Skip to content
2000
image of Mechanisms, Mediators, and Pharmacological Approaches Targeting Brain Cholesterol Transport in Alzheimer’s Disease

Abstract

Cholesterol transport within the brain represents a highly regulated process essential for maintaining neuronal function and central nervous system (CNS) homeostasis. Unlike peripheral tissues, the brain

relies on cholesterol synthesis, primarily by astrocytes and other glial cells, which supply neurons high-density lipoprotein (HDL)-like particles, identified in the human cerebrospinal fluid (CSF). The major component of HDL-like lipoproteins is the apolipoprotein E (ApoE), whose E4 isoform represents the strongest genetic risk factor for late-onset Alzheimer’s disease (AD). Growing evidence suggests that impaired cholesterol transport contributes to the pathogenesis of various neurodegenerative disorders, particularly AD, a major public health concern due to increasing prevalence and the lack of effective treatments. Indeed, the unconvincing outcomes of the amyloid-targeting monoclonal antibodies underscore the urgency of identifying alternative therapeutic strategies. This review provides a comprehensive analysis of cholesterol transport mechanisms within the brain and their dysregulation in AD by examining the astrocyte-to-neuron cholesterol supply pathways, including endogenous biosynthesis, cholesterol efflux from astrocytes, neuronal uptake, and intracellular processing. Key molecular players involved in each step are discussed, focusing on their roles in AD pathophysiology and potential as therapeutic targets. Furthermore, the review critically evaluates recent preclinical studies exploring pharmacological interventions able to modulate cerebral cholesterol homeostasis. These emerging approaches offer promising alternatives to amyloid-based treatments and may open new perspectives for preventing or mitigating neurodegeneration in AD. By providing an integrated overview of cholesterol transport in the brain, this review highlights novel directions for research and drug development targeting CNS cholesterol metabolism.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128411158250909151734
2025-10-01
2025-11-06
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128411158250909151734/BMS-CPD-2025-HT246-6254-4.html?itemId=/content/journals/cpd/10.2174/0113816128411158250909151734&mimeType=html&fmt=ahah

References

  1. Lu F. Ferriero D.M. Jiang X. Cholesterol in brain development and perinatal brain injury: More than a building block. Curr. Neuropharmacol. 2022 20 7 1400 1412 10.2174/1570159X19666211111122311 34766894
    [Google Scholar]
  2. Turri M. Marchi C. Adorni M.P. Calabresi L. Zimetti F. Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022 1867 5 159123 10.1016/j.bbalip.2022.159123 35151900
    [Google Scholar]
  3. Dai L. Zou L. Meng L. Qiang G. Yan M. Zhang Z. Cholesterol metabolism in neurodegenerative diseases: Molecular mechanisms and therapeutic targets. Mol. Neurobiol. 2021 58 5 2183 2201 10.1007/s12035‑020‑02232‑6 33411241
    [Google Scholar]
  4. Borràs C. Mercer A. Sirisi S. HDL-like-mediated cell cholesterol trafficking in the central nervous system and alzheimer’s disease pathogenesis. Int. J. Mol. Sci. 2022 23 16 9356 10.3390/ijms23169356 36012637
    [Google Scholar]
  5. Yin F. Lipid metabolism and Alzheimer’s disease: Clinical evidence, mechanistic link and therapeutic promise. FEBS J. 2023 290 6 1420 1453 10.1111/febs.16344 34997690
    [Google Scholar]
  6. 2024 Alzheimer’s disease facts and figures. Alzheimers Dement. 2024 20 5 3708 3821 10.1002/alz.13809 38689398
    [Google Scholar]
  7. Cummings J.L. Maximizing the benefit and managing the risk of anti-amyloid monoclonal antibody therapy for Alzheimer’s disease: Strategies and research directions. Neurotherapeutics 2025 22 3 e00570 10.1016/j.neurot.2025.e00570
    [Google Scholar]
  8. Cao Y. Zhao L.W. Chen Z.X. Li S.H. New insights in lipid metabolism: potential therapeutic targets for the treatment of Alzheimer’s disease. Front. Neurosci. 2024 18 1430465 10.3389/fnins.2024.1430465 39323915
    [Google Scholar]
  9. Andrews S.J. Renton A.E. Fulton-Howard B. Podlesny-Drabiniok A. Marcora E. Goate A.M. The complex genetic architecture of Alzheimer’s disease: Novel insights and future directions. EBioMedicine 2023 90 104511 10.1016/j.ebiom.2023.104511 36907103
    [Google Scholar]
  10. Tallman K.A. Allen L.B. Klingelsmith K.B. Prescription medications alter neuronal and glial cholesterol synthesis. ACS Chem. Neurosci. 2021 12 4 735 745 10.1021/acschemneuro.0c00765 33528983
    [Google Scholar]
  11. Orth M. Bellosta S. Cholesterol: Its regulation and role in central nervous system disorders. Cholesterol 2012 2012 1 19 10.1155/2012/292598 23119149
    [Google Scholar]
  12. Mazein A. Watterson S. Hsieh W.Y. Griffiths W.J. Ghazal P. A comprehensive machine-readable view of the mammalian cholesterol biosynthesis pathway. Biochem. Pharmacol. 2013 86 1 56 66 10.1016/j.bcp.2013.03.021 23583456
    [Google Scholar]
  13. HMGCR inhibitor restores mitochondrial dynamics by regulating signaling cascades in a rodent alzheimer’s disease model. Mol. Neurobiol. 2024 10.1007/s12035‑024‑04465‑1 39271623
    [Google Scholar]
  14. King R.J. Singh P.K. Mehla K. The cholesterol pathway: Impact on immunity and cancer. Trends Immunol. 2022 43 1 78 92 10.1016/j.it.2021.11.007 34942082
    [Google Scholar]
  15. Turri M. Conti E. Pavanello C. Plasma and cerebrospinal fluid cholesterol esterification is hampered in Alzheimer’s disease. Alzheimers Res. Ther. 2023 15 1 95 10.1186/s13195‑023‑01241‑6 37210544
    [Google Scholar]
  16. Yasojima K. McGeer E.G. McGeer P.L. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase mRNA in Alzheimer and control brain. Neuroreport 2001 12 13 2935 2938 10.1097/00001756‑200109170‑00036 11588606
    [Google Scholar]
  17. Mistry H. Richardson C.D. Higginbottom A. Relationships of brain cholesterol and cholesterol biosynthetic enzymes to Alzheimer’s pathology and dementia in the CFAS population-derived neuropathology cohort. Neurosci. Res. 2024 204 22 33 10.1016/j.neures.2024.01.003 38278219
    [Google Scholar]
  18. Cao L. Wang H.F. Tan L. Effect of HMGCR genetic variation on neuroimaging biomarkers in healthy, mild cognitive impairment and Alzheimer’s disease cohorts. Oncotarget 2016 7 12 13319 13327 10.18632/oncotarget.7797 26950278
    [Google Scholar]
  19. Leduc V. De Beaumont L. Théroux L. HMGCR is a genetic modifier for risk, age of onset and MCI conversion to Alzheimer’s disease in a three cohorts study. Mol. Psychiatry 2015 20 7 867 873 10.1038/mp.2014.81 25023145
    [Google Scholar]
  20. Zhou X. Wu X. Wang R. Han L. Li H. Zhao W. Mechanisms of 3-hydroxyl 3-methylglutaryl CoA reductase in alzheimer’s disease. Int. J. Mol. Sci. 2023 25 1 170 10.3390/ijms25010170 38203341
    [Google Scholar]
  21. Liu T. Li Y. Yang B. Suppression of neuronal cholesterol biosynthesis impairs brain functions through insulin-like growth factor I-Akt signaling. Int. J. Biol. Sci. 2021 17 14 3702 3716 10.7150/ijbs.63512 34671194
    [Google Scholar]
  22. Lu Z. Wang H. Zhang X. High fat diet induces brain injury and neuronal apoptosis via down-regulating 3-β hydroxycholesterol 24 reductase (DHCR24). Cell Tissue Res. 2023 393 3 471 487 10.1007/s00441‑023‑03804‑3 37458798
    [Google Scholar]
  23. Dean M. Moitra K. Allikmets R. The human ATP‐binding cassette (ABC) transporter superfamily. Hum. Mutat. 2022 43 9 1162 1182 10.1002/humu.24418 35642569
    [Google Scholar]
  24. Wang N. Yvan-Charvet L. Lütjohann D. ATP‐binding cassette transporters G1 and G4 mediate cholesterol and desmosterol efflux to HDL and regulate sterol accumulation in the brain. FASEB J. 2008 22 4 1073 1082 10.1096/fj.07‑9944com 18039927
    [Google Scholar]
  25. Velma G.R. Laham M.S. Lewandowski C. Nonlipogenic ABCA1 Inducers (NLAI) for Alzheimer’s disease validated in a mouse model expressing human APOE3/APOE4. J. Med. Chem. 2024 67 17 15061 15079 10.1021/acs.jmedchem.4c00733 39191400
    [Google Scholar]
  26. Jacobo-Albavera L. Domínguez-Pérez M. Medina-Leyte D.J. González-Garrido A. Villarreal-Molina T. The role of the ATP-binding cassette A1 (ABCA1) in human disease. Int. J. Mol. Sci. 2021 22 4 1593 10.3390/ijms22041593 33562440
    [Google Scholar]
  27. Yazdi M.K. Alavi M.S. Roohbakhsh A. The role of ATP‐binding cassette transporter G1 (ABCG1) in Alzheimer’s disease: A review of the mechanisms. Basic Clin. Pharmacol. Toxicol. 2024 134 4 423 438 10.1111/bcpt.13981 38275217
    [Google Scholar]
  28. Wang S. Li B. Li J. Cellular senescence induced by cholesterol accumulation is mediated by lysosomal ABCA1 in APOE4 and AD. Mol. Neurodegener. 2025 20 1 15 10.1186/s13024‑025‑00802‑7 39901180
    [Google Scholar]
  29. Rawat V. Wang S. Sima J. ApoE4 alters ABCA1 membrane trafficking in astrocytes. J. Neurosci. 2019 39 48 9611 9622 10.1523/JNEUROSCI.1400‑19.2019 31641056
    [Google Scholar]
  30. Behl T. Kaur I. Sehgal A. Kumar A. Uddin M.S. Bungau S. The interplay of ABC transporters in Aβ translocation and cholesterol metabolism: implicating their roles in Alzheimer’s disease. Mol. Neurobiol. 2021 58 4 1564 1582 10.1007/s12035‑020‑02211‑x 33215389
    [Google Scholar]
  31. Tansley G.H. Burgess B.L. Bryan M.T. The cholesterol transporter ABCG1 modulates the subcellular distribution and proteolytic processing of β-amyloid precursor protein. J. Lipid Res. 2007 48 5 1022 1034 10.1194/jlr.M600542‑JLR200 17293612
    [Google Scholar]
  32. Holstege H. Hulsman M. Charbonnier C. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat. Genet. 2022 54 12 1786 1794 10.1038/s41588‑022‑01208‑7 36411364
    [Google Scholar]
  33. Koldamova R. Staufenbiel M. Lefterov I. Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J. Biol. Chem. 2005 280 52 43224 43235 10.1074/jbc.M504513200 16207713
    [Google Scholar]
  34. Villa M. Wu J. Hansen S. Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024 13 9 740 10.3390/cells13090740 38727275
    [Google Scholar]
  35. Paseban T. Alavi M.S. Etemad L. Roohbakhsh A. The role of the ATP-Binding Cassette A1 (ABCA1) in neurological disorders: a mechanistic review. Expert Opin. Ther. Targets 2023 27 7 531 552 10.1080/14728222.2023.2235718 37428709
    [Google Scholar]
  36. Sierri G. Dal Magro R. Vergani B. Reduced levels of ABCA1 transporter are responsible for the cholesterol efflux impairment in β-amyloid-induced reactive astrocytes: Potential rescue from biomimetic HDLs. Int. J. Mol. Sci. 2021 23 1 102 10.3390/ijms23010102 35008528
    [Google Scholar]
  37. Raulin A.C. Martens Y.A. Bu G. Lipoproteins in the central nervous system: From biology to pathobiology. Annu. Rev. Biochem. 2022 91 1 731 759 10.1146/annurev‑biochem‑032620‑104801 35303786
    [Google Scholar]
  38. Duchateau L. Wawrzyniak N. Sleegers K. The ABC’s of Alzheimer risk gene ABCA7. Alzheimers Dement. 2024 20 5 3629 3648 10.1002/alz.13805 38556850
    [Google Scholar]
  39. Loeffler D.A. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: A review of experimental approaches. Front. Aging Neurosci. 2024 16 1368200 10.3389/fnagi.2024.1368200 38872626
    [Google Scholar]
  40. Lee C.H. Murrell C.E. Chu A. Pan X. Circadian Regulation of Apolipoproteins in the Brain: Implications in Lipid Metabolism and Disease. Int. J. Mol. Sci. 2023 24 24 17415 10.3390/ijms242417415 38139244
    [Google Scholar]
  41. Gao Y. Ye S. Tang Y. Tong W. Sun S. Brain cholesterol homeostasis and its association with neurodegenerative diseases. Neurochem. Int. 2023 171 105635 10.1016/j.neuint.2023.105635 37949118
    [Google Scholar]
  42. Cipollari E. Szapary H.J. Picataggi A. Correlates and predictors of cerebrospinal fluid cholesterol efflux capacity from neural cells, a family of biomarkers for cholesterol epidemiology in Alzheimer’s Disease. J. Alzheimers Dis. 2020 74 2 563 578 10.3233/JAD‑191246 32065798
    [Google Scholar]
  43. Demeester N. Castro G. Desrumaux C. Characterization and functional studies of lipoproteins, lipid transfer proteins, and lecithin:cholesterol acyltransferase in CSF of normal individuals and patients with Alzheimer’s disease. J. Lipid Res. 2000 41 6 963 974 10.1016/S0022‑2275(20)32039‑3 10828089
    [Google Scholar]
  44. Marchi C. Adorni M.P. Caffarra P. ABCA1- and ABCG1-mediated cholesterol efflux capacity of cerebrospinal fluid is impaired in Alzheimer’s disease. J. Lipid Res. 2019 60 8 1449 1456 10.1194/jlr.P091033 31167810
    [Google Scholar]
  45. Yassine H.N. Feng Q. Chiang J. ABCA1‐mediated cholesterol efflux capacity to cerebrospinal fluid is reduced in patients with mild cognitive impairment and Alzheimer’s disease. J. Am. Heart Assoc. 2016 5 2 e002886 10.1161/JAHA.115.002886 26873692
    [Google Scholar]
  46. Hirsch-Reinshagen V. Donkin J. Stukas S. LCAT synthesized by primary astrocytes esterifies cholesterol on glia-derived lipoproteins. J. Lipid Res. 2009 50 5 885 893 10.1194/jlr.M800584‑JLR200 19065001
    [Google Scholar]
  47. Heinsinger N.M. Gachechiladze M.A. Rebeck G.W. Apolipoprotein E. Apolipoprotein E genotype affects size of ApoE complexes in cerebrospinal fluid. J. Neuropathol. Exp. Neurol. 2016 75 10 918 924 10.1093/jnen/nlw067 27516118
    [Google Scholar]
  48. Zhao J. Davis M.D. Martens Y.A. APOE ε4/ε4 diminishes neurotrophic function of human iPSC-derived astrocytes. Hum. Mol. Genet. 2017 26 14 2690 2700 10.1093/hmg/ddx155 28444230
    [Google Scholar]
  49. Michikawa M. Fan Q.W. Isobe I. Yanagisawa K. Apolipoprotein E exhibits isoform-specific promotion of lipid efflux from astrocytes and neurons in culture. J. Neurochem. 2000 74 3 1008 1016 10.1046/j.1471‑4159.2000.0741008.x 10693931
    [Google Scholar]
  50. Minagawa H. Gong J.S. Jung C.G. Mechanism underlying apolipoprotein E (ApoE) isoform‐dependent lipid efflux from neural cells in culture. J. Neurosci. Res. 2009 87 11 2498 2508 10.1002/jnr.22073 19326444
    [Google Scholar]
  51. Button E.B. Boyce G.K. Wilkinson A. ApoA-I deficiency increases cortical amyloid deposition, cerebral amyloid angiopathy, cortical and hippocampal astrogliosis, and amyloid-associated astrocyte reactivity in APP/PS1 mice. Alzheimers Res. Ther. 2019 11 1 44 10.1186/s13195‑019‑0497‑9 31084613
    [Google Scholar]
  52. Ko Y.A. Billheimer J.T. Lyssenko N.N. ApoJ/Clusterin concentrations are determinants of cerebrospinal fluid cholesterol efflux capacity and reduced levels are associated with Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 194 10.1186/s13195‑022‑01119‑z 36572909
    [Google Scholar]
  53. Kontush A. Lindahl M. Lhomme M. Calabresi L. Chapman M.J. Davidson W.S. Structure of HDL: Particle subclasses and molecular components. Handb. Exp. Pharmacol. 2015 224 3 51 10.1007/978‑3‑319‑09665‑0_1 25522985
    [Google Scholar]
  54. Ong K.L. Cochran B.J. Manandhar B. Thomas S. Rye K.A. HDL maturation and remodelling. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022 1867 4 159119 10.1016/j.bbalip.2022.159119 35121104
    [Google Scholar]
  55. Davidson W.S. Shah A.S. Sexmith H. Gordon S.M. The HDL proteome watch: compilation of studies leads to new insights on HDL function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022 1867 2 159072 10.1016/j.bbalip.2021.159072 34800735
    [Google Scholar]
  56. Marsillach J. Adorni M.P. Zimetti F. Papotti B. Zuliani G. Cervellati C. Hdl proteome and Alzheimer’s disease: Evidence of a link. Antioxidants 2020 9 12 1224 10.3390/antiox9121224 33287338
    [Google Scholar]
  57. Zimetti F. Adorni M.P. Marsillach J. Connection between the Altered HDL Antioxidant and Anti‐Inflammatory Properties and the Risk to Develop Alzheimer’s Disease: A Narrative Review. Oxid. Med. Cell. Longev. 2021 2021 1 6695796 10.1155/2021/6695796 33505588
    [Google Scholar]
  58. Reddy S.T. Wadleigh D.J. Grijalva V. Human paraoxonase-3 is an HDL-associated enzyme with biological activity similar to paraoxonase-1 protein but is not regulated by oxidized lipids. Arterioscler. Thromb. Vasc. Biol. 2001 21 4 542 547 10.1161/01.ATV.21.4.542 11304470
    [Google Scholar]
  59. Furlong CE Marsillach J Jarvik GP Costa LG Paraoxonases-1, - 2 and -3: What are their functions? Chem Biol Interact 2016 259 Pt B 51 62 10.1016/j.cbi.2016.05.036 27238723
    [Google Scholar]
  60. Huang F. Wang K. Shen J. Lipoprotein‐associated phospholipase A2: The story continues. Med. Res. Rev. 2020 40 1 79 134 10.1002/med.21597 31140638
    [Google Scholar]
  61. Anatoliotakis N. Deftereos S. Bouras G. Myeloperoxidase: Expressing inflammation and oxidative stress in cardiovascular disease. Curr. Top. Med. Chem. 2013 13 2 115 138 10.2174/1568026611313020004 23470074
    [Google Scholar]
  62. Trentini A. Rosta V. Spadaro S. Development, optimization and validation of an absolute specific assay for active myeloperoxidase (MPO) and its application in a clinical context: role of MPO specific activity in coronary artery disease. Clin. Chem. Lab. Med. 2020 58 10 1749 1758 10.1515/cclm‑2019‑0817 32031967
    [Google Scholar]
  63. Pirillo A. Catapano A.L. Norata G.D. Biological consequences of dysfunctional HDL. Curr. Med. Chem. 2019 26 9 1644 1664 10.2174/0929867325666180530110543 29848265
    [Google Scholar]
  64. Jomard A. Osto E. High density lipoproteins: Metabolism, function, and therapeutic potential. Front. Cardiovasc. Med. 2020 7 39 10.3389/fcvm.2020.00039 32296714
    [Google Scholar]
  65. Thompson A. Di Angelantonio E. Sarwar N. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 2008 299 23 2777 2788 10.1001/jama.299.23.2777 18560005
    [Google Scholar]
  66. Tsujita M. Melchior J.T. Yokoyama S. Lipoprotein particles in cerebrospinal fluid. Arterioscler. Thromb. Vasc. Biol. 2024 44 5 1042 1052 10.1161/ATVBAHA.123.318284 38545782
    [Google Scholar]
  67. Smyth L.C.D. Murray H.C. Hill M. Neutrophil-vascular interactions drive myeloperoxidase accumulation in the brain in Alzheimer’s disease. Acta Neuropathol. Commun. 2022 10 1 38 10.1186/s40478‑022‑01347‑2 35331340
    [Google Scholar]
  68. Ray R.S. Katyal A. Myeloperoxidase: Bridging the gap in neurodegeneration. Neurosci. Biobehav. Rev. 2016 68 611 620 10.1016/j.neubiorev.2016.06.031 27343997
    [Google Scholar]
  69. Cervellati C. Valacchi G. Tisato V. Zuliani G. Marsillach J. Evaluating the link between Paraoxonase-1 levels and Alzheimer’s disease development. Minerva Med. 2019 110 3 238 250 10.23736/S0026‑4806.18.05875‑5 30334443
    [Google Scholar]
  70. Khalaf F.K. Connolly J. Khatib-Shahidi B. Paraoxonases at the heart of neurological disorders. Int. J. Mol. Sci. 2023 24 8 6881 10.3390/ijms24086881 37108044
    [Google Scholar]
  71. Menini T. Gugliucci A. Paraoxonase 1 in neurological disorders. Redox Rep. 2014 19 2 49 58 10.1179/1351000213Y.0000000071 24225313
    [Google Scholar]
  72. Fernández-Espejo E. Rodríguez de Fonseca F. Gavito A.L. Córdoba-Fernández A. Chacón J. Martín de Pablos Á. Myeloperoxidase and advanced oxidation protein products in the cerebrospinal fluid in women and men with Parkinson’s Disease. Antioxidants 2022 11 6 1088 10.3390/antiox11061088 35739985
    [Google Scholar]
  73. Tanaka H. Shimazawa M. Takata M. ITIH4 and Gpx3 are potential biomarkers for amyotrophic lateral sclerosis. J. Neurol. 2013 260 7 1782 1797 10.1007/s00415‑013‑6877‑3 23436019
    [Google Scholar]
  74. Castellazzi M Trentini A Romani A Decreased arylesterase activity of paraoxonase-1 (PON-1) might be a common denominator of neuroinflammatory and neurodegenerative diseases. Int J Biochem Cell Biol 2016 81 Pt B 356 63 10.1016/j.biocel.2016.06.008 27312742
    [Google Scholar]
  75. Wills A.M. Landers J.E. Zhang H. Paraoxonase 1 (PON1) organophosphate hydrolysis is not reduced in ALS. Neurology 2008 70 12 929 934 10.1212/01.wnl.0000305956.37931.dd 18347314
    [Google Scholar]
  76. Ikhlef S. Berrougui H. Kamtchueng Simo O. Zerif E. Khalil A. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport. PLoS One 2017 12 3 e0173385 10.1371/journal.pone.0173385 28278274
    [Google Scholar]
  77. Efrat M. Aviram M. Macrophage paraoxonase 1 (PON1) binding sites. Biochem. Biophys. Res. Commun. 2008 376 1 105 110 10.1016/j.bbrc.2008.08.106 18762170
    [Google Scholar]
  78. Salazar J.G. Marsillach J. Reverte I. Paraoxonase-1 and -3 protein expression in the brain of the Tg2576 mouse model of Alzheimer’s disease. Antioxidants 2021 10 3 339 10.3390/antiox10030339 33668379
    [Google Scholar]
  79. Beggiato S. Ferrara F. Romani A. Signature of paraoxonases in the altered redox homeostasis in Alzheimer’s disease. Chem. Biol. Interact. 2024 388 110839 10.1016/j.cbi.2023.110839 38142921
    [Google Scholar]
  80. Sjöstedt E. Zhong W. Fagerberg L. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020 367 6482 eaay5947 10.1126/science.aay5947 32139519
    [Google Scholar]
  81. Romani A. Trentini A. van der Flier W.M. Arylesterase activity of paraoxonase-1 in serum and cerebrospinal fluid of patients with Alzheimer’s disease and vascular dementia. Antioxidants 2020 9 5 456 10.3390/antiox9050456 32466344
    [Google Scholar]
  82. Berrougui H. Loued S. Khalil A. Purified human paraoxonase-1 interacts with plasma membrane lipid rafts and mediates cholesterol efflux from macrophages. Free Radic. Biol. Med. 2012 52 8 1372 1381 10.1016/j.freeradbiomed.2012.01.019 22336243
    [Google Scholar]
  83. Borràs C. Canyelles M. Santos D. Rotllan N. Núñez E. Vázquez J. Impaired cerebrospinal fluid lipoprotein-mediated cholesterol delivery to neurons in Alzheimer’s disease. Res Sq 2024 10.21203/rs.3.rs‑5682870/v1
    [Google Scholar]
  84. Ramírez C. Sierra S. Tercero I. ApoB100/LDLR-/- hypercholesterolaemic mice as a model for mild cognitive impairment and neuronal damage. PLoS One 2011 6 7 e22712 10.1371/journal.pone.0022712 21829488
    [Google Scholar]
  85. Katsouri L. Georgopoulos S. Lack of LDL receptor enhances amyloid deposition and decreases glial response in an Alzheimer’s disease mouse model. PLoS One 2011 6 7 e21880 10.1371/journal.pone.0021880 21755005
    [Google Scholar]
  86. Cao D. Fukuchi K. Wan H. Kim H. Li L. Lack of LDL receptor aggravates learning deficits and amyloid deposits in Alzheimer transgenic mice. Neurobiol. Aging 2006 27 11 1632 1643 10.1016/j.neurobiolaging.2005.09.011 16236385
    [Google Scholar]
  87. de Oliveira J. Engel D.F. de Paula G.C. LDL receptor deficiency does not alter brain amyloid-β levels but causes an exacerbation of apoptosis. J. Alzheimers Dis. 2020 73 2 585 596 10.3233/JAD‑190742 31815695
    [Google Scholar]
  88. Mulder M. Koopmans G. Wassink G. LDL receptor deficiency results in decreased cell proliferation and presynaptic bouton density in the murine hippocampus. Neurosci. Res. 2007 59 3 251 256 10.1016/j.neures.2007.07.004 17720268
    [Google Scholar]
  89. Perković R. Frančić M. Petrović R. Early-onset Alzheimer’s disease due to novel LDLR gene mutation. Acta Neurol. Belg. 2024 124 1 325 327 10.1007/s13760‑023‑02316‑9 37382851
    [Google Scholar]
  90. Shi Y. Andhey P.S. Ising C. Overexpressing low-density lipoprotein receptor reduces tau-associated neurodegeneration in relation to apoE-linked mechanisms. Neuron 2021 109 15 2413 2426.e7 10.1016/j.neuron.2021.05.034 34157306
    [Google Scholar]
  91. Kim M. Bezprozvanny I. Differences in recycling of apolipoprotein E3 and E4—LDL receptor complexes - A mechanistic hypothesis. Int. J. Mol. Sci. 2021 22 9 5030 10.3390/ijms22095030 34068576
    [Google Scholar]
  92. Ramsden C.E. Zamora D. Horowitz M.S. ApoER2-Dab1 disruption as the origin of pTau-associated neurodegeneration in sporadic Alzheimer’s disease. Acta Neuropathol. Commun. 2023 11 1 197 10.1186/s40478‑023‑01693‑9 38093390
    [Google Scholar]
  93. Gallo C.M. Kistler S.A. Natrakul A. Labadorf A.T. Beffert U. Ho A. APOER2 splicing repertoire in Alzheimer’s disease: Insights from long-read RNA sequencing. PLoS Genet. 2024 20 7 e1011348 10.1371/journal.pgen.1011348 39038048
    [Google Scholar]
  94. Lopez-Font I. Lennol M.P. Iborra-Lazaro G. Zetterberg H. Blennow K. Sáez-Valero J. Altered balance of reelin proteolytic fragments in the cerebrospinal fluid of Alzheimer’s disease patients. Int. J. Mol. Sci. 2022 23 14 7522 10.3390/ijms23147522 35886870
    [Google Scholar]
  95. Jossin Y. Reelin functions, mechanisms of action and signaling pathways during brain development and maturation. Biomolecules 2020 10 6 964 10.3390/biom10060964 32604886
    [Google Scholar]
  96. Yi L.X. Zeng L. Wang Q. Tan E.K. Zhou Z.D. Reelin links Apolipoprotein E4, Tau, and Amyloid‐β in Alzheimer’s disease. Ageing Res. Rev. 2024 98 102339 10.1016/j.arr.2024.102339 38754634
    [Google Scholar]
  97. Ma Q. Zhao Z. Sagare A.P. Correction: Blood–brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism. Mol. Neurodegener. 2024 19 1 27 10.1186/s13024‑024‑00716‑w 38519970
    [Google Scholar]
  98. He Y. Ruganzu J.B. Zheng Q. Silencing of LRP1 exacerbates inflammatory response via TLR4/NF-κB/MAPKs signaling pathways in APP/PS1 transgenic mice. Mol. Neurobiol. 2020 57 9 3727 3743 10.1007/s12035‑020‑01982‑7 32572761
    [Google Scholar]
  99. Seidah N.G. Garçon D. Expanding biology of PCSK9: Roles in atherosclerosis and beyond. Curr. Atheroscler. Rep. 2022 24 10 821 830 10.1007/s11883‑022‑01057‑z 35904732
    [Google Scholar]
  100. O’Connell E.M. Lohoff F.W. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in the brain and relevance for neuropsychiatric disorders. Front. Neurosci. 2020 14 609 10.3389/fnins.2020.00609 32595449
    [Google Scholar]
  101. Adorni M.P. Ruscica M. Ferri N. Bernini F. Zimetti F. Proprotein convertase subtilisin/kexin type 9, brain cholesterol homeostasis and potential implication for Alzheimer’s disease. Front. Aging Neurosci. 2019 11 120 10.3389/fnagi.2019.00120 31178716
    [Google Scholar]
  102. Zimetti F. Caffarra P. Ronda N. Increased PCSK9 cerebrospinal fluid concentrations in Alzheimer’s disease. J. Alzheimers Dis. 2016 55 1 315 320 10.3233/JAD‑160411 27662294
    [Google Scholar]
  103. Papotti B. Palumbo M. Adorni M.P. Influence of APOE4 genotype on PCSK9-lipids association in cerebrospinal fluid and serum of patients in the Alzheimer’s disease continuum. J. Alzheimers Dis. 2024 102 1 162 172 10.1177/13872877241284213 39497318
    [Google Scholar]
  104. Picard C. Poirier A. Bélanger S. Labonté A. Auld D. Poirier J. Proprotein convertase subtilisin/kexin type 9 (PCSK9) in Alzheimer’s disease: A genetic and proteomic multi-cohort study. PLoS One 2019 14 8 e0220254 10.1371/journal.pone.0220254 31437157
    [Google Scholar]
  105. Papotti B. Adorni M.P. Marchi C. PCSK9 affects astrocyte cholesterol metabolism and reduces neuron cholesterol supplying in vitro: Potential implications in Alzheimer’s disease. Int. J. Mol. Sci. 2022 23 20 12192 10.3390/ijms232012192 36293049
    [Google Scholar]
  106. Vilella A. Bodria M. Papotti B. PCSK9 ablation attenuates Aβ pathology, neuroinflammation and cognitive dysfunctions in 5XFAD mice. Brain Behav. Immun. 2024 115 517 534 10.1016/j.bbi.2023.11.008 37967665
    [Google Scholar]
  107. Pelucchi S. Da Dalt L. De Cesare G. Neuronal PCSK9 regulates cognitive performances via the modulation of ApoER2 synaptic localization. Pharmacol. Res. 2025 213 107652 10.1016/j.phrs.2025.107652 39952371
    [Google Scholar]
  108. Scotti E. Calamai M. Goulbourne C.N. IDOL stimulates clathrin-independent endocytosis and multivesicular body-mediated lysosomal degradation of the low-density lipoprotein receptor. Mol. Cell. Biol. 2013 33 8 1503 1514 10.1128/MCB.01716‑12 23382078
    [Google Scholar]
  109. van Loon N.M. Lindholm D. Zelcer N. The E3 ubiquitin ligase inducible degrader of the LDL receptor/myosin light chain interacting protein in health and disease. Curr. Opin. Lipidol. 2019 30 3 192 197 10.1097/MOL.0000000000000593 30896554
    [Google Scholar]
  110. Choi J. Gao J. Kim J. Hong C. Kim J. Tontonoz P. The E3 ubiquitin ligase idol controls brain LDL receptor expression, ApoE clearance, and Aβ amyloidosis. Sci. Transl. Med. 2015 7 314 314ra184 10.1126/scitranslmed.aad1904 26582899
    [Google Scholar]
  111. Van Loon N.M. Zelcer N. Idolizing the clearance of Amyloid-β by microglia. Ann. Transl. Med. 2016 4 24 536 10.21037/atm.2016.11.63 28149897
    [Google Scholar]
  112. Ahmed H. Wang Y. Griffiths W.J. Brain cholesterol and Alzheimer’s disease: Challenges and opportunities in probe and drug development. Brain 2024 147 5 1622 1635 10.1093/brain/awae028 38301270
    [Google Scholar]
  113. Alavi M.S. Karimi G. Ghanimi H.A. Roohbakhsh A. The potential of CYP46A1 as a novel therapeutic target for neurological disorders: An updated review of mechanisms. Eur. J. Pharmacol. 2023 949 175726 10.1016/j.ejphar.2023.175726 37062503
    [Google Scholar]
  114. Popiolek M. Izumi Y. Hopper A.T. Effects of CYP46A1 inhibition on long-term-depression in hippocampal slices ex vivo and 24S-hydroxycholesterol levels in mice in vivo. Front. Mol. Neurosci. 2020 13 568641 10.3389/fnmol.2020.568641 33192294
    [Google Scholar]
  115. Petrov A.M. Pikuleva I.A. Cholesterol 24-hydroxylation by CYP46A1: Benefits of modulation for brain diseases. Neurotherapeutics 2019 16 3 635 648 10.1007/s13311‑019‑00731‑6 31001737
    [Google Scholar]
  116. Bogdanovic N. Bretillon L. Lund E.G. On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci. Lett. 2001 314 1-2 45 48 10.1016/S0304‑3940(01)02277‑7 11698143
    [Google Scholar]
  117. Brown J. Theisler C. Silberman S. Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J. Biol. Chem. 2004 279 33 34674 34681 10.1074/jbc.M402324200 15148325
    [Google Scholar]
  118. Heverin M. Bogdanovic N. Lütjohann D. Changes in the levels of cerebral and extracerebral sterols in the brain of patients with Alzheimer’s disease. J. Lipid Res. 2004 45 1 186 193 10.1194/jlr.M300320‑JLR200 14523054
    [Google Scholar]
  119. Hascalovici J.R. Vaya J. Khatib S. Brain sterol dysregulation in sporadic AD and MCI: Relationship to heme oxygenase‐1. J. Neurochem. 2009 110 4 1241 1253 10.1111/j.1471‑4159.2009.06213.x 19522732
    [Google Scholar]
  120. Testa G. Staurenghi E. Zerbinati C. Changes in brain oxysterols at different stages of Alzheimer’s disease: Their involvement in neuroinflammation. Redox Biol. 2016 10 24 33 10.1016/j.redox.2016.09.001 27687218
    [Google Scholar]
  121. Popp J. Meichsner S. Kölsch H. Cerebral and extracerebral cholesterol metabolism and CSF markers of Alzheimer’s disease. Biochem. Pharmacol. 2013 86 1 37 42 10.1016/j.bcp.2012.12.007 23291240
    [Google Scholar]
  122. Hughes T.M. Kuller L.H. Lopez O.L. Markers of cholesterol metabolism in the brain show stronger associations with cerebrovascular disease than Alzheimer’s disease. J. Alzheimers Dis. 2012 30 1 53 61 10.3233/JAD‑2012‑111460 22377780
    [Google Scholar]
  123. Schönknecht P. Lütjohann D. Pantel J. Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci. Lett. 2002 324 1 83 85 10.1016/S0304‑3940(02)00164‑7 11983301
    [Google Scholar]
  124. Leoni V. Shafaati M. Salomon A. Kivipelto M. Björkhem I. Wahlund L.O. Are the CSF levels of 24S-hydroxycholesterol a sensitive biomarker for mild cognitive impairment? Neurosci. Lett. 2006 397 1-2 83 87 10.1016/j.neulet.2005.11.046 16406316
    [Google Scholar]
  125. Varma V.R. Büşra Lüleci H. Oommen A.M. Abnormal brain cholesterol homeostasis in Alzheimer’s disease - A targeted metabolomic and transcriptomic study. NPJ Aging Mech. Dis. 2021 7 1 11 10.1038/s41514‑021‑00064‑9 34075056
    [Google Scholar]
  126. Testa G. Giannelli S. Sottero B. 24-hydroxycholesterol induces tau proteasome-dependent degradation via the SIRT1/] PGC1α/Nrf2 Pathway: A potential mechanism to counteract Alzheimer’s disease. Antioxidants 2023 12 3 631 10.3390/antiox12030631 36978879
    [Google Scholar]
  127. Testa G. Staurenghi E. Giannelli S. A silver lining for 24-hydroxycholesterol in Alzheimer’s disease: The involvement of the neuroprotective enzyme sirtuin 1. Redox Biol. 2018 17 423 431 10.1016/j.redox.2018.05.009 29883958
    [Google Scholar]
  128. Urano Y. Ochiai S. Noguchi N. Suppression of amyloid‐β production by 24S‐hydroxycholesterol via inhibition of intracellular amyloid precursor protein trafficking. FASEB J. 2013 27 10 4305 4315 10.1096/fj.13‑231456 23839932
    [Google Scholar]
  129. Nazeri Z. Mohammadzadeh G. Rashidi M. Azizdoost S. Cheraghzadeh M. Kheirollah A. 24-hydroxycholesterol moderates the effects of amyloid-β on expression of HMG-CoA reductase and ABCA1 proteins in mouse astrocytes. Adv. Biomed. Res. 2023 12 1 167 10.4103/abr.abr_245_22 37564436
    [Google Scholar]
  130. Zarezade V. Nazeri Z. Azizidoost S. Cheraghzadeh M. Babaahmadi-Rezaei H. Kheirollah A. Paradoxical effect of Aβ on protein levels of ABCA1 in astrocytes, microglia, and neurons isolated from C57BL/6 mice: an in vitro and in silico study to elucidate the effect of Aβ on ABCA1 in the brain cells. J. Biomol. Struct. Dyn. 2024 42 1 274 287 10.1080/07391102.2023.2201835 37105231
    [Google Scholar]
  131. Meske V. Albert F. Richter D. Schwarze J. Ohm T.G. Blockade of HMG‐CoA reductase activity causes changes in microtubule‐stabilizing protein tau via suppression of geranylgeranylpyrophosphate formation: implications for Alzheimer’s disease. Eur. J. Neurosci. 2003 17 1 93 102 10.1046/j.1460‑9568.2003.02433.x 12534972
    [Google Scholar]
  132. Tanaka T. Tatsuno I. Uchida D. Geranylgeranyl-pyrophosphate, an isoprenoid of mevalonate cascade, is a critical compound for rat primary cultured cortical neurons to protect the cell death induced by 3-hydroxy-3-methylglutaryl-CoA reductase inhibition. J. Neurosci. 2000 20 8 2852 2859 10.1523/JNEUROSCI.20‑08‑02852.2000 10751437
    [Google Scholar]
  133. Liu J.C. Lei S.Y. Zhang D.H. The pleiotropic effects of statins: A comprehensive exploration of neurovascular unit modulation and blood–brain barrier protection. Mol. Med. 2024 30 1 256 10.1186/s10020‑024‑01025‑0 39707228
    [Google Scholar]
  134. Vuu Y.M. Kadar Shahib A. Rastegar M. The potential therapeutic application of simvastatin for brain complications and mechanisms of action. Pharmaceuticals 2023 16 7 914 10.3390/ph16070914 37513826
    [Google Scholar]
  135. Çelik H. Karahan H. Kelicen-Uğur P. Effect of atorvastatin on Aβ1–42-induced alteration of SESN2, SIRT1, LC3II and TPP1 protein expressions in neuronal cell cultures. J. Pharm. Pharmacol. 2020 72 3 424 436 10.1111/jphp.13208 31846093
    [Google Scholar]
  136. Wang Q. Yan J. Chen X. Statins: Multiple neuroprotective mechanisms in neurodegenerative diseases. Exp. Neurol. 2011 230 1 27 34 10.1016/j.expneurol.2010.04.006 20406638
    [Google Scholar]
  137. Ye Z. Deng J. Wu X. Association of statins use and genetic susceptibility with incidence of Alzheimer’s disease. J. Prev. Alzheimers Dis. 2025 12 2 100025 10.1016/j.tjpad.2024.100025 39863334
    [Google Scholar]
  138. Sang X.Z. Chen W. Hou X.X. Wang C.H. Zhang D.F. Hou L.J. Association between statin use and dementia, and related mechanisms: A bibliometric analysis from 2007 to 2023. J. Alzheimers Dis. 2024 101 3 847 876 10.3233/JAD‑240270 39269837
    [Google Scholar]
  139. Petek B. Häbel H. Xu H. Statins and cognitive decline in patients with Alzheimer’s and mixed dementia: a longitudinal registry-based cohort study. Alzheimers Res. Ther. 2023 15 1 220 10.1186/s13195‑023‑01360‑0 38115091
    [Google Scholar]
  140. Zu H. Liu X. Yao K. DHCR24 overexpression modulates microglia polarization and inflammatory response via Akt/GSK3β signaling in Aβ25–35 treated BV-2 cells. Life Sci. 2020 260 118470 10.1016/j.lfs.2020.118470 32950573
    [Google Scholar]
  141. Zhang W. Huang Y. Guo X. Zhang M. Yuan X. Zu H. DHCR24 reverses Alzheimer’s disease-related pathology and cognitive impairment via increasing hippocampal cholesterol levels in 5xFAD mice. Acta Neuropathol. Commun. 2023 11 1 102 10.1186/s40478‑023‑01593‑y 37344916
    [Google Scholar]
  142. Kim J. Yoon H. Horie T. microRNA-33 regulates ApoE lipidation and amyloid-β metabolism in the brain. J. Neurosci. 2015 35 44 14717 14726 10.1523/JNEUROSCI.2053‑15.2015 26538644
    [Google Scholar]
  143. Hafiane A. Johansson J.O. Genest J. ABCA1 agonist mimetic peptide CS-6253 induces microparticles release from different cell types by ABCA1-efflux–dependent mechanism. Can. J. Cardiol. 2019 35 6 770 781 10.1016/j.cjca.2019.02.018 31151713
    [Google Scholar]
  144. Boehm-Cagan A. Bar R. Liraz O. Bielicki J.K. Johansson J.O. Michaelson D.M. ABCA1 agonist reverses the ApoE4-driven cognitive and brain pathologies. J. Alzheimers Dis. 2016 54 3 1219 1233 10.3233/JAD‑160467 27567858
    [Google Scholar]
  145. Nagao K. Maeda M. Mañucat N.B. Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2013 1831 2 398 406 10.1016/j.bbalip.2012.11.002 23153588
    [Google Scholar]
  146. Arakawa R. Tsujita M. Iwamoto N. Pharmacological inhibition of ABCA1 degradation increases HDL biogenesis and exhibits antiatherogenesis. J. Lipid Res. 2009 50 11 2299 2305 10.1194/jlr.M900122‑JLR200 19458386
    [Google Scholar]
  147. Pahnke J. Bascuñana P. Brackhan M. Stefan K. Namasivayam V. Koldamova R. Strategies to gain novel Alzheimer’s disease diagnostics and therapeutics using modulators of ABCA transporters. Free Neuropathol 2021 2 33 10.17879/freeneuropathology‑2021‑3528 34977908
    [Google Scholar]
  148. Lanfranco M.F. Ng C.A. Rebeck G.W. Apo E. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci. 2020 21 17 6336 10.3390/ijms21176336 32882843
    [Google Scholar]
  149. Namasivayam V. Stefan K. Gorecki L. Physicochemistry shapes bioactivity landscape of pan-ABC transporter modulators: Anchor point for innovative Alzheimer’s disease therapeutics. Int. J. Biol. Macromol. 2022 217 775 791 10.1016/j.ijbiomac.2022.07.062 35839956
    [Google Scholar]
  150. Namasivayam V. Stefan K. Pahnke J. Stefan S.M. Binding mode analysis of ABCA7 for the prediction of novel Alzheimer’s disease therapeutics. Comput. Struct. Biotechnol. J. 2021 19 6490 6504 10.1016/j.csbj.2021.11.035 34976306
    [Google Scholar]
  151. Cashikar A.G. Toral-Rios D. Timm D. Regulation of astrocyte lipid metabolism and ApoE secretion by the microglial oxysterol, 25-hydroxycholesterol. J. Lipid Res. 2023 64 4 100350 10.1016/j.jlr.2023.100350 36849076
    [Google Scholar]
  152. Litvinchuk A. Suh J.H. Guo J.L. Amelioration of Tau and ApoE4-linked glial lipid accumulation and neurodegeneration with an LXR agonist. Neuron 2024 112 3 384 403.e8 10.1016/j.neuron.2023.10.023 37995685
    [Google Scholar]
  153. Ban S.Y. Nam Y. Do T.T. Liver-X receptor β-selective agonist CE9A215 regulates Alzheimer’s disease-associated pathology in a 3xTg-AD mouse model. Biomed. Pharmacother. 2025 184 117895 10.1016/j.biopha.2025.117895 39919463
    [Google Scholar]
  154. Martens N. Zhan N. Voortman G. Activation of liver X receptors and peroxisome proliferator-activated receptors by lipid extracts of brown seaweeds: A potential application in Alzheimer’s disease? Nutrients 2023 15 13 3004 10.3390/nu15133004 37447330
    [Google Scholar]
  155. Zhan N. Wang B. Martens N. Identification of side chain oxidized sterols as novel liver X receptor agonists with therapeutic potential in the treatment of cardiovascular and neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 2 1290 10.3390/ijms24021290 36674804
    [Google Scholar]
  156. Bogie J. Hoeks C. Schepers M. Dietary Sargassum fusiforme improves memory and reduces amyloid plaque load in an Alzheimer’s disease mouse model. Sci. Rep. 2019 9 1 4908 10.1038/s41598‑019‑41399‑4 30894635
    [Google Scholar]
  157. Martens N. Zhan N. Yam S.C. Supplementation of seaweed extracts to the diet reduces symptoms of Alzheimer’s disease in the APPswePS1ΔE9 mouse model. Nutrients 2024 16 11 1614 10.3390/nu16111614 38892548
    [Google Scholar]
  158. Corona A.W. Kodoma N. Casali B.T. Landreth G.E. ABCA1 is necessary for bexarotene-mediated clearance of soluble amyloid beta from the hippocampus of APP/PS1 mice. J. Neuroimmune Pharmacol. 2016 11 1 61 72 10.1007/s11481‑015‑9627‑8 26175148
    [Google Scholar]
  159. Tai L.M. Koster K.P. Luo J. Amyloid-β pathology and APOE genotype modulate retinoid X receptor agonist activity in vivo. J. Biol. Chem. 2014 289 44 30538 30555 10.1074/jbc.M114.600833 25217640
    [Google Scholar]
  160. Mariani M.M. Malm T. Lamb R. Neuronally-directed effects of RXR activation in a mouse model of Alzheimer’s disease. Sci. Rep. 2017 7 1 42270 10.1038/srep42270 28205585
    [Google Scholar]
  161. Mounier A. Georgiev D. Nam K.N. Bexarotene-activated retinoid X receptors regulate neuronal differentiation and dendritic complexity. J. Neurosci. 2015 35 34 11862 11876 10.1523/JNEUROSCI.1001‑15.2015 26311769
    [Google Scholar]
  162. Pierrot N. Lhommel R. Quenon L. Targretin improves cognitive and biological markers in a patient with Alzheimer’s disease. J. Alzheimers Dis. 2015 49 2 271 276 10.3233/JAD‑150405 26444777
    [Google Scholar]
  163. Staurenghi E. Leoni V. Lo Iacono M. ApoE3 vs. ApoE4 astrocytes: A detailed analysis provides new insights into differences in cholesterol homeostasis. Antioxidants 2022 11 11 2168 10.3390/antiox11112168 36358540
    [Google Scholar]
  164. Zhang R. Xu X. Yu H. Xu X. Wang M. Le W. Factors influencing Alzheimer’s disease risk: Whether and how they are related to the APOE genotype. Neurosci. Bull. 2022 38 7 809 819 10.1007/s12264‑021‑00814‑5 35149974
    [Google Scholar]
  165. Tanaka M. Hasegawa M. Yoshimoto N. Hoshikawa K. Mukai T. Preparation of lipid nanodisks containing apolipoprotein E-derived synthetic peptides for biocompatible delivery vehicles targeting low-density lipoprotein receptor. Biol. Pharm. Bull. 2019 42 8 1376 1383 10.1248/bpb.b19‑00287 31366872
    [Google Scholar]
  166. Pan F. Liu M. Li G. Phospholipid type regulates protein corona composition and in vivo performance of lipid nanodiscs. Mol. Pharm. 2024 21 5 2272 2283 10.1021/acs.molpharmaceut.3c01084 38607681
    [Google Scholar]
  167. Qiao Y. Liu H. He C. Ma Y. Apo E. ApoE mimic peptide COG1410 reduces Aβ deposition and improves cognitive function by inducing the transformation of A1/A2 reactive astrocytes and increasing the bdnf concentration in brain of APP/PS1 double transgenic mice. Neuroscience 2024 537 116 125 10.1016/j.neuroscience.2023.11.023 38006963
    [Google Scholar]
  168. Vitek M.P. Christensen D.J. Wilcock D. APOE-mimetic peptides reduce behavioral deficits, plaques and tangles in Alzheimer’s disease transgenics. Neurodegener. Dis. 2012 10 1-4 122 126 10.1159/000334914 22326991
    [Google Scholar]
  169. Krishnamurthy K. Cantillana V. Wang H. ApoE mimetic improves pathology and memory in a model of Alzheimer’s disease. Brain Res. 2020 1733 146685 10.1016/j.brainres.2020.146685 32007397
    [Google Scholar]
  170. Guptill J.T. Raja S.M. Boakye-Agyeman F. Phase 1 randomized, double-blind, placebo-controlled study to determine the safety, tolerability, and pharmacokinetics of a single escalating dose and repeated doses of CN-105 in healthy adult subjects. J. Clin. Pharmacol. 2017 57 6 770 776 10.1002/jcph.853 27990643
    [Google Scholar]
  171. Li S. Wangqin R. Meng X. Tolerability and pharmacokinetics of single escalating and repeated doses of CN-105 in healthy participants. Clin. Ther. 2022 44 5 744 754 10.1016/j.clinthera.2022.03.006 35562205
    [Google Scholar]
  172. James M.L. Troy J. Nowacki N. CN-105 in participants with acute supratentorial Intracerebral Hemorrhage (CATCH) trial. Neurocrit. Care 2022 36 1 216 225 10.1007/s12028‑021‑01287‑0 34424490
    [Google Scholar]
  173. VanDusen K.W. Eleswarpu S. Moretti E.W. The MARBLE study protocol: Modulating ApoE signaling to reduce brain inflammation, delirium, and postoperative cognitive dysfunction. J. Alzheimers Dis. 2020 75 4 1319 1328 10.3233/JAD‑191185 32417770
    [Google Scholar]
  174. Kloske C.M. Wilcock D.M. The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s disease. Front. Immunol. 2020 11 754 10.3389/fimmu.2020.00754 32425941
    [Google Scholar]
  175. Foley K.E. Wilcock D.M. Three major effects of APOEε4 on Aβ immunotherapy induced ARIA. Front. Aging Neurosci. 2024 16 1412006 10.3389/fnagi.2024.1412006 38756535
    [Google Scholar]
  176. Brodbeck J. McGuire J. Liu Z. Structure-dependent impairment of intracellular apolipoprotein E4 trafficking and its detrimental effects are rescued by small-molecule structure correctors. J. Biol. Chem. 2011 286 19 17217 17226 10.1074/jbc.M110.217380 21454574
    [Google Scholar]
  177. Wang C. Najm R. Xu Q. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med. 2018 24 5 647 657 10.1038/s41591‑018‑0004‑z 29632371
    [Google Scholar]
  178. Chen H.K. Liu Z. Meyer-Franke A. Small molecule structure correctors abolish detrimental effects of apolipoprotein E4 in cultured neurons. J. Biol. Chem. 2012 287 8 5253 5266 10.1074/jbc.M111.276162 22158868
    [Google Scholar]
  179. Lin Y.T. Seo J. Gao F. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived Brain cell types. Neuron 2018 98 6 1141 1154.e7 10.1016/j.neuron.2018.05.008 29861287
    [Google Scholar]
  180. Hudry E. Dashkoff J. Roe A.D. Gene transfer of human Apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 2013 5 212 212ra161 10.1126/scitranslmed.3007000 24259049
    [Google Scholar]
  181. Zhao L. Gottesdiener A.J. Parmar M. Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer’s disease mouse models. Neurobiol. Aging 2016 44 159 172 10.1016/j.neurobiolaging.2016.04.020 27318144
    [Google Scholar]
  182. Rosenberg J.B. Kaplitt M.G. De B.P. AAVrh.10-mediated APOE2 central nervous system gene therapy for APOE4-associated Alzheimer’s disease. Hum. Gene Ther. Clin. Dev. 2018 29 1 24 47 10.1089/humc.2017.231 29409358
    [Google Scholar]
  183. Arora S. Layek B. Singh J. Design and validation of liposomal APOE2 gene delivery system to evade blood–brain barrier for effective treatment of Alzheimer’s disease. Mol. Pharm. 2021 18 2 714 725 10.1021/acs.molpharmaceut.0c00461 32787268
    [Google Scholar]
  184. dos Santos Rodrigues B. Kanekiyo T. Singh J. ApoE-2 brain-targeted gene therapy through transferrin and penetratin tagged liposomal nanoparticles. Pharm. Res. 2019 36 11 161 10.1007/s11095‑019‑2691‑7 31529284
    [Google Scholar]
  185. Poblano J. Castillo-Tobías I. Berlanga L. Drugs targeting APOE4 that regulate beta‐amyloid aggregation in the brain: Therapeutic potential for Alzheimer’s disease. Basic Clin. Pharmacol. Toxicol. 2024 135 3 237 249 10.1111/bcpt.14055 39020526
    [Google Scholar]
  186. Xiong M. Jiang H. Serrano J.R. APOE immunotherapy reduces cerebral amyloid angiopathy and amyloid plaques while improving cerebrovascular function. Sci. Transl. Med. 2021 13 581 eabd7522 10.1126/scitranslmed.abd7522 33597265
    [Google Scholar]
  187. Marino C. Perez-Corredor P. O’Hare M. APOE Christchurch‐mimetic therapeutic antibody reduces APOE‐mediated toxicity and tau phosphorylation. Alzheimers Dement. 2024 20 2 819 836 10.1002/alz.13436 37791598
    [Google Scholar]
  188. Luz I. Liraz O. Michaelson D.M. An anti-apoE4 specific monoclonal antibody counteracts the pathological effects of apoE4 in vivo. Curr. Alzheimer Res. 2016 13 8 918 929 10.2174/1567205013666160404120817 27040139
    [Google Scholar]
  189. Kim J. Eltorai A.E.M. Jiang H. Anti-apoE immunotherapy inhibits amyloid accumulation in a transgenic mouse model of Aβ amyloidosis. J. Exp. Med. 2012 209 12 2149 2156 10.1084/jem.20121274 23129750
    [Google Scholar]
  190. Liao F. Hori Y. Hudry E. Anti-ApoE antibody given after plaque onset decreases Aβ accumulation and improves brain function in a mouse model of Aβ amyloidosis. J. Neurosci. 2014 34 21 7281 7292 10.1523/JNEUROSCI.0646‑14.2014 24849360
    [Google Scholar]
  191. Litvinchuk A. Huynh T.P.V. Shi Y. Apolipoprotein E4 reduction with antisense oligonucleotides decreases neurodegeneration in a tauopathy model. Ann. Neurol. 2021 89 5 952 966 10.1002/ana.26043 33550655
    [Google Scholar]
  192. Ferguson C.M. Hildebrand S. Godinho B.M.D.C. Silencing Apoe with divalent‐siRNAs improves amyloid burden and activates immune response pathways in Alzheimer’s disease. Alzheimers Dement. 2024 20 4 2632 2652 10.1002/alz.13703 38375983
    [Google Scholar]
  193. Lewis T.L. Cao D. Lu H. Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J. Biol. Chem. 2010 285 47 36958 36968 10.1074/jbc.M110.127829 20847045
    [Google Scholar]
  194. Chernick D. Zhong R. Li L. The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer’s Disease. Biomolecules 2020 10 9 1276 10.3390/biom10091276 32899606
    [Google Scholar]
  195. Fernández-de Retana S. Montañola A. Marazuela P. Intravenous treatment with human recombinant ApoA-I Milano reduces beta amyloid cerebral deposition in the APP23-transgenic mouse model of Alzheimer’s disease. Neurobiol. Aging 2017 60 116 128 10.1016/j.neurobiolaging.2017.08.028 28941727
    [Google Scholar]
  196. Solé M. Marazuela P. Castellote L. Bonaterra-Pastra A. Giménez-Llort L. Hernández-Guillamon M. Therapeutic effect of human ApoA‐I‐Milano variant in aged transgenic mouse model of Alzheimer’s disease. Br. J. Pharmacol. 2023 180 15 1999 2017 10.1111/bph.16065 36872299
    [Google Scholar]
  197. Swaminathan S.K. Zhou A.L. Ahlschwede K.M. High-density lipoprotein mimetic peptide 4F efficiently crosses the blood-brain barrier and modulates amyloid-β distribution between brain and plasma. J. Pharmacol. Exp. Ther. 2020 375 2 308 316 10.1124/jpet.120.265876 32778535
    [Google Scholar]
  198. Zhong R. Chernick D. Hottman D. The HDL-mimetic peptide 4F mitigates vascular and cortical amyloid pathology and associated neuroinflammation in a transgenic mouse model of cerebral amyloid angiopathy and Alzheimer’s Disease. Mol. Neurobiol. 2025 62 8 9507 9526 10.1007/s12035‑025‑04859‑9 40120042
    [Google Scholar]
  199. Tournier B.B. Ceyzériat K. Marteyn A. Brain and plasmatic CLUSTERIN are translational markers of Alzheimer’s disease. Brain Pathol. 2025 35 2 e13281 10.1111/bpa.13281 39965636
    [Google Scholar]
  200. Qi X.M. Wang C. Chu X.K. Li G. Ma J.F. Intraventricular infusion of clusterin ameliorated cognition and pathology in Tg6799 model of Alzheimer’s disease. BMC Neurosci. 2018 19 1 2 10.1186/s12868‑018‑0402‑7 29370749
    [Google Scholar]
  201. Song Q. Huang M. Yao L. Lipoprotein-based nanoparticles rescue the memory loss of mice with Alzheimer’s disease by accelerating the clearance of amyloid-beta. ACS Nano 2014 8 3 2345 2359 10.1021/nn4058215 24527692
    [Google Scholar]
  202. Robert J. Stukas S. Button E. Reconstituted high-density lipoproteins acutely reduce soluble brain Aβ levels in symptomatic APP/PS1 mice. Biochim. Biophys. Acta Mol. Basis Dis. 2016 1862 5 1027 1036 10.1016/j.bbadis.2015.10.005 26454209
    [Google Scholar]
  203. Fernández-de-Retana S. Cano-Sarabia M. Marazuela P. Characterization of ApoJ-reconstituted high-density lipoprotein (rHDL) nanodisc for the potential treatment of cerebral β-amyloidosis. Sci. Rep. 2017 7 1 14637 10.1038/s41598‑017‑15215‑w 29116115
    [Google Scholar]
  204. de Retana S.F. Marazuela P. Solé M. Peripheral administration of human recombinant ApoJ/clusterin modulates brain beta-amyloid levels in APP23 mice. Alzheimers Res. Ther. 2019 11 1 42 10.1186/s13195‑019‑0498‑8 31077261
    [Google Scholar]
  205. Krishnan N. Chen X. Donnelly-Roberts D. Mohler E.G. Holtzman D.M. Gopalakrishnan S.M. Small Molecule Phenotypic Screen Identifies Novel Regulators of LDLR Expression. ACS Chem. Biol. 2020 15 12 3262 3274 10.1021/acschembio.0c00851 33270420
    [Google Scholar]
  206. Feng M. Cui D. Li Y. Carnosic acid reverses the inhibition of ApoE4 on cell surface level of ApoER2 and reelin signaling pathway. J. Alzheimers Dis. 2020 73 2 517 528 10.3233/JAD‑190914 31796678
    [Google Scholar]
  207. Petralla S. Panayotova M. Franchina E. Fricker G. Puris E. Low-density lipoprotein receptor-related protein 1 as a potential therapeutic target in Alzheimer’s disease. Pharmaceutics 2024 16 7 948 10.3390/pharmaceutics16070948 39065645
    [Google Scholar]
  208. Jiao H. Jia J. Ginsenoside compound K acts via LRP1 to alleviate Amyloid β42-induced neuroinflammation in microglia by suppressing NF-κB. Biochem. Biophys. Res. Commun. 2022 590 14 19 10.1016/j.bbrc.2021.12.071 34968779
    [Google Scholar]
  209. Seok H. Lee M. Shin E. Low-dose pioglitazone can ameliorate learning and memory impairment in a mouse model of dementia by increasing LRP1 expression in the hippocampus. Sci. Rep. 2019 9 1 4414 10.1038/s41598‑019‑40736‑x 30867485
    [Google Scholar]
  210. Testa G. Giannelli S. Staurenghi E. The Emerging Role of PCSK9 in the Pathogenesis of Alzheimer’s Disease: A Possible Target for the Disease Treatment. Int. J. Mol. Sci. 2024 25 24 13637 10.3390/ijms252413637 39769398
    [Google Scholar]
  211. Coppinger C. Pomales B. Movahed M.R. Marefat M. Hashemzadeh M. Berberine: A multi-target natural PCSK9 inhibitor with the potential to treat diabetes, Alzheimer’s, cancer and cardiovascular disease. Curr Rev Clin Exp Pharmacol 2024 19 4 312 326 10.2174/0127724328250471231222094648 38361373
    [Google Scholar]
  212. Abuelezz S.A. Hendawy N. HMGB1/RAGE/TLR4 axis and glutamate as novel targets for PCSK9 inhibitor in high fat cholesterol diet induced cognitive impairment and amyloidosis. Life Sci. 2021 273 119310 10.1016/j.lfs.2021.119310 33667517
    [Google Scholar]
  213. Schlunk F. Fischer P. Princen H.M.G. No effects of PCSK9-inhibitor treatment on spatial learning, locomotor activity, and novel object recognition in mice. Behav. Brain Res. 2021 396 112875 10.1016/j.bbr.2020.112875 32858115
    [Google Scholar]
  214. Yang Y. Wang Y. Wang Y. Ke T. Zhao L. PCSK9 inhibitor effectively alleviated cognitive dysfunction in a type 2 diabetes mellitus rat model. PeerJ 2024 12 e17676 10.7717/peerj.17676 39157774
    [Google Scholar]
  215. Arunsak B. Pratchayasakul W. Amput P. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitor exerts greater efficacy than atorvastatin on improvement of brain function and cognition in obese rats. Arch. Biochem. Biophys. 2020 689 108470 10.1016/j.abb.2020.108470 32592802
    [Google Scholar]
  216. Mazura A.D. Ohler A. Storck S.E. PCSK9 acts as a key regulator of Aβ clearance across the blood-brain barrier. Cell. Mol. Life Sci. 2022 79 4 212 10.1007/s00018‑022‑04237‑x 35344086
    [Google Scholar]
  217. Giannessi L. Lupo M.G. Rossi I. Identification of 4-amino-2-Pyridones as new potent PCSK9 inhibitors: From phenotypic hit discovery to in vivo tolerability. Eur. J. Med. Chem. 2024 265 116063 10.1016/j.ejmech.2023.116063 38160616
    [Google Scholar]
  218. Giugliano R.P. Mach F. Zavitz K. Cognitive function in a randomized trial of evolocumab. N. Engl. J. Med. 2017 377 7 633 643 10.1056/NEJMoa1701131 28813214
    [Google Scholar]
  219. Zimerman A O’Donoghue ML Ran X Im K Ott BR Mach F Long-term cognitive safety of achieving very low LDL cholesterol with evolocumab. NEJM Evid 2025 4 1 10.1056/EVIDoa2400112
    [Google Scholar]
  220. Seijas-Amigo J. Mauriz-Montero M.J. Suarez-Artime P. Cognitive function with PCSK9 inhibitors: A 24-month follow-up observational prospective study in the real world—MEMOGAL study. Am. J. Cardiovasc. Drugs 2023 23 5 583 593 10.1007/s40256‑023‑00604‑6 37612529
    [Google Scholar]
  221. Choi Y.J. Lee S.J. Kim H.I. Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells. Sci. Rep. 2020 10 1 19834 10.1038/s41598‑020‑76224‑w 33199761
    [Google Scholar]
  222. Gao J. Littman R. Diamante G. Therapeutic IDOL reduction ameliorates amyloidosis and improves cognitive function in APP/PS1 mice. Mol. Cell. Biol. 2020 40 8 e00518 e00519 10.1128/MCB.00518‑19 31964754
    [Google Scholar]
  223. Hudry E. Van Dam D. Kulik W. Adeno-associated virus gene therapy with cholesterol 24-hydroxylase reduces the amyloid pathology before or after the onset of amyloid plaques in mouse models of Alzheimer’s disease. Mol. Ther. 2010 18 1 44 53 10.1038/mt.2009.175 19654569
    [Google Scholar]
  224. Djelti F. Braudeau J. Hudry E. CYP46A1 inhibition, brain cholesterol accumulation and neurodegeneration pave the way for Alzheimer’s disease. Brain 2015 138 8 2383 2398 10.1093/brain/awv166 26141492
    [Google Scholar]
  225. Fagone P. Mangano K. Martino G. Characterization of altered molecular pathways in the entorhinal cortex of Alzheimer’s disease patients and in silico prediction of potential repurposable drugs. Genes (Basel) 2022 13 4 703 10.3390/genes13040703 35456509
    [Google Scholar]
  226. Boyarko B. Podvin S. Greenberg B. Challenges and opportunities for consideration of efavirenz drug repurposing for Alzheimer’s disease therapeutics. ACS Pharmacol. Transl. Sci. 2024 7 10 2924 2935 10.1021/acsptsci.4c00229 39421657
    [Google Scholar]
  227. El-Darzi N. Mast N. Buchner D.A. Low-dose anti-HIV drug efavirenz mitigates retinal vascular lesions in a mouse model of Alzheimer’s disease. Front. Pharmacol. 2022 13 902254 10.3389/fphar.2022.902254 35721135
    [Google Scholar]
  228. Petrov A.M. Lam M. Mast N. CYP46A1 activation by efavirenz leads to behavioral improvement without significant changes in amyloid plaque load in the brain of 5XFAD mice. Neurotherapeutics 2019 16 3 710 724 10.1007/s13311‑019‑00737‑0 31062296
    [Google Scholar]
  229. Mast N. Li Y. Pikuleva I.A. 7,8-dihydroxy efavirenz is not as effective in CYP46A1 activation in vivo as efavirenz or its 8,14-dihydroxy metabolite. Int. J. Mol. Sci. 2024 25 4 2242 10.3390/ijms25042242 38396919
    [Google Scholar]
  230. Latorre-Leal M. Rodriguez-Rodriguez P. Franchini L. CYP46A1-mediated cholesterol turnover induces sex-specific changes in cognition and counteracts memory loss in ovariectomized mice. Sci. Adv. 2024 10 4 eadj1354 10.1126/sciadv.adj1354 38266095
    [Google Scholar]
  231. Maioli S. Båvner A. Ali Z. Is it possible to improve memory function by upregulation of the cholesterol 24S-hydroxylase (CYP46A1) in the brain? PLoS One 2013 8 7 e68534 10.1371/journal.pone.0068534 23874659
    [Google Scholar]
  232. Mast N. Butts M. Pikuleva I.A. Unbiased insights into the multiplicity of the CYP46A1 brain effects in 5XFAD mice treated with low dose-efavirenz. J. Lipid Res. 2024 65 6 100555 10.1016/j.jlr.2024.100555 38719151
    [Google Scholar]
  233. Pikuleva I.A. Cartier N. Cholesterol hydroxylating cytochrome P450 46A1: From mechanisms of action to clinical applications. Front. Aging Neurosci. 2021 13 696778 10.3389/fnagi.2021.696778 34305573
    [Google Scholar]
  234. Lerner A.J. Arnold S.E. Maxfield E. CYP46A1 activation by low-dose efavirenz enhances brain cholesterol metabolism in subjects with early Alzheimer’s disease. Alzheimers Res. Ther. 2022 14 1 198 10.1186/s13195‑022‑01151‑z 36581878
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128411158250909151734
Loading
/content/journals/cpd/10.2174/0113816128411158250909151734
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test