Full text loading...
Para-probiotics, also referred to as non-viable microbial cells or cell components that confer health benefits, are emerging as promising agents in the prevention and management of inflammation-associated diseases. Unlike traditional probiotics, which require viability for efficacy, these inactivated forms offer significant advantages in terms of safety, stability, and applicability in vulnerable populations, including immunocompromised individuals. Recent studies have highlighted their capacity to modulate immune responses, enhance mucosal defense mechanisms, and reinforce intestinal barrier integrity through interactions involving microbial-associated molecular patterns (MAMPs) and host pattern recognition receptors. Such interactions influence signaling cascades like NF-κB, MAPKs, and inflammasome pathways, contributing to anti-inflammatory and immunomodulatory effects. One of the key advantages is the reduced risk of adverse effects and concerns associated with live probiotic use. In addition, their robust physicochemical stability under industrial processing conditions supports their incorporation into a range of functional foods and nutraceuticals. Despite these advantages, their mechanisms of action remain incompletely understood and require further investigation. This review synthesizes current evidence on their anti-inflammatory properties, highlights preclinical and clinical studies, and discusses technological approaches for their production. Overall, these bioactives represent a safe, stable, and efficacious alternative to traditional probiotics in managing inflammatory disorders.
Article metrics loading...
Full text loading...
References
Data & Media loading...