. Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microb. Cell Fact. 2020 19 1 168 10.1186/s12934‑020‑01426‑w 32819443
    [Google Scholar]
  30. Barros C.P. Pires R.P.S. Guimarães J.T. Ohmic heating as a method of obtaining paraprobiotics: Impacts on cell structure and viability by flow cytometry. Food Res. Int. 2021 140 110061 10.1016/j.foodres.2020.110061 33648284
    [Google Scholar]
  31. Ma L. Tu H. Chen T. Postbiotics in human health: A narrative review. Nutrients 2023 15 2 291 10.3390/nu15020291 36678162
    [Google Scholar]
  32. Kumar H. Schütz F. Bhardwaj K. Recent advances in the concept of paraprobiotics: Nutraceutical/functional properties for promoting children health. Crit. Rev. Food Sci. Nutr. 2023 63 19 3943 3958 10.1080/10408398.2021.1996327 34748444
    [Google Scholar]
  33. Li B. Gao Q. Wu Y. Broad-spectrum anti-inflammatory and antioxidant therapy of inflammatory-storm actuated diseases via programmable self-derived cryo-dead neutrophils. Chem. Eng. J. 2025 507 160643 10.1016/j.cej.2025.160643
    [Google Scholar]
  34. Taverniti V. Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011 6 3 261 274 10.1007/s12263‑011‑0218‑x 21499799
    [Google Scholar]
  35. Mudaliar S.B. Poojary S.S. Bharath Prasad A.S. Mazumder N. Probiotics and paraprobiotics: Effects on microbiota-gut-brain axis and their consequent potential in neuropsychiatric therapy. Probiotics Antimicrob. Proteins 2024 16 4 1440 1464 10.1007/s12602‑024‑10214‑6 38294675
    [Google Scholar]
  36. Fu S. Chang H. Efficacy and safety of ceftriaxone versus probiotics in Chinese infants with acute gastroenteritis: A preliminary study. Int. J. Pharmacol. 2024 20 7 1143 1150 10.3923/ijp.2024.1143.1150
    [Google Scholar]
  37. Martyniak A. Medyńska-Przęczek A. Wędrychowicz A. Skoczeń S. Tomasik P.J. Prebiotics, probiotics, synbiotics, paraprobiotics and postbiotic compounds in IBD. Biomolecules 2021 11 12 1903 10.3390/biom11121903 34944546
    [Google Scholar]
  38. Chen F. Wang Y. Wang K. Effects of Litsea cubeba essential oil on growth performance, blood antioxidation, immune function, apparent digestibility of nutrients, and fecal microflora of pigs. Front. Pharmacol. 2023 14 1166022 10.3389/fphar.2023.1166022 37465523
    [Google Scholar]
  39. Gould G.W. Preservation: Past, present and future. Br. Med. Bull. 2000 56 1 84 96 10.1258/0007142001902996 10885107
    [Google Scholar]
  40. Lado B.H. Yousef A.E. Alternative food-preservation technologies: Efficacy and mechanisms. Microbes Infect. 2002 4 4 433 440 10.1016/S1286‑4579(02)01557‑5 11932194
    [Google Scholar]
  41. Cebrián G. Condón S. Mañas P. Physiology of the inactivation of vegetative bacteria by thermal treatments: Mode of action, influence of environmental factors and inactivation kinetics. Foods 2017 6 12 107 10.3390/foods6120107 29189748
    [Google Scholar]
  42. Smelt J.P.P.M. Brul S. Thermal inactivation of microorganisms. Crit. Rev. Food Sci. Nutr. 2014 54 10 1371 1385 10.1080/10408398.2011.637645 24564593
    [Google Scholar]
  43. Haas J. Kim B.J. Atamer Z. Wu C. Dallas D.C. Effects of high-temperature, short-time pasteurization on milk and whey during commercial whey protein concentrate production. J. Dairy Sci. 2025 108 1 257 271 10.3168/jds.2024‑25493 39343217
    [Google Scholar]
  44. Ward K.R. Matejtschuk P. The principles of freeze-drying and application of analytical technologies. Methods Mol. Biol. 2021 2180 99 127 10.1007/978‑1‑0716‑0783‑1_3 32797409
    [Google Scholar]
  45. Russell A.D. Lethal effects of heat on bacterial physiology and structure. Sci. Prog. 2003 86 1-2 115 137 10.3184/003685003783238699 12838607
    [Google Scholar]
  46. Ou C.C. Lin S.L. Tsai J.J. Lin M.Y. Heat-killed lactic acid bacteria enhance immunomodulatory potential by skewing the immune response toward Th1 polarization. J. Food Sci. 2011 76 5 M260 M267 10.1111/j.1750‑3841.2011.02161.x 22417436
    [Google Scholar]
  47. Park H.S. Choi H.J. Kim M.D. Kim K.H. Addition of ethanol to supercritical carbon dioxide enhances the inactivation of bacterial spores in the biofilm of Bacillus cereus. Int. J. Food Microbiol. 2013 166 2 207 212 10.1016/j.ijfoodmicro.2013.07.015 23973829
    [Google Scholar]
  48. Veiga G.C. Mafaldo Í.M. Barão C.E. Baú T.R. Magnani M. Pimentel T.C. Supercritical carbon dioxide technology in food processing: Insightful comprehension of the mechanisms of microbial inactivation and impacts on quality and safety aspects. Compr. Rev. Food Sci. Food Saf. 2024 23 3 13345 10.1111/1541‑4337.13345 38638070
    [Google Scholar]
  49. Dillow A.K. Dehghani F. Hrkach J.S. Foster N.R. Langer R. Bacterial inactivation by using near- and supercritical carbon dioxide. Proc. Natl. Acad. Sci. USA 1999 96 18 10344 10348 10.1073/pnas.96.18.10344 10468610
    [Google Scholar]
  50. Geng Y. Zheng Y. Zhou R. Ma M. Effect of supercritical carbon dioxide on protein structure modification and antimicrobial peptides production of Mongolian cheese and its in vitro digestion. Food Res. Int. 2024 191 114714 10.1016/j.foodres.2024.114714 39059962
    [Google Scholar]
  51. Girard-Perier N. Claeys-Bruno M. Marque S.R.A. Dupuy N. Gaston F. Dorey S. Effects of X-ray, electron beam and gamma irradiation on PE/EVOH/PE multilayer film properties. Chem. Commun. 2021 57 84 11049 11051 10.1039/D1CC02871E 34608899
    [Google Scholar]
  52. Sato Y. Ishihara M. Nakamura S. Comparison of various disinfectants on bactericidal activity under organic matter contaminated environments. Biocontrol Sci. 2019 24 2 103 108 10.4265/bio.24.103 31204354
    [Google Scholar]
  53. Alam M.A. Bharti M. Rao G.S.N.K. Sharma P.K. A brief review of radioactive materials for therapeutic and diagnostic purposes. Curr. Radiopharm. 2023 16 1 23 37 10.2174/1874471016666221028110222 36306460
    [Google Scholar]
  54. Munir M.T. Federighi M. Control of foodborne biological hazards by ionizing radiations. Foods 2020 9 7 878 10.3390/foods9070878 32635407
    [Google Scholar]
  55. Song W. Wang Y. Huang T. T-2 toxin metabolism and its hepatotoxicity: New insights on the molecular mechanism and detoxification. Environ. Pollut. 2023 330 121784 10.1016/j.envpol.2023.121784 37169237
    [Google Scholar]
  56. Fallah AA Sarmast E Ghasemi M Jafari T Mousavi Khaneghah A Lacroix M Combination of ionizing radiation and bio-based active packaging for muscle foods: A global systematic review and meta-analysis. Food Chem 2023 405 Pt B 134960 10.1016/j.foodchem.2022.134960 36423553
    [Google Scholar]
  57. Mañas P. Pagán R. Microbial inactivation by new technologies of food preservation. J. Appl. Microbiol. 2005 98 6 1387 1399 10.1111/j.1365‑2672.2005.02561.x 15916651
    [Google Scholar]
  58. Piqué N. Berlanga M. Miñana-Galbis D. Health benefits of heat-killed (Tyndallized) probiotics: An overview. Int. J. Mol. Sci. 2019 20 10 2534 10.3390/ijms20102534 31126033
    [Google Scholar]
  59. Kamiya T. Wang L. Forsythe P. Inhibitory effects of Lactobacillus reuteri on visceral pain induced by colorectal distension in Sprague-Dawley rats. Gut 2006 55 2 191 196 10.1136/gut.2005.070987 16361309
    [Google Scholar]
  60. Lee N.K. Park Y.S. Kang D.K. Paik H.D. Paraprobiotics: Definition, manufacturing methods, and functionality. Food Sci. Biotechnol. 2023 32 14 1981 1991 10.1007/s10068‑023‑01378‑y 37860741
    [Google Scholar]
  61. Diels A.M.J. Michiels C.W. High-pressure homogenization as a non-thermal technique for the inactivation of microorganisms. Crit. Rev. Microbiol. 2006 32 4 201 216 10.1080/10408410601023516 17123905
    [Google Scholar]
  62. Balasubramaniam V.M.B. Martínez-Monteagudo S.I. Gupta R. Principles and application of high pressure-based technologies in the food industry. Annu. Rev. Food Sci. Technol. 2015 6 1 435 462 10.1146/annurev‑food‑022814‑015539 25747234
    [Google Scholar]
  63. Singla M. Sit N. Application of ultrasound in combination with other technologies in food processing: A review. Ultrason. Sonochem. 2021 73 105506 10.1016/j.ultsonch.2021.105506 33714087
    [Google Scholar]
  64. Sehrawat R. Kaur B.P. Nema P.K. Tewari S. Kumar L. Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Sci. Biotechnol. 2021 30 1 19 35 10.1007/s10068‑020‑00831‑6 33552614
    [Google Scholar]
  65. Aganovic K. Hertel C. Vogel R.F. Aspects of high hydrostatic pressure food processing: Perspectives on technology and food safety. Compr. Rev. Food Sci. Food Saf. 2021 20 4 3225 3266 10.1111/1541‑4337.12763 34056857
    [Google Scholar]
  66. Duong T. Balaban M. Perera C. Bi X. Microbial and sensory effects of combined high hydrostatic pressure and dense phase carbon dioxide process on Feijoa puree. J. Food Sci. 2015 80 11 E2478 E2485 10.1111/1750‑3841.13083 26444875
    [Google Scholar]
  67. Guimarães J.T. Balthazar C.F. Scudino H. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrason. Sonochem. 2019 57 12 21 10.1016/j.ultsonch.2019.05.004 31208607
    [Google Scholar]
  68. Piyasena P. Mohareb E. McKellar R.C. Inactivation of microbes using ultrasound: A review. Int. J. Food Microbiol. 2003 87 3 207 216 10.1016/S0168‑1605(03)00075‑8 14527793
    [Google Scholar]
  69. Birmpa A. Sfika V. Vantarakis A. Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. Int. J. Food Microbiol. 2013 167 1 96 102 10.1016/j.ijfoodmicro.2013.06.005 23827815
    [Google Scholar]
  70. Guo S. Huang R. Chen H. Evaluating a combined method of UV and washing for sanitizing blueberries, tomatoes, strawberries, baby spinach, and lettuce. J. Food Prot. 2019 82 11 1879 1889 10.4315/0362‑028X.JFP‑18‑524 31622165
    [Google Scholar]
  71. Miao H. Liang J. Lan G. Wu Q. Huang Z. Heat-killed Lactobacillus acidophilus promotes growth by modulating the gut microbiota composition and fecal metabolites of piglets. Animals 2024 14 17 2528 10.3390/ani14172528 39272313
    [Google Scholar]
  72. Kaur N. Singh A.K. Ohmic heating: Concept and applications—A review. Crit. Rev. Food Sci. Nutr. 2016 56 14 2338 2351 10.1080/10408398.2013.835303 25830778
    [Google Scholar]
  73. Varghese K.S. Pandey M.C. Radhakrishna K. Bawa A.S. Technology, applications and modelling of ohmic heating: A review. J. Food Sci. Technol. 2014 51 10 2304 2317 10.1007/s13197‑012‑0710‑3 25328171
    [Google Scholar]
  74. Rocha R.S. Silva R. Ramos G.L.P. Ohmic heating treatment in high-protein vanilla flavored milk: Quality, processing factors, and biological activity. Food Res. Int. 2022 161 111827 10.1016/j.foodres.2022.111827 36192960
    [Google Scholar]
  75. Silva R. Rocha R.S. Ramos G.L.P.A. What are the challenges for ohmic heating in the food industry? Insights of a bibliometric analysis. Food Res. Int. 2022 157 111272 10.1016/j.foodres.2022.111272 35761584
    [Google Scholar]
  76. Hussain M.S. Sharma N. Khurana N.J.C.N. Science F. An update on eating disorders. Curr. Nutr. Food Sci. 2024 20 2 167 174 10.2174/1573401319666230329135010
    [Google Scholar]
  77. Marangoni Júnior L. Rodrigues R.M. Pereira R.N. Effect of ohmic heating on the structure and properties of flexible multilayer packaging. Food Chem. 2024 456 140038 10.1016/j.foodchem.2024.140038 38876069
    [Google Scholar]
  78. Manikandan V. Min S.C. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review. Int. J. Biol. Macromol. 2023 252 126381 10.1016/j.ijbiomac.2023.126381 37595723
    [Google Scholar]
  79. Jaeger H. Schulz A. Karapetkov N. Knorr D. Protective effect of milk constituents and sublethal injuries limiting process effectiveness during PEF inactivation of Lb. rhamnosus. Int. J. Food Microbiol. 2009 134 1-2 154 161 10.1016/j.ijfoodmicro.2009.06.007 19589610
    [Google Scholar]
  80. Álvarez I. Pagán R. Condón S. Raso J. The influence of process parameters for the inactivation of Listeria monocytogenes by pulsed electric fields. Int. J. Food Microbiol. 2003 87 1-2 87 95 10.1016/S0168‑1605(03)00056‑4 12927710
    [Google Scholar]
  81. Chen X. Feng J. Ahn J. Vasilis V. Ding T. Inactivation of foodborne pathogens by non-thermal technologies. Adv. Food Nutr. Res. 2025 113 103 132 10.1016/bs.afnr.2024.09.010 40023559
    [Google Scholar]
  82. Reed N.G. The history of ultraviolet germicidal irradiation for air disinfection. Public Health Rep. 2010 125 1 15 27 10.1177/003335491012500105 20402193
    [Google Scholar]
  83. de Jager T.L. Cockrell A.E. Du Plessis S.S. Ultraviolet light induced generation of reactive oxygen species. Adv. Exp. Med. Biol. 2017 996 15 23 10.1007/978‑3‑319‑56017‑5_2 29124687
    [Google Scholar]
  84. Lopez M. Li N. Kataria J. Russell M. Neu J. Live and ultraviolet-inactivated Lactobacillus rhamnosus GG decrease flagellin-induced interleukin-8 production in Caco-2 cells. J. Nutr. 2008 138 11 2264 2268 10.3945/jn.108.093658 18936229
    [Google Scholar]
  85. Batista V.L. da Silva T.F. de Jesus L.C.L. Probiotics, prebiotics, synbiotics, and paraprobiotics as a therapeutic alternative for intestinal mucositis. Front. Microbiol. 2020 11 544490 10.3389/fmicb.2020.544490 33042054
    [Google Scholar]
  86. Thorakkattu P. Khanashyam A.C. Shah K. Postbiotics: Current trends in food and pharmaceutical industry. Foods 2022 11 19 3094 10.3390/foods11193094 36230169
    [Google Scholar]
  87. Sharma M. Shukla G. Metabiotics: One step ahead of probiotics; An insight into mechanisms involved in anticancerous effect in colorectal cancer. Front. Microbiol. 2016 7 1940 10.3389/fmicb.2016.01940 27994577
    [Google Scholar]
  88. Gao Y. Zhang S. Aili T. Dual signal light detection of beta-lactoglobulin based on a porous silicon bragg mirror. Biosens. Bioelectron. 2022 204 114035 10.1016/j.bios.2022.114035 35149452
    [Google Scholar]
  89. Aguilar-Toalá J.E. Astiazarán-García H. Estrada-Montoya M.C. Modulatory effect of the intracellular content of lactobacillus casei CRL 431 against the aflatoxin B1-induced oxidative stress in rats. Probiotics Antimicrob. Proteins 2019 11 2 470 477 10.1007/s12602‑018‑9433‑8 29862461
    [Google Scholar]
  90. Guo Y. Pan D. Li H. Sun Y. Zeng X. Yan B. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. lactis. Food Chem. 2013 138 1 84 89 10.1016/j.foodchem.2012.10.029 23265459
    [Google Scholar]
  91. El-Ghany W.A.A. Paraprobiotics and postbiotics: Contemporary and promising natural antibiotics alternatives and their applications in the poultry field. Open Vet. J. 2020 10 3 323 330 10.4314/ovj.v10i3.11 33282704
    [Google Scholar]
  92. Bron P.A. Tomita S. van Swam I.I. Lactobacillus plantarum possesses the capability for wall teichoic acid backbone alditol switching. Microb. Cell Fact. 2012 11 1 123 10.1186/1475‑2859‑11‑123 22967304
    [Google Scholar]
  93. Lebeer S. Vanderleyden J. De Keersmaecker S.C.J. Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nat. Rev. Microbiol. 2010 8 3 171 184 10.1038/nrmicro2297 20157338
    [Google Scholar]
  94. Li W. Ji J. Chen X. Jiang M. Rui X. Dong M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 2014 102 351 359 10.1016/j.carbpol.2013.11.053 24507291
    [Google Scholar]
  95. Yin Q. Fu T.M. Li J. Wu H. Structural biology of innate immunity. Annu. Rev. Immunol. 2015 33 1 393 416 10.1146/annurev‑immunol‑032414‑112258 25622194
    [Google Scholar]
  96. Hoang T.K. He B. Wang T. Tran D.Q. Rhoads J.M. Liu Y. Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2. Am. J. Physiol. Gastrointest. Liver Physiol. 2018 315 2 G231 G240 10.1152/ajpgi.00084.2017 29648878
    [Google Scholar]
  97. Lebeer S. Claes I. Tytgat H.L.P. Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl. Environ. Microbiol. 2012 78 1 185 193 10.1128/AEM.06192‑11 22020518
    [Google Scholar]
  98. Wachi S. Kanmani P. Tomosada Y. Lactobacillus delbrueckii TUA 4408 L and its extracellular polysaccharides attenuate enterotoxigenicE scherichia coli‐ induced inflammatory response in porcine intestinal epitheliocytes via T oll‐like receptor‐2 and 4. Mol. Nutr. Food Res. 2014 58 10 2080 2093 10.1002/mnfr.201400218 24995380
    [Google Scholar]
  99. Murofushi Y. Villena J. Morie K. The toll-like receptor family protein RP105/MD1 complex is involved in the immunoregulatory effect of exopolysaccharides from Lactobacillus plantarum N14. Mol. Immunol. 2015 64 1 63 75 10.1016/j.molimm.2014.10.027 25466614
    [Google Scholar]
  100. Gao K. Wang C. Liu L. Immunomodulation and signaling mechanism of Lactobacillus rhamnosus GG and its components on porcine intestinal epithelial cells stimulated by lipopolysaccharide. J. Microbiol. Immunol. Infect. 2017 50 5 700 713 10.1016/j.jmii.2015.05.002 26055689
    [Google Scholar]
  101. Girardin S.E. Boneca I.G. Carneiro L.A.M. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 2003 300 5625 1584 1587 10.1126/science.1084677 12791997
    [Google Scholar]
  102. Dagil Y.A. Arbatsky N.P. Alkhazova B.I. L’vov V.L. Mazurov D.V. Pashenkov M.V. The dual NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS One 2016 11 8 0160784 10.1371/journal.pone.0160784 27513337
    [Google Scholar]
  103. Shida K. Kiyoshima-Shibata J. Kaji R. Nagaoka M. Nanno M. Peptidoglycan from lactobacilli inhibits interleukin‐12 production by macrophages induced by Lactobacillus casei through Toll‐like receptor 2‐dependent and independent mechanisms. Immunology 2009 128 1pt2 e858 e869 10.1111/j.1365‑2567.2009.03095.x 19740347
    [Google Scholar]
  104. Keestra-Gounder A.M. Tsolis R.M. NOD1 and NOD2: Beyond peptidoglycan sensing. Trends Immunol. 2017 38 10 758 767 10.1016/j.it.2017.07.004 28823510
    [Google Scholar]
  105. Franchi L. Warner N. Viani K. Nuñez G. Function of Nod‐like receptors in microbial recognition and host defense. Immunol. Rev. 2009 227 1 106 128 10.1111/j.1600‑065X.2008.00734.x 19120480
    [Google Scholar]
  106. Hoving J.C. Wilson G.J. Brown G.D. Signalling C. Type lectin receptors, microbial recognition and immunity. Cell. Microbiol. 2014 16 2 185 194 10.1111/cmi.12249 24330199
    [Google Scholar]
  107. Plato A. Willment J.A. Brown G.D. C-type lectin-like receptors of the dectin-1 cluster: Ligands and signaling pathways. Int. Rev. Immunol. 2013 32 2 134 156 10.3109/08830185.2013.777065 23570314
    [Google Scholar]
  108. Mayer S. Raulf M.K. Lepenies B. C-type lectins: Their network and roles in pathogen recognition and immunity. Histochem. Cell Biol. 2017 147 2 223 237 10.1007/s00418‑016‑1523‑7 27999992
    [Google Scholar]
  109. Konstantinov S.R. Smidt H. de Vos W.M. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. USA 2008 105 49 19474 19479 10.1073/pnas.0810305105 19047644
    [Google Scholar]
  110. Lightfoot Y.L. Selle K. Yang T. SIGNR 3‐dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis. EMBO J. 2015 34 7 881 895 10.15252/embj.201490296 25666591
    [Google Scholar]
  111. Brown A.J. Goldsworthy S.M. Barnes A.A. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003 278 13 11312 11319 10.1074/jbc.M211609200 12496283
    [Google Scholar]
  112. Vinolo M.A.R. Rodrigues H.G. Nachbar R.T. Curi R. Regulation of inflammation by short chain fatty acids. Nutrients 2011 3 10 858 876 10.3390/nu3100858 22254083
    [Google Scholar]
  113. Frei R. Ferstl R. Konieczna P. Histamine receptor 2 modifies dendritic cell responses to microbial ligands. J. Allergy Clin. Immunol. 2013 132 1 194 204.e12 10.1016/j.jaci.2013.01.013 23465664
    [Google Scholar]
  114. Canfora E.E. Jocken J.W. Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 2015 11 10 577 591 10.1038/nrendo.2015.128 26260141
    [Google Scholar]
  115. Singh N. Gurav A. Sivaprakasam S. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014 40 1 128 139 10.1016/j.immuni.2013.12.007 24412617
    [Google Scholar]
  116. Li N. Russell W.M. Douglas-Escobar M. Hauser N. Lopez M. Neu J. Live and heat-killed Lactobacillus rhamnosus GG: Effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats. Pediatr. Res. 2009 66 2 203 207 10.1203/PDR.0b013e3181aabd4f 19390478
    [Google Scholar]
  117. Nishida K. Sawada D. Kuwano Y. Tanaka H. Rokutan K. Health benefits of Lactobacillus gasseri CP2305 tablets in young adults exposed to chronic stress: A randomized, double-blind, placebo-controlled study. Nutrients 2019 11 8 1859 10.3390/nu11081859 31405122
    [Google Scholar]
  118. Singh S.T. Kamilya D. Kheti B. Bordoloi B. Parhi J. Paraprobiotic preparation from Bacillus amyloliquefaciens FPTB16 modulates immune response and immune relevant gene expression in Catla catla (Hamilton, 1822). Fish Shellfish Immunol. 2017 66 35 42 10.1016/j.fsi.2017.05.005 28476667
    [Google Scholar]
  119. Rodríguez-Figueroa J.C. González-Córdova A.F. Astiazaran-García H. Hernández-Mendoza A. Vallejo-Cordoba B. Antihypertensive and hypolipidemic effect of milk fermented by specific Lactococcus lactis strains. J. Dairy Sci. 2013 96 7 4094 4099 10.3168/jds.2012‑6014 23628247
    [Google Scholar]
  120. Nishida K. Sawada D. Kawai T. Kuwano Y. Fujiwara S. Rokutan K. Para‐psychobiotic Lactobacillus gasseri CP 2305 ameliorates stress‐related symptoms and sleep quality. J. Appl. Microbiol. 2017 123 6 1561 1570 10.1111/jam.13594 28948675
    [Google Scholar]
  121. Nobutani K. Sawada D. Fujiwara S. The effects of administration of the Lactobacillus gasseri strain CP2305 on quality of life, clinical symptoms and changes in gene expression in patients with irritable bowel syndrome. J. Appl. Microbiol. 2017 122 1 212 224 10.1111/jam.13329 27761980
    [Google Scholar]
  122. Pei R. Martin D.A. DiMarco D.M. Bolling B.W. Evidence for the effects of yogurt on gut health and obesity. Crit. Rev. Food Sci. Nutr. 2017 57 8 1569 1583 10.1080/10408398.2014.883356 25875150
    [Google Scholar]
  123. Warda A.K. Rea K. Fitzgerald P. Heat-killed lactobacilli alter both microbiota composition and behaviour. Behav. Brain Res. 2019 362 213 223 10.1016/j.bbr.2018.12.047 30597248
    [Google Scholar]
  124. de Oliveira Coelho B. Fiorda-Mello F. de Melo Pereira G.V. In vitro probiotic properties and DNA protection activity of yeast and lactic acid bacteria isolated from a honey-based kefir beverage. Foods 2019 8 10 485 10.3390/foods8100485 31614798
    [Google Scholar]
  125. Adams C.A. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev. 2010 23 1 37 46 10.1017/S0954422410000090 20403231
    [Google Scholar]
  126. Fang S.B. Shih H.Y. Huang C.H. Li L.T. Chen C.C. Fang H.W. Live and heat-killed Lactobacillus rhamnosus GG upregulate gene expression of pro-inflammatory cytokines in 5-fluorouracil-pretreated Caco-2 cells. Support. Care Cancer 2014 22 6 1647 1654 10.1007/s00520‑014‑2137‑z 24500789
    [Google Scholar]
  127. Zhang L. Li N. des Robert C. Lactobacillus rhamnosus GG decreases lipopolysaccharide-induced systemic inflammation in a gastrostomy-fed infant rat model. J. Pediatr. Gastroenterol. Nutr. 2006 42 5 545 552 10.1097/01.mpg.0000221905.68781.4a 16707979
    [Google Scholar]
  128. Chuang L. Wu K.G. Pai C. Heat-killed cells of lactobacilli skew the immune response toward T helper 1 polarization in mouse splenocytes and dendritic cell-treated T cells. J. Agric. Food Chem. 2007 55 26 11080 11086 10.1021/jf071786o 18038979
    [Google Scholar]
  129. Noh H.J. Park J.M. Kwon Y.J. Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages. J. Microbiol. Biotechnol. 2022 32 5 638 644 10.4014/jmb.2201.01015 35354761
    [Google Scholar]
  130. Park J. Lee J. Yeom Z. Heo D. Lim Y.H. Neuroprotective effect of Ruminococcus albus on oxidatively stressed SH-SY5Y cells and animals. Sci. Rep. 2017 7 1 14520 10.1038/s41598‑017‑15163‑5 29109537
    [Google Scholar]
  131. Huang W.J. Zhang X. Chen W.W. Role of oxidative stress in Alzheimer’s disease. Biomed. Rep. 2016 4 5 519 522 10.3892/br.2016.630 27123241
    [Google Scholar]
  132. Yonekura S. Okamoto Y. Okawa T. Effects of daily intake of Lactobacillus paracasei strain KW3110 on Japanese cedar pollinosis. Allergy Asthma Proc. 2009 30 4 397 405 10.2500/aap.2009.30.3256 19772761
    [Google Scholar]
  133. Fujiwara D. Inoue S. Wakabayashi H. Fujii T. The anti-allergic effects of lactic acid bacteria are strain dependent and mediated by effects on both Th1/Th2 cytokine expression and balance. Int. Arch. Allergy Immunol. 2004 135 3 205 215 10.1159/000081305 15467373
    [Google Scholar]
  134. Ichikawa S. Miyake M. Fujii R. Konishi Y. Orally administered Lactobacillus paracasei KW3110 induces in vivo IL-12 production. Biosci. Biotechnol. Biochem. 2009 73 7 1561 1565 10.1271/bbb.90058 19584541
    [Google Scholar]
  135. Morita Y. Jounai K. Miyake M. Inaba M. Kanauchi O. Effect of heat-killed Lactobacillus paracasei KW3110 ingestion on ocular disorders caused by visual display terminal (VDT) loads: A randomized, double-blind, placebo-controlled parallel-group study. Nutrients 2018 10 8 1058 10.3390/nu10081058 30096952
    [Google Scholar]
  136. Akter S. Park J.H. Jung H.K. Potential health-promoting benefits of paraprobiotics, inactivated probiotic Cells. J. Microbiol. Biotechnol. 2020 30 4 477 481 10.4014/jmb.1911.11019 31986247
    [Google Scholar]
  137. Rocchetti M.T. Russo P. Capozzi V. Drider D. Spano G. Fiocco D. Bioprospecting antimicrobials from Lactiplantibacillus plantarum: Key factors underlying its probiotic action. Int. J. Mol. Sci. 2021 22 21 12076 10.3390/ijms222112076 34769500
    [Google Scholar]
  138. Seo K.H. Jeong J. Kim H. Synergistic effects of heat-killed kefir paraprobiotics and flavonoid-rich prebiotics on western diet-induced obesity. Nutrients 2020 12 8 2465 10.3390/nu12082465 32824369
    [Google Scholar]
  139. Monteiro S.S. Schnorr C.E. Pasquali M.A.B. Paraprobiotics and postbiotics-current state of scientific research and future trends toward the development of functional foods. Foods 2023 12 12 2394 10.3390/foods12122394 37372605
    [Google Scholar]
  140. Nobre L.M.S. Fernandes C. Florêncio K.G.D. Alencar N.M.N. Wong D.V.T. Lima-Júnior R.C.P. Could paraprobiotics be a safer alternative to probiotics for managing cancer chemotherapy-induced gastrointestinal toxicities? Braz. J. Med. Biol. Res. 2022 55 12522 10.1590/1414‑431x2022e12522 36651453
    [Google Scholar]
  141. Shahverdi S. Barzegari A.A. Vaseghi Bakhshayesh R. Nami Y. In-vitro and in-vivo antibacterial activity of potential probiotic Lactobacillus paracasei against Staphylococcus aureus and Escherichia coli. Heliyon 2023 9 4 14641 10.1016/j.heliyon.2023.e14641 37035350
    [Google Scholar]
  142. Savignac H.M. Tramullas M. Kiely B. Dinan T.G. Cryan J.F. Bifidobacteria modulate cognitive processes in an anxious mouse strain. Behav. Brain Res. 2015 287 59 72 10.1016/j.bbr.2015.02.044 25794930
    [Google Scholar]
  143. Yue Y. Ye K. Lu J. Probiotic strain Lactobacillus plantarum YYC-3 prevents colon cancer in mice by regulating the tumour microenvironment. Biomed. Pharmacother. 2020 127 110159 10.1016/j.biopha.2020.110159 32353824
    [Google Scholar]
  144. Wang H. Gao K. Wen K. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol. 2016 16 1 109 10.1186/s12866‑016‑0727‑2 27301272
    [Google Scholar]
  145. Peng G.C. Hsu C.H. The efficacy and safety of heat‐killed Lactobacillus paracasei for treatment of perennial allergic rhinitis induced by house‐dust mite. Pediatr. Allergy Immunol. 2005 16 5 433 438 10.1111/j.1399‑3038.2005.00284.x 16101937
    [Google Scholar]
  146. Kaźmierczak-Siedlecka K. Daca A. Folwarski M. Witkowski J.M. Bryl E. Makarewicz W. The role of Lactobacillus plantarum 299v in supporting treatment of selected diseases. Cent. Eur. J. Immunol. 2020 45 4 488 493 10.5114/ceji.2020.101515 33613097
    [Google Scholar]
  147. Kang Y.Y. Song H.J. Park S.Y. Comparative effects of probiotics and paraprobiotics derived from Lactiplantibacillus plantarum, Latilactobacillus sakei, and Limosilactobacillus reuteri in a DSS-induced ulcerative colitis mouse model. J. Microbiol. Biotechnol. 2025 35 2411045 10.4014/jmb.2411.11045 40016142
    [Google Scholar]
  148. Korpela K. Salonen A. Vepsäläinen O. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 2018 6 1 182 10.1186/s40168‑018‑0567‑4 30326954
    [Google Scholar]
  149. Lahtinen S.J. Probiotic viability - Does it matter? Microb. Ecol. Health Dis. 2012 23 23 10.3402/mehd.v23i0.18567 23990833
    [Google Scholar]
  150. Deshpande G. Athalye-Jape G. Patole S. Para-probiotics for preterm neonates—The next frontier. Nutrients 2018 10 7 871 10.3390/nu10070871 29976885
    [Google Scholar]
  151. El-Hosseny M.F. Seadawy M.G. Abdel-Monem M.O. Hassan M.G. Complete genome sequencing and probiotic characterization of promising lactic acid bacterial strains isolated from dairy products in Egyptian markets. BMC Microbiol. 2025 25 1 67 10.1186/s12866‑025‑03757‑3 39915700
    [Google Scholar]
  152. Mounir M. Ibijbijen A. Farih K. Rabetafika H.N. Razafindralambo H.L. Synbiotics and their antioxidant properties, mechanisms, and benefits on human and animal health: A narrative review. Biomolecules 2022 12 10 1443 10.3390/biom12101443 36291652
    [Google Scholar]
  153. Roy S. Dhaneshwar S. Role of prebiotics, probiotics, and synbiotics in management of inflammatory bowel disease: Current perspectives. World J. Gastroenterol. 2023 29 14 2078 2100 10.3748/wjg.v29.i14.2078 37122604
    [Google Scholar]
  154. Dash G. Raman R.P. Pani Prasad K. Makesh M. Pradeep M.A. Sen S. Evaluation of paraprobiotic applicability of Lactobacillus plantarum in improving the immune response and disease protection in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Fish Shellfish Immunol. 2015 43 1 167 174 10.1016/j.fsi.2014.12.007 25542379
    [Google Scholar]
  155. Sato S. Arai S. Iwabuchi N. Tanaka M. Hase R. Sakane N. Effects of heat-killed Lacticaseibacillus paracasei MCC1849 on the maintenance of physical condition in healthy adults: A randomized, double-blind, placebo-controlled, parallel-group study. Nutrients 2023 15 15 3450 10.3390/nu15153450 37571384
    [Google Scholar]
  156. de Jesus G.F.A. Rossetto M.P. Voytena A. Clinical evaluation of paraprobiotic‐associated Bifidobacterium lactis CCT 7858 anti‐dandruff shampoo efficacy: A randomized placebo‐controlled clinical trial. Int. J. Cosmet. Sci. 2023 45 5 572 580 10.1111/ics.12850 36862071
    [Google Scholar]
  157. Aljumaah M.R. Bhatia U. Roach J. Gunstad J. Azcarate Peril M.A. The gut microbiome, mild cognitive impairment, and probiotics: A randomized clinical trial in middle-aged and older adults. Clin. Nutr. 2022 41 11 2565 2576 10.1016/j.clnu.2022.09.012 36228569
    [Google Scholar]
  158. Iemoli E. Trabattoni D. Parisotto S. Probiotics reduce gut microbial translocation and improve adult atopic dermatitis. J. Clin. Gastroenterol. 2012 46 Suppl. S33 S40 10.1097/MCG.0b013e31826a8468 22955355
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128411949250909113034
Loading
/content/journals/cpd/10.2174/0113816128411949250909113034
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test