Skip to content
2000
image of Promising Targets and Drugs for Improving Head and Neck Cancer Response to Radiotherapy

Abstract

Head and neck cancers, particularly Head and Neck Squamous Cell Carcinoma (HNSCC), encompass a diverse group of malignancies with intricate cellular landscapes. The Tumor Microenvironment (TME) is characterized by constant communication between cancer cells and their surrounding cells. Stromal components, immune infiltrates, and Extracellular Matrix (ECM) elements all play crucial roles in this process. These dialogues shape tumor behavior, spread, and treatment resistance. At the molecular level, DNA Damage Response (DDR) by tumoral cells can reduce cell elimination Ionizing Radiation (IR). Human Papillomavirus (HPV) infection, in some cases, further complicates the picture. Recent findings highlight how these molecular responses, as well as immune modulation, remodeling cell metabolism, enhanced growth factors, and hypoxia in TME, can influence tumor responses to IR. These findings may lead to strategies for radiosensitizing head and neck cancers. Unraveling these interactions is key to developing more effective treatments. This review focuses on different mechanisms of radioresistance in head and neck cancers. Then, we provide an overview of different targets and potential adjuvants or drugs for radiosensitization of these malignancies.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128398373250910100446
2025-09-18
2025-11-09
Loading full text...

Full text loading...

References

  1. Rahman Q.B. Iocca O. Kufta K. Shanti R.M. Global burden of head and neck cancer. Oral Maxillofac. Surg. Clin. North Am. 2020 32 3 367 375 10.1016/j.coms.2020.04.002 32482563
    [Google Scholar]
  2. Zhou T. Huang W. Wang X. Global burden of head and neck cancers from 1990 to 2019. iScience 2024 27 3 109282 10.1016/j.isci.2024.109282 38455975
    [Google Scholar]
  3. Pfister D.G. Spencer S. Adelstein D. Head and neck cancers, version 2.2020, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2020 18 7 873 898 10.6004/jnccn.2020.0031 32634781
    [Google Scholar]
  4. Kitamura N. Sento S. Yoshizawa Y. Sasabe E. Kudo Y. Yamamoto T. Current trends and future prospects of molecular targeted therapy in head and neck squamous cell carcinoma. Int. J. Mol. Sci. 2020 22 1 240 10.3390/ijms22010240 33383632
    [Google Scholar]
  5. Oliva M. Spreafico A. Taberna M. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann. Oncol. 2019 30 1 57 67 10.1093/annonc/mdy507 30462163
    [Google Scholar]
  6. Barsouk A. Aluru J.S. Rawla P. Saginala K. Barsouk A. Epidemiology, Risk factors, and prevention of head and neck squamous cell carcinoma. Med. Sci. 2023 11 2 42 10.3390/medsci11020042 37367741
    [Google Scholar]
  7. Huang G. Pan S.T. ROS‐Mediated therapeutic strategy in Chemo‐/Radiotherapy of head and neck cancer. Oxid. Med. Cell. Longev. 2020 2020 1 30 10.1155/2020/5047987 32774675
    [Google Scholar]
  8. Farhood B Ashrafizadeh M khodamoradi E et al Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci. 2020 250 117570 10.1016/j.lfs.2020.117570 32205088
    [Google Scholar]
  9. khodamoradi E, Hoseini-Ghahfarokhi M, Amini P. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci. 2020 77 3129 3159
    [Google Scholar]
  10. Taeb S. Ashrafizadeh M. Zarrabi A. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr. Cancer Drug Targets 2022 22 1 18 30 10.2174/1568009622666211224154952 34951575
    [Google Scholar]
  11. Colton M. Cheadle E.J. Honeychurch J. Illidge T.M. Reprogramming the tumour microenvironment by radiotherapy: implications for radiotherapy and immunotherapy combinations. Radiat. Oncol. 2020 15 1 254 10.1186/s13014‑020‑01678‑1 33148287
    [Google Scholar]
  12. Bhandari S. Soni B.W. Bahl A. Ghoshal S. Radiotherapy‐induced oral morbidities in head and neck cancer patients. Spec. Care Dentist. 2020 40 3 238 250 10.1111/scd.12469 32378765
    [Google Scholar]
  13. Ashrafizadeh M. Farhood B. Eleojo Musa A. Taeb S. Najafi M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol. 2020 87 106807 10.1016/j.intimp.2020.106807 32683299
    [Google Scholar]
  14. Dragan T. Beauvois S. Moreau M. Clinical outcome and toxicity after simultaneous integrated boost IMRT in head and neck squamous cell cancer patients. Oral Oncol. 2019 98 132 140 10.1016/j.oraloncology.2019.09.012 31586895
    [Google Scholar]
  15. Iqbal M.S. West N. Richmond N. A systematic review and practical considerations of stereotactic body radiotherapy in the treatment of head and neck cancer. Br. J. Radiol. 2021 94 1117 20200332 10.1259/bjr.20200332 32960652
    [Google Scholar]
  16. Anderson G. Ebadi M. Vo K. Novak J. Govindarajan A. Amini A. An updated review on head and neck cancer treatment with radiation therapy. Cancers 2021 13 19 4912 10.3390/cancers13194912 34638398
    [Google Scholar]
  17. Nickoloff J.A. Sharma N. Taylor L. Clustered DNA double-strand breaks: Biological effects and relevance to cancer radiotherapy. Genes 2020 11 1 99 10.3390/genes11010099 31952359
    [Google Scholar]
  18. McCarthy-Leo C. Darwiche F. Tainsky M.A. DNA repair mechanisms, protein interactions and therapeutic targeting of the MRN complex. Cancers 2022 14 21 5278 10.3390/cancers14215278 36358700
    [Google Scholar]
  19. Ma A. Dai X. The relationship between DNA single-stranded damage response and double-stranded damage response. Cell Cycle 2018 17 1 73 79 10.1080/15384101.2017.1403681 29157089
    [Google Scholar]
  20. Williams R.M. Zhang X. Roles of ATM and ATR in DNA double strand breaks and replication stress. Prog. Biophys. Mol. Biol. 2021 161 27 38 10.1016/j.pbiomolbio.2020.11.005 33259832
    [Google Scholar]
  21. Ashley A.K. Kemp C.J. DNA-PK, ATM, and ATR: PIKKing on p53. Cell Cycle 2018 17 3 275 276 10.1080/15384101.2017.1412147 29265907
    [Google Scholar]
  22. Soni A. Mladenov E. Iliakis G. Proficiency in homologous recombination repair is prerequisite for activation of G2-checkpoint at low radiation doses. DNA Repair (Amst.) 2021 101 103076 10.1016/j.dnarep.2021.103076 33640756
    [Google Scholar]
  23. Whelan D.R. Rothenberg E. Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. Proc. Natl. Acad. Sci. USA 2021 118 11 e2021963118 10.1073/pnas.2021963118 33707212
    [Google Scholar]
  24. Katsuki Y. Jeggo P.A. Uchihara Y. Takata M. Shibata A. DNA double-strand break end resection: a critical relay point for determining the pathway of repair and signaling. Genome Instab Disease 2020 1 4 155 171 10.1007/s42764‑020‑00017‑8
    [Google Scholar]
  25. Yu W. Lescale C. Babin L. Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat. Commun. 2020 11 1 5239 10.1038/s41467‑020‑19060‑w 33067475
    [Google Scholar]
  26. Stinson B.M. Loparo J.J. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu. Rev. Biochem. 2021 90 1 137 164 10.1146/annurev‑biochem‑080320‑110356 33556282
    [Google Scholar]
  27. Her J. Bunting S.F. How cells ensure correct repair of DNA double-strand breaks. J. Biol. Chem. 2018 293 27 10502 10511 10.1074/jbc.TM118.000371 29414795
    [Google Scholar]
  28. Li S. Hong X. Wei Z. Ubiquitination of the HPV oncoprotein E6 is critical for E6/E6AP-mediated p53 degradation. Front. Microbiol. 2019 10 2483 10.3389/fmicb.2019.02483 31749782
    [Google Scholar]
  29. Kassab A. Gupta I. Al Moustafa A-E. Role of E2F transcription factor in oral cancer: Recent insight and advancements. In: Seminars in cancer biology. Elsevier 2023 28 41
    [Google Scholar]
  30. Anna Szymonowicz K. Chen J. Biological and clinical aspects of HPV-related cancers. Cancer Biol. Med. 2020 17 4 864 878 10.20892/j.issn.2095‑3941.2020.0370 33299640
    [Google Scholar]
  31. Zhou C. Parsons J.L. The radiobiology of HPV-positive and HPV-negative head and neck squamous cell carcinoma. Expert Rev. Mol. Med. 2020 22 e3 10.1017/erm.2020.4 32611474
    [Google Scholar]
  32. Nathan C.A. Khandelwal A.R. Wolf G.T. TP53 mutations in head and neck cancer. Mol. Carcinog. 2022 61 4 385 391 10.1002/mc.23385 35218075
    [Google Scholar]
  33. Zhao Y.Y. Yu G.T. Xiao T. Hu J. The Notch signaling pathway in head and neck squamous cell carcinoma: A meta-analysis. Adv. Clin. Exp. Med. 2017 26 5 881 887 10.17219/acem/64000 29068587
    [Google Scholar]
  34. Cochicho D. Esteves S. Rito M. PIK3CA gene mutations in HNSCC: Systematic review and correlations with HPV status and patient survival. Cancers 2022 14 5 1286 10.3390/cancers14051286 35267596
    [Google Scholar]
  35. Zech H.B. von Bargen C. Oetting A. Tissue microarray analyses of the essential DNA repair factors ATM, DNA-PKcs and Ku80 in head and neck squamous cell carcinoma. Radiat. Oncol. 2024 19 1 150 10.1186/s13014‑024‑02541‑3 39478631
    [Google Scholar]
  36. Nguyen V. Schrank T.P. Major M.B. Weissman B.E. ARID1A loss is associated with increased NRF2 signaling in human head and neck squamous cell carcinomas. PLoS One 2024 19 2 e0297741 10.1371/journal.pone.0297741 38358974
    [Google Scholar]
  37. Schallenberg S. Bork J. Essakly A. Loss of the SWI/SNF-ATPase subunit members SMARCF1 (ARID1A), SMARCA2 (BRM), SMARCA4 (BRG1) and SMARCB1 (INI1) in oesophageal adenocarcinoma. BMC Cancer 2020 20 1 12 10.1186/s12885‑019‑6425‑3 31906887
    [Google Scholar]
  38. Hoque S. Dhar R. Kar R. Cancer stem cells (CSCs): Key player of radiotherapy resistance and its clinical significance. Biomarkers 2023 28 2 139 151 10.1080/1354750X.2022.2157875 36503350
    [Google Scholar]
  39. Schulz A. Meyer F. Dubrovska A. Borgmann K. Cancer stem cells and radioresistance: DNA repair and beyond. Cancers 2019 11 6 862 10.3390/cancers11060862 31234336
    [Google Scholar]
  40. Fabbrizi M.R. Parsons J.L. Radiotherapy and the cellular DNA damage response: Current and future perspectives on head and neck cancer treatment. Cancer Drug Resist. 2020 3 4 775 790 10.20517/cdr.2020.49 35582232
    [Google Scholar]
  41. Suwa T. Kobayashi M. Nam J.M. Harada H. Tumor microenvironment and radioresistance. Exp. Mol. Med. 2021 53 6 1029 1035 10.1038/s12276‑021‑00640‑9 34135469
    [Google Scholar]
  42. Zimmermann A. Zenke F.T. Chiu L.Y. A new class of selective ATM inhibitors as combination partners of DNA double-strand break inducing cancer therapies. Mol. Cancer Ther. 2022 21 6 859 870 10.1158/1535‑7163.MCT‑21‑0934 35405736
    [Google Scholar]
  43. Stakyte K. Rotheneder M. Lammens K. Molecular basis of human ATM kinase inhibition. Nat. Struct. Mol. Biol. 2021 28 10 789 798 10.1038/s41594‑021‑00654‑x 34556870
    [Google Scholar]
  44. Zou J. Qiao X. Ye H. Antisense inhibition of ATM gene enhances the radiosensitivity of head and neck squamous cell carcinoma in mice. J. Exp. Clin. Cancer Res. 2008 27 1 56 10.1186/1756‑9966‑27‑56 18950535
    [Google Scholar]
  45. Faulhaber E-M. Jost T. Symank J. Kinase inhibitors of DNA-PK, ATM and ATR in combination with ionizing radiation can increase tumor cell death in HNSCC Cells while sparing normal tissue cells. Genes 2021 12 6 925 10.3390/genes12060925
    [Google Scholar]
  46. Köcher S. Zech H.B. Krug L. A lack of effectiveness in the ATM-Orchestrated DNA Damage response contributes to the DNA repair defect of HPV-positive head and Neck Cancer Cells. Front. Oncol. 2022 12 765968 10.3389/fonc.2022.765968 35719921
    [Google Scholar]
  47. Vitti E.T. Kacperek A. Parsons J.L. Targeting DNA double-strand break repair enhances radiosensitivity of HPV-positive and HPV-negative head and neck squamous cell carcinoma to photons and protons. Cancers 2020 12 6 1490 10.3390/cancers12061490 32517381
    [Google Scholar]
  48. Dohmen A.J.C. Qiao X. Duursma A. Identification of a novel ATM inhibitor with cancer cell specific radiosensitization activity. Oncotarget 2017 8 43 73925 73937 10.18632/oncotarget.18034 29088757
    [Google Scholar]
  49. Jin W.J. Zangl L.M. Hyun M. ATM inhibition augments type I interferon response and antitumor T-cell immunity when combined with radiation therapy in murine tumor models. J. Immunother. Cancer 2023 11 9 e007474 10.1136/jitc‑2023‑007474 37730275
    [Google Scholar]
  50. Barnieh F.M. Loadman P.M. Falconer R.A. Progress towards a clinically-successful ATR inhibitor for cancer therapy. Curr Res Pharmacol Drug Discov 2021 2 100017 10.1016/j.crphar.2021.100017 34909652
    [Google Scholar]
  51. Neeb A. Herranz N. Arce-Gallego S. Advanced prostate cancer with ATM loss: PARP and ATR inhibitors. Eur. Urol. 2021 79 2 200 211 10.1016/j.eururo.2020.10.029 33176972
    [Google Scholar]
  52. Kwok M. Davies N. Agathanggelou A. ATR inhibition induces synthetic lethality and overcomes chemoresistance in TP53- or ATM-defective chronic lymphocytic leukemia cells. Blood 2016 127 5 582 595 10.1182/blood‑2015‑05‑644872 26563132
    [Google Scholar]
  53. Priya B. Ravi S. Kirubakaran S. Targeting ATM and ATR for cancer therapeutics: Inhibitors in clinic. Drug Discov. Today 2023 28 8 103662 10.1016/j.drudis.2023.103662 37302542
    [Google Scholar]
  54. Dok R. Glorieux M. Bamps M. Nuyts S. Effect of ATR inhibition in RT response of HPV-negative and HPV-positive head and neck cancers. Int. J. Mol. Sci. 2021 22 4 1504 10.3390/ijms22041504 33546122
    [Google Scholar]
  55. Meidenbauer J. Wachter M. Schulz S.R. Inhibition of ATM or ATR in combination with hypo-fractionated radiotherapy leads to a different immunophenotype on transcript and protein level in HNSCC. Front. Oncol. 2024 14 1460150 10.3389/fonc.2024.1460150 39411143
    [Google Scholar]
  56. Dobler C. Jost T. Hecht M. Fietkau R. Distel L. Senescence induction by combined ionizing radiation and DNA damage response inhibitors in head and neck squamous cell carcinoma cells. Cells 2020 9 9 2012 10.3390/cells9092012 32883016
    [Google Scholar]
  57. Schnoell J. Sparr C. Al-Gboore S. The ATR inhibitor berzosertib acts as a radio- and chemosensitizer in head and neck squamous cell carcinoma cell lines. Invest. New Drugs 2023 41 6 842 850 10.1007/s10637‑023‑01408‑w 37934325
    [Google Scholar]
  58. Fabbrizi M.R. Doggett T.J. Hughes J.R. Inhibition of key DNA double strand break repair protein kinases enhances radiosensitivity of head and neck cancer cells to X-ray and proton irradiation. Cell Death Discov. 2024 10 1 282 10.1038/s41420‑024‑02059‑3 38866739
    [Google Scholar]
  59. Odhiambo D.A. Pittman A.N. Rickard A.G. Preclinical evaluation of the ATR inhibitor BAY 1895344 as a radiosensitizer for head and neck squamous cell carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2024 118 1315 10.1016/j.ijrobp.2023.12.012
    [Google Scholar]
  60. Vendetti F.P. Pandya P. Clump D.A. The schedule of ATR inhibitor AZD6738 can potentiate or abolish antitumor immune responses to radiotherapy. JCI Insight 2023 8 4 e165615 10.1172/jci.insight.165615 36810257
    [Google Scholar]
  61. Middleton F. Pollard J. Curtin N. The impact of p53 dysfunction in ATR inhibitor cytotoxicity and chemo-and radiosensitisation. Cancers 2018 10 8 275 10.3390/cancers10080275 30127241
    [Google Scholar]
  62. Yue X. Bai C. Xie D. Ma T. Zhou P.K. DNA-PKcs: A multi-faceted player in DNA damage response. Front. Genet. 2020 11 607428 10.3389/fgene.2020.607428 33424929
    [Google Scholar]
  63. Yu L. Shang Z.F. Hsu F.M. NSCLC cells demonstrate differential mode of cell death in response to the combined treatment of radiation and a DNA-PKcs inhibitor. Oncotarget 2015 6 6 3848 3860 10.18632/oncotarget.2975 25714019
    [Google Scholar]
  64. Boucher D. Hoover R. Wang Y. Abstract 3716: Potent radiation enhancement with VX-984, a selective DNA-PKcs inhibitor for the treatment of NSCLC. Cancer Res. 2016 76 14 Supplement 3716 6 10.1158/1538‑7445.AM2016‑3716
    [Google Scholar]
  65. Guo Z. Wang Y.H. Xu H. LncRNA linc00312 suppresses radiotherapy resistance by targeting DNA-PKcs and impairing DNA damage repair in nasopharyngeal carcinoma. Cell Death Dis. 2021 12 1 69 10.1038/s41419‑020‑03302‑2 33431817
    [Google Scholar]
  66. Ohuchi K. Saga R. Hasegawa K. DNA PKcs phosphorylation specific inhibitor, NU7441, enhances the radiosensitivity of clinically relevant radioresistant oral squamous cell carcinoma cells. Biomed. Rep. 2023 18 4 28 10.3892/br.2023.1610 36926187
    [Google Scholar]
  67. Klieber N. Hildebrand L.S. Faulhaber E. Different impacts of DNA-PK and mTOR kinase inhibitors in combination with ionizing radiation on HNSCC and normal tissue cells. Cells 2024 13 4 304 10.3390/cells13040304 38391917
    [Google Scholar]
  68. Hayrapetyan L. Roth S.M. Quintin A. HPV and p53 status as precision determinants of head and neck cancer response to DNA-PKcs inhibition in combination with irradiation. Mol. Cancer Ther. 2024 39513374
    [Google Scholar]
  69. Hafsi H. Dillon M.T. Barker H.E. Combined ATR and DNA-PK inhibition radiosensitizes tumor cells independently of their p53 status. Front. Oncol. 2018 8 245 10.3389/fonc.2018.00245 30057890
    [Google Scholar]
  70. Mentzel J. Hildebrand L.S. Kuhlmann L. Fietkau R. Distel L.V. Effective radiosensitization of HNSCC cell lines by DNA-PKcs inhibitor AZD7648 and PARP inhibitors Talazoparib and Niraparib. Int. J. Mol. Sci. 2024 25 11 5629 10.3390/ijms25115629 38891817
    [Google Scholar]
  71. Güster J.D. Weissleder S.V. Busch C.J. The inhibition of PARP but not EGFR results in the radiosensitization of HPV/p16-positive HNSCC cell lines. Radiother. Oncol. 2014 113 3 345 351 10.1016/j.radonc.2014.10.011 25467050
    [Google Scholar]
  72. Wang L. Cao J. Wang X. Proton and photon radiosensitization effects of niraparib, a PARP‐1/‐2 inhibitor, on human head and neck cancer cells. Head Neck 2020 42 9 2244 2256 10.1002/hed.26155 32323895
    [Google Scholar]
  73. Zhou C. Fabbrizi M.R. Hughes J.R. Grundy G.J. Parsons J.L. Effectiveness of PARP inhibition in enhancing the radiosensitivity of 3D spheroids of head and neck squamous cell carcinoma. Front. Oncol. 2022 12 940377 10.3389/fonc.2022.940377 36052247
    [Google Scholar]
  74. Wurster S. Hennes F. Parplys A.C. PARP1 inhibition radiosensitizes HNSCC cells deficient in homologous recombination by disabling the DNA replication fork elongation response. Oncotarget 2016 7 9 9732 9741 10.18632/oncotarget.6947 26799421
    [Google Scholar]
  75. Hernandez A.L. Young C.D. Bian L. PARP inhibition enhances radiotherapy of SMAD4-deficient human head and neck squamous cell carcinomas in experimental models. Clin. Cancer Res. 2020 26 12 3058 3070 10.1158/1078‑0432.CCR‑19‑0514 32139402
    [Google Scholar]
  76. Verhagen C.V.M. de Haan R. Hageman F. Extent of radiosensitization by the PARP inhibitor olaparib depends on its dose, the radiation dose and the integrity of the homologous recombination pathway of tumor cells. Radiother. Oncol. 2015 116 3 358 365 10.1016/j.radonc.2015.03.028 25981132
    [Google Scholar]
  77. Frederick B.A. Gupta R. Atilano-Roque A. Su T.T. Raben D. Combined EGFR1 and PARP1 inhibition enhances the effect of radiation in head and neck squamous cell carcinoma models. Radiat. Res. 2020 194 5 519 531 10.1667/RR15480.1 32936912
    [Google Scholar]
  78. Hintelmann K. Berenz T. Kriegs M. Dual inhibition of PARP and the intra-S/G2 Cell Cycle checkpoints results in highly effective radiosensitization of HPV-positive HNSCC Cells. Front. Oncol. 2021 11 683688 10.3389/fonc.2021.683688 34354944
    [Google Scholar]
  79. Oetting A. Christiansen S. Gatzemeier F. Impaired DNA double-strand break repair and effective radiosensitization of HPV-negative HNSCC cell lines through combined inhibition of PARP and Wee1. Clin. Transl. Radiat. Oncol. 2023 41 100630 10.1016/j.ctro.2023.100630 37180052
    [Google Scholar]
  80. Zeng L. Boggs D.H. Xing C. Combining PARP and DNA-PK inhibitors with irradiation inhibits HPV-negative head and neck cancer squamous carcinoma growth. Front. Genet. 2020 11 1036 10.3389/fgene.2020.01036 33133138
    [Google Scholar]
  81. Morra F. Merolla F. Picardi I. CAF-1 subunits levels suggest combined treatments with PARP-inhibitors and ionizing radiation in advanced HNSCC. Cancers 2019 11 10 1582 10.3390/cancers11101582 31627329
    [Google Scholar]
  82. de Boer D.V. Martens-de Kemp S.R. Buijze M. Targeting PLK1 as a novel chemopreventive approach to eradicate preneoplastic mucosal changes in the head and neck. Oncotarget 2017 8 58 97928 97940 10.18632/oncotarget.17880 29228663
    [Google Scholar]
  83. Gutteridge R.E.A. Ndiaye M.A. Liu X. Ahmad N. Plk1 inhibitors in cancer therapy: From laboratory to clinics. Mol. Cancer Ther. 2016 15 7 1427 1435 10.1158/1535‑7163.MCT‑15‑0897 27330107
    [Google Scholar]
  84. Hagege A. Ambrosetti D. Boyer J. The Polo-like kinase 1 inhibitor onvansertib represents a relevant treatment for head and neck squamous cell carcinoma resistant to cisplatin and radiotherapy. Theranostics 2021 11 19 9571 9586 10.7150/thno.61711 34646387
    [Google Scholar]
  85. Korns J. Lehn M. Wise-Draper T. Takiar V. Combining Plk1 inhibition and radiation to target head and neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2024 120 2 e375 10.1016/j.ijrobp.2024.07.830
    [Google Scholar]
  86. Sunada S. Saito H. Zhang D. Xu Z. Miki Y. CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity. Biochem. Biophys. Res. Commun. 2021 550 56 61 10.1016/j.bbrc.2021.02.117 33684621
    [Google Scholar]
  87. Shrivastava N. Chavez C.G. Li D. CDK4/6 inhibition induces senescence and enhances radiation response by disabling DNA damage repair in oral cavity squamous cell carcinoma. Cancers 2023 15 7 2005 10.3390/cancers15072005 37046664
    [Google Scholar]
  88. Ngamphaiboon N. Pattaranutaporn P. Lukerak S. A phase I study of the CDK4/6 inhibitor palbociclib in combination with Cetuximab and radiotherapy for Locally advanced head and neck squamous cell carcinoma. Clin. Cancer Res. 2024 30 2 294 303 10.1158/1078‑0432.CCR‑23‑2303 37982827
    [Google Scholar]
  89. Lindemann A. Patel A.A. Tang L. Combined inhibition of Rad51 and Wee1 enhances cell killing in HNSCC through induction of apoptosis associated with excessive DNA damage and replication stress. Mol. Cancer Ther. 2021 20 7 1257 1269 10.1158/1535‑7163.MCT‑20‑0252 33947685
    [Google Scholar]
  90. Du Y. Peyser N.D. Grandis J.R. Integration of molecular targeted therapy with radiation in head and neck cancer. Pharmacol. Ther. 2014 142 1 88 98 10.1016/j.pharmthera.2013.11.007 24280066
    [Google Scholar]
  91. Pollock N.I. Wang L. Wallweber G. Increased expression of HER2, HER3, and HER2: HER3 heterodimers in HPV-positive HNSCC using a novel proximity-based assay: implications for targeted therapies. Clin. Cancer Res. 2015 21 20 4597 4606 10.1158/1078‑0432.CCR‑14‑3338 26138066
    [Google Scholar]
  92. Wilks S.T. Potential of overcoming resistance to HER2-targeted therapies through the PI3K/Akt/mTOR pathway. Breast 2015 24 5 548 555 10.1016/j.breast.2015.06.002 26187798
    [Google Scholar]
  93. Wang Z. Huang Y. Zhang J. Molecularly targeting the PI3K-Akt-mTOR pathway can sensitize cancer cells to radiotherapy and chemotherapy. Cell. Mol. Biol. Lett. 2014 19 2 233 242 10.2478/s11658‑014‑0191‑7 24728800
    [Google Scholar]
  94. Ruiz-Saenz A. Dreyer C. Campbell M.R. Steri V. Gulizia N. Moasser M.M. HER2 amplification in tumors activates PI3K/Akt signaling independent of HER3. Cancer Res. 2018 78 13 3645 3658 10.1158/0008‑5472.CAN‑18‑0430 29760043
    [Google Scholar]
  95. Scerri J. Scerri C. Schäfer-Ruoff F. Fink S. Templin M. Grech G. PKC-mediated phosphorylation and activation of the MEK/ERK pathway as a mechanism of acquired trastuzumab resistance in HER2-positive breast cancer. Front. Endocrinol. (Lausanne) 2022 13 1010092 10.3389/fendo.2022.1010092 36329884
    [Google Scholar]
  96. Li Q. Li Z. Luo T. Shi H. Targeting the PI3K/AKT/mTOR and RAF/MEK/ERK pathways for cancer therapy. Mol Biomed 2022 3 1 47 10.1186/s43556‑022‑00110‑2 36539659
    [Google Scholar]
  97. Ebi H. Costa C. Faber A.C. PI3K regulates MEK/ERK signaling in breast cancer via the Rac-GEF, P-Rex1. Proc. Natl. Acad. Sci. USA 2013 110 52 21124 21129 10.1073/pnas.1314124110 24327733
    [Google Scholar]
  98. Kondo N. Ishiguro Y. Kimura M. Antitumor effect of gefitinib on head and neck squamous cell carcinoma enhanced by trastuzumab. Oncol. Rep. 2008 20 2 373 378 18636200
    [Google Scholar]
  99. Liu Y. Zhang N. Wen Y. Wen J. Head and neck cancer: Pathogenesis and targeted therapy. MedComm 2024 5 9 e702 10.1002/mco2.702 39170944
    [Google Scholar]
  100. Pollock N.I. Grandis J.R. HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin. Cancer Res. 2015 21 3 526 533 10.1158/1078‑0432.CCR‑14‑1432 25424855
    [Google Scholar]
  101. Song P.N. Lynch S.E. DeMellier C.T. Dual anti-HER2/EGFR inhibition synergistically increases therapeutic effects and alters tumor oxygenation in HNSCC. Sci. Rep. 2024 14 1 3771 10.1038/s41598‑024‑52897‑5 38355949
    [Google Scholar]
  102. Francis D.M. Huang S. Armstrong E.A. Pan-HER inhibitor augments radiation response in human lung and head and neck cancer models. Clin. Cancer Res. 2016 22 3 633 643 10.1158/1078‑0432.CCR‑15‑1664 26420857
    [Google Scholar]
  103. Bouleftour W. Rowinski E. Louati S. A review of the role of hypoxia in radioresistance in cancer therapy. Med. Sci. Monit. 2021 27 e934116 e1 10.12659/MSM.934116 34728593
    [Google Scholar]
  104. Kabakov A.E. Yakimova A.O. Hypoxia-induced cancer cell responses driving radioresistance of hypoxic tumors: Approaches to targeting and radiosensitizing. Cancers 2021 13 5 1102 10.3390/cancers13051102 33806538
    [Google Scholar]
  105. Yoshiba S. Ito D. Nagumo T. Shirota T. Hatori M. Shintani S. Hypoxia induces resistance to 5-fluorouracil in oral cancer cells via G1 phase cell cycle arrest. Oral Oncol. 2009 45 2 109 115 10.1016/j.oraloncology.2008.04.002 18710819
    [Google Scholar]
  106. Menegakis A. Klompmaker R. Vennin C. Resistance of hypoxic cells to ionizing radiation is mediated in part via hypoxia-induced quiescence. Cells 2021 10 3 610 10.3390/cells10030610 33801903
    [Google Scholar]
  107. Saxena K. Jolly M.K. Acute vs. chronic vs. cyclic hypoxia: their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules 2019 9 8 339 10.3390/biom9080339 31382593
    [Google Scholar]
  108. Leavitt R.J. Almeida A. Grilj V. Acute hypoxia does not alter tumor sensitivity to FLASH radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2024 ••• 15 10.1016/j.ijrobp.2024.02.015
    [Google Scholar]
  109. Soni S. Padwad Y.S. HIF-1 in cancer therapy: Two decade long story of a transcription factor. Acta Oncol. 2017 56 4 503 515 10.1080/0284186X.2017.1301680 28358664
    [Google Scholar]
  110. Swartz J.E. Pothen A.J. Stegeman I. Willems S.M. Grolman W. Clinical implications of hypoxia biomarker expression in head and neck squamous cell carcinoma: A systematic review. Cancer Med. 2015 4 7 1101 1116 10.1002/cam4.460 25919147
    [Google Scholar]
  111. Saadh M.J. Ahmed Mustafa M. Yassen Qassem L. Targeting hypoxic and acidic tumor microenvironment by nanoparticles: A review. J. Drug Deliv. Sci. Technol. 2024 96 105660 10.1016/j.jddst.2024.105660
    [Google Scholar]
  112. Elmusrati A. Wang J. Wang C.Y. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma. Int. J. Oral Sci. 2021 13 1 24 10.1038/s41368‑021‑00131‑7 34341329
    [Google Scholar]
  113. Li Y. Zhao L. Li X.F. Targeting hypoxia: Hypoxia-activated prodrugs in cancer therapy. Front. Oncol. 2021 11 700407 10.3389/fonc.2021.700407 34395270
    [Google Scholar]
  114. Urtasun R.C. Palmer M. Kinney B. Belch A. Hewitt J. Hanson J. Intervention with the hypoxic tumor cell sensitizer etanidazole in the combined modality treatment of limited stage small-cell lung cancer. A one-institution study. Int. J. Radiat. Oncol. Biol. Phys. 1998 40 2 337 342 10.1016/S0360‑3016(97)00771‑2 9457818
    [Google Scholar]
  115. Eschwège F. Sancho-Garnier H. Chassagne D. Results of a European randomized trial of etanidazole combined with radiotherapy in head and neck carcinomas. Int. J. Radiat. Oncol. 1997 39 275 10.1016/S0360‑3016(97)00327‑1
    [Google Scholar]
  116. Haffty B.G. Wilson L.D. Son Y.H. Concurrent chemo-radiotherapy with mitomycin C compared with porfiromycin in squamous cell cancer of the head and neck: final results of a randomized clinical trial. Int. J. Radiat. Oncol. 2005 61 119 10.1016/j.ijrobp.2004.07.730
    [Google Scholar]
  117. Le Q.T. Taira A. Budenz S. Mature results from a randomized Phase II trial of cisplatin plus 5‐fluorouracil and radiotherapy with or without tirapazamine in patients with resectable Stage IV head and neck squamous cell carcinomas. Cancer 2006 106 9 1940 1949 10.1002/cncr.21785 16532436
    [Google Scholar]
  118. Le Q.T. Fisher R. Oliner K.S. Prognostic and predictive significance of plasma HGF and IL-8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin. Cancer Res. 2012 18 6 1798 1807 10.1158/1078‑0432.CCR‑11‑2094 22383739
    [Google Scholar]
  119. Jamieson S.M.F. Tsai P. Kondratyev M.K. Evofosfamide for the treatment of human papillomavirus-negative head and neck squamous cell carcinoma. JCI Insight 2018 3 16 e122204 10.1172/jci.insight.122204 30135316
    [Google Scholar]
  120. Nytko K.J. Grgic I. Bender S. The hypoxia-activated prodrug evofosfamide in combination with multiple regimens of radiotherapy. Oncotarget 2017 8 14 23702 23712 10.18632/oncotarget.15784 28423594
    [Google Scholar]
  121. Harms J.K. Lee T.W. Wang T. Impact of tumour hypoxia on evofosfamide sensitivity in head and neck squamous cell carcinoma patient-derived xenograft models. Cells 2019 8 7 717 10.3390/cells8070717 31337055
    [Google Scholar]
  122. Koi L. Bitto V. Weise C. Prognostic biomarkers for the response to the radiosensitizer nimorazole combined with RCTx: A pre-clinical trial in HNSCC xenografts. J. Transl. Med. 2023 21 1 576 10.1186/s12967‑023‑04439‑2 37633930
    [Google Scholar]
  123. Thomson D.J. Slevin N.J. Baines H. Randomized Phase 3 trial of the hypoxia modifier nimorazole added to radiation therapy with benefit assessed in hypoxic head and neck cancers determined using a gene signature (NIMRAD). International J Radiat Oncologl 2024 119 771 782
    [Google Scholar]
  124. Azad A. Kong A. The therapeutic potential of imidazole or quinone-based compounds as radiosensitisers in combination with radiotherapy for the treatment of head and neck squamous cell carcinoma. Cancers 2022 14 19 4694 10.3390/cancers14194694 36230623
    [Google Scholar]
  125. Ward C. Meehan J. Gray M. Kunkler I. Langdon S. Argyle D. Carbonic anhydrase IX (CAIX), cancer, and radiation responsiveness. Metabolites 2018 8 1 13 10.3390/metabo8010013 29439394
    [Google Scholar]
  126. Gibadulinova A. Bullova P. Strnad H. CAIX-mediated control of LIN28/let-7 axis contributes to metabolic adaptation of breast cancer cells to hypoxia. Int. J. Mol. Sci. 2020 21 12 4299 10.3390/ijms21124299 32560271
    [Google Scholar]
  127. McDonald P.C. Chafe S.C. Supuran C.T. Dedhar S. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: From bench to bedside. Cancers 2022 14 14 3297 10.3390/cancers14143297 35884358
    [Google Scholar]
  128. Huizing F.J. Garousi J. Lok J. CAIX-targeting radiotracers for hypoxia imaging in head and neck cancer models. Sci. Rep. 2019 9 1 18898 10.1038/s41598‑019‑54824‑5 31827111
    [Google Scholar]
  129. Huizing F.J. Hoeben B.A.W. Franssen G. Preclinical validation of 111 In-girentuximab-F(ab′) 2 as a tracer to image hypoxia related marker CAIX expression in head and neck cancer xenografts. Radiother. Oncol. 2017 124 3 521 525 10.1016/j.radonc.2017.07.025 28789809
    [Google Scholar]
  130. Rahimi A.S. Wilson D.D. Saylor D.K. p16, Cyclin D1, and HIF-1 α predict outcomes of patients with oropharyngeal squamous cell carcinoma treated with definitive intensity-modulated radiation therapy. Int. J. Otolaryngol. 2012 2012 1 9 10.1155/2012/685951 22888357
    [Google Scholar]
  131. Wiechec E. Matic N. Ali A. Roberg K. Hypoxia induces radioresistance, epithelial mesenchymal transition, cancer stem cell like phenotype and changes in genes possessing multiple biological functions in head and neck squamous cell carcinoma. Oncol. Rep. 2022 47 3 58 10.3892/or.2022.8269 35059742
    [Google Scholar]
  132. Wozny A.S. Lauret A. Battiston-Montagne P. Differential pattern of HIF-1α expression in HNSCC cancer stem cells after carbon ion or photon irradiation: one molecular explanation of the oxygen effect. Br. J. Cancer 2017 116 10 1340 1349 10.1038/bjc.2017.100 28407653
    [Google Scholar]
  133. Lee SH Do SI Lee HJ Kang HJ Koo BS Lim YC Notch1 signaling contributes to stemness in head and neck squamous cell carcinoma. Lab Invest 2016 95 5 508 16 Amharic, English. 10.1038/labinvest.2015.163 26927514
    [Google Scholar]
  134. Lu H. Liang K. Lu Y. Fan Z. The anti-EGFR antibody cetuximab sensitizes human head and neck squamous cell carcinoma cells to radiation in part through inhibiting radiation-induced upregulation of HIF-1α. Cancer Lett. 2012 322 1 78 85 10.1016/j.canlet.2012.02.012 22348829
    [Google Scholar]
  135. Wamsley N.T. Wilkerson E.M. Guan L. Targeted proteomic quantitation of NRF2 signaling and predictive biomarkers in HNSCC. Mol. Cell. Proteomics 2023 22 11 100647 10.1016/j.mcpro.2023.100647 37716475
    [Google Scholar]
  136. Taguchi K. Yamamoto M. The KEAP1–NRF2 system in cancer. Front. Oncol. 2017 7 85 10.3389/fonc.2017.00085 28523248
    [Google Scholar]
  137. Yun M. Choi A.J. Lee Y.C. Carbonyl reductase 1 is a new target to improve the effect of radiotherapy on head and neck squamous cell carcinoma. J. Exp. Clin. Cancer Res. 2018 37 1 264 10.1186/s13046‑018‑0942‑9 30376862
    [Google Scholar]
  138. Jaganjac M. Milkovic L. Sunjic S.B. Zarkovic N. The NRF2, thioredoxin, and glutathione system in tumorigenesis and anticancer therapies. Antioxidants 2020 9 11 1151 10.3390/antiox9111151 33228209
    [Google Scholar]
  139. Xu Q. Zhang P. Han X. Role of ionizing radiation activated NRF2 in lung cancer radioresistance. Int. J. Biol. Macromol. 2023 241 124476 10.1016/j.ijbiomac.2023.124476 37076059
    [Google Scholar]
  140. Ramesh P.S. Bovilla V.R. Swamy V.H. Human papillomavirus-driven repression of NRF2 signalling confers chemo-radio sensitivity and predicts prognosis in head and neck squamous cell carcinoma. Free Radic. Biol. Med. 2023 205 234 243 10.1016/j.freeradbiomed.2023.06.011 37328018
    [Google Scholar]
  141. Ramesh P.S. Devegowda D. Singh A. Thimmulappa R.K. NRF2, p53, and p16: Predictive biomarkers to stratify human papillomavirus associated head and neck cancer patients for de-escalation of cancer therapy. Crit. Rev. Oncol. Hematol. 2020 148 102885 10.1016/j.critrevonc.2020.102885 32062315
    [Google Scholar]
  142. Noh J.K. Woo S.R. Yun M. SOD2- and NRF2-associated gene signature to predict radioresistance in head and neck cancer. Cancer Genomics Proteomics 2021 18 5 675 684 10.21873/cgp.20289 34479919
    [Google Scholar]
  143. Puri A. Lambie M. Bratman S.V. Investigating NRF2-mediated radioresistance in HPV-negative head and neck squamous cell carcinoma preclinical models. Int. J. Radiat. Oncol. Biol. Phys. 2024 118 5 e70 10.1016/j.ijrobp.2024.01.157
    [Google Scholar]
  144. Chen Y. McAndrews K.M. Kalluri R. Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat. Rev. Clin. Oncol. 2021 18 12 792 804 10.1038/s41571‑021‑00546‑5 34489603
    [Google Scholar]
  145. He J.Y. Huo F.Y. Tang H.C. Liu B. Bu L.L. Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. Int. Rev. Cell Mol. Biol. 2023 375 33 92 10.1016/bs.ircmb.2022.11.002 36967154
    [Google Scholar]
  146. Xiang H. Ramil C.P. Hai J. Cancer-associated fibroblasts promote immunosuppression by inducing ROS-generating monocytic MDSCs in lung squamous cell carcinoma. Cancer Immunol. Res. 2020 8 4 436 450 10.1158/2326‑6066.CIR‑19‑0507 32075803
    [Google Scholar]
  147. Merino A.M. Kim H. Miller J.S. Cichocki F. Unraveling exhaustion in adaptive and conventional NK cells. J. Leukoc. Biol. 2020 108 4 1361 1368 10.1002/JLB.4MR0620‑091R 32726880
    [Google Scholar]
  148. Li B. Ren M. Zhou X. Han Q. Cheng L. Targeting tumor-associated macrophages in head and neck squamous cell carcinoma. Oral Oncol. 2020 106 104723 10.1016/j.oraloncology.2020.104723 32315971
    [Google Scholar]
  149. Hoffmann F. Franzen A. de Vos L. CTLA4 DNA methylation is associated with CTLA-4 expression and predicts response to immunotherapy in head and neck squamous cell carcinoma. Clin. Epigenetics 2023 15 1 112 10.1186/s13148‑023‑01525‑6 37415208
    [Google Scholar]
  150. Ashrafizadeh M. Zarrabi A. Hushmandi K. PD-1/PD-L1 axis regulation in cancer therapy: The role of long non-coding RNAs and microRNAs. Life Sci. 2020 256 117899 10.1016/j.lfs.2020.117899 32504749
    [Google Scholar]
  151. Najafi M. Mortezaee K. Majidpoor J. Stromal reprogramming: A target for tumor therapy. Life Sci. 2019 239 117049 10.1016/j.lfs.2019.117049 31730862
    [Google Scholar]
  152. Ashrafizadeh M. Gholami M.H. Mirzaei S. Dual relationship between long non-coding RNAs and STAT3 signaling in different cancers: New insight to proliferation and metastasis. Life Sci. 2021 270 119006 10.1016/j.lfs.2020.119006 33421521
    [Google Scholar]
  153. Procureur A. Simonaggio A. Bibault J.E. Oudard S. Vano Y.A. Enhance the immune checkpoint inhibitors efficacy with radiotherapy induced immunogenic cell death: A comprehensive review and latest developments. Cancers 2021 13 4 678 10.3390/cancers13040678 33567530
    [Google Scholar]
  154. Goradel N.H. Mohajel N. Malekshahi Z.V. Oncolytic adenovirus: A tool for cancer therapy in combination with other therapeutic approaches. J. Cell. Physiol. 2019 234 6 8636 8646 10.1002/jcp.27850 30515798
    [Google Scholar]
  155. Oweida A. Lennon S. Calame D. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. OncoImmunology 2017 6 10 e1356153 10.1080/2162402X.2017.1356153 29123967
    [Google Scholar]
  156. Kamdem D.T. Steel J.C. Wise-Draper T. Combined radiation and PD-L1 blockade improved tumor control in mouse head and neck squamous cell carcinoma (HNSCC). Int. J. Radiat. Oncol. Biol. Phys. 2016 94 4 928 10.1016/j.ijrobp.2015.12.185
    [Google Scholar]
  157. Mao L. Zhou J.J. Xiao Y. Immunogenic hypofractionated radiotherapy sensitising head and neck squamous cell carcinoma to anti-PD-L1 therapy in MDSC-dependent manner. Br. J. Cancer 2023 128 11 2126 2139 10.1038/s41416‑023‑02230‑0 36977825
    [Google Scholar]
  158. Koukourakis I.M. Giakzidis A.G. Koukourakis M.I. Anti-PD-1 immunotherapy with dose-adjusted ultra-hypofractionated re-irradiation in patients with locoregionally recurrent head and neck cancer. Clin. Transl. Oncol. 2023 25 10 3032 3041 10.1007/s12094‑023‑03172‑y 37059932
    [Google Scholar]
  159. Bourhis J. Sire C. Tao Y. LBA38 Pembrolizumab versus cetuximab, concomitant with radiotherapy (RT) in locally advanced head and neck squamous cell carcinoma (LA-HNSCC): Results of the GORTEC 2015-01 “PembroRad” randomized trial. Ann. Oncol. 2020 31 S1168 10.1016/j.annonc.2020.08.2268
    [Google Scholar]
  160. McBride S. Sherman E. Tsai C.J. Randomized phase II trial of Nivolumab with stereotactic body radiotherapy versus Nivolumab alone in metastatic head and neck squamous cell carcinoma. J. Clin. Oncol. 2021 39 1 30 37 10.1200/JCO.20.00290 32822275
    [Google Scholar]
  161. Bourhis J. Tao Y. Sun X. LBA35 Avelumab-cetuximab-radiotherapy versus standards of care in patients with locally advanced squamous cell carcinoma of head and neck (LA-SCCHN): Randomized phase III GORTEC-REACH trial. Ann. Oncol. 2021 32 S1310 10.1016/j.annonc.2021.08.2112
    [Google Scholar]
  162. Lee N.Y. Ferris R.L. Psyrri A. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: A randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2021 22 4 450 462 10.1016/S1470‑2045(20)30737‑3 33794205
    [Google Scholar]
  163. Wong K.C.W. Johnson D. Hui E.P. Lam R.C.T. Ma B.B.Y. Chan A.T.C. Opportunities and challenges in combining immunotherapy and radiotherapy in head and neck cancers. Cancer Treat. Rev. 2022 105 102361 10.1016/j.ctrv.2022.102361 35231870
    [Google Scholar]
  164. Ferris R.L. Moskovitz J. Kunning S. Phase I trial of Cetuximab, radiotherapy, and ipilimumab in locally advanced head and neck cancer. Clin. Cancer Res. 2022 28 7 1335 1344 10.1158/1078‑0432.CCR‑21‑0426 35091445
    [Google Scholar]
  165. Johnson J.M. Vathiotis I.A. Harshyne L.A. Nivolumab and ipilimumab in combination with radiotherapy in patients with high-risk locally advanced squamous cell carcinoma of the head and neck. J. Immunother. Cancer 2023 11 8 e007141 10.1136/jitc‑2023‑007141 37536941
    [Google Scholar]
  166. Bharadwaj U. Eckols T.K. Xu X. Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma. Oncotarget 2016 7 18 26307 26330 10.18632/oncotarget.8368 27027445
    [Google Scholar]
  167. Bu L.L. Yu G.T. Deng W.W. Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. OncoImmunology 2016 5 5 e1130206 10.1080/2162402X.2015.1130206 27467947
    [Google Scholar]
  168. Kaliyaperumal K. Sharma A.K. McDonald D.G. S-nitrosoglutathione-mediated STAT3 regulation in efficacy of radiotherapy and cisplatin therapy in head and neck squamous cell carcinoma. Redox Biol. 2015 6 41 50 10.1016/j.redox.2015.07.001 26177470
    [Google Scholar]
  169. Baek S.H. Ko J.H. Lee H. Resveratrol inhibits STAT3 signaling pathway through the induction of SOCS-1: Role in apoptosis induction and radiosensitization in head and neck tumor cells. Phytomedicine 2016 23 5 566 577 10.1016/j.phymed.2016.02.011 27064016
    [Google Scholar]
  170. Sharifi S. Khan H. Abdolahinia E.D. Effect of curcumin on the head and neck squamous cell carcinoma cell line HN5. Curr. Mol. Pharmacol. 2023 16 3 374 380 10.2174/1874467215666220414143441 35431006
    [Google Scholar]
  171. Sampath S. Won H. Massarelli E. Combined modality radiation therapy promotes tolerogenic myeloid cell populations and STAT3-related gene expression in head and neck cancer patients. Oncotarget 2018 9 13 11279 11290 10.18632/oncotarget.24397 29541413
    [Google Scholar]
  172. Oweida A.J. Darragh L. Phan A. STAT3 Modulation of regulatory T cells in response to radiation therapy in head and neck cancer. J. Natl. Cancer Inst. 2019 111 12 1339 1349 10.1093/jnci/djz036 30863843
    [Google Scholar]
  173. Moreira D. Sampath S. Won H. Myeloid cell–targeted STAT3 inhibition sensitizes head and neck cancers to radiotherapy and T cell–mediated immunity. J. Clin. Invest. 2021 131 2 e137001 10.1172/JCI137001 33232304
    [Google Scholar]
  174. Dajon M. Iribarren K. Cremer I. Toll-like receptor stimulation in cancer: A pro- and anti-tumor double-edged sword. Immunobiology 2017 222 1 89 100 10.1016/j.imbio.2016.06.009 27349597
    [Google Scholar]
  175. Wild C.A. Brandau S. Lindemann M. Toll-like receptors in regulatory T cells of patients with head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 2010 136 12 1253 1259 10.1001/archoto.2010.195 21173376
    [Google Scholar]
  176. Nayanar S.K. Roshan V.G.D. Surendran S. Kjeller G. Hasséus B. Giglio D. Intracellular toll-like receptors modulate adaptive immune responses in head and neck cancer. Viral Immunol. 2023 36 10 659 668 10.1089/vim.2023.0079 38064542
    [Google Scholar]
  177. Chandrasekar S.A. Palaniyandi T. Parthasarathy U. Implications of Toll-like receptors (TLRs) and their signaling mechanisms in human cancers. Pathol. Res. Pract. 2023 248 154673 10.1016/j.prp.2023.154673 37453359
    [Google Scholar]
  178. Korneev K.V. Atretkhany K.S.N. Drutskaya M.S. Grivennikov S.I. Kuprash D.V. Nedospasov S.A. TLR-signaling and proinflammatory cytokines as drivers of tumorigenesis. Cytokine 2017 89 127 135 10.1016/j.cyto.2016.01.021 26854213
    [Google Scholar]
  179. Ahmad I. Altameemi K.K.A. Hani M.M. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin. Transl. Oncol. 2024 27 1 42 69 10.1007/s12094‑024‑03577‑3 38922537
    [Google Scholar]
  180. Sevenich L. Turning “cold” into “hot” tumors—opportunities and challenges for radio-immunotherapy against primary and metastatic brain cancers. Front. Oncol. 2019 9 163 10.3389/fonc.2019.00163 30941312
    [Google Scholar]
  181. Kim S. Sumner W. Miyauchi S. Mell L.K. Califano J.A. Sharabi A. Combination radiation therapy and selective TLR9 agonist improves local control in a murine model of HPV-Related HNSCC. Int. J. Radiat. Oncol. Biol. Phys. 2022 114 3 S41 S42 10.1016/j.ijrobp.2022.07.407
    [Google Scholar]
  182. Ahmed A. Tait S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020 14 12 2994 3006 10.1002/1878‑0261.12851 33179413
    [Google Scholar]
  183. Birmpilis A.I. Paschalis A. Mourkakis A. Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells 2022 11 9 1415 10.3390/cells11091415 35563721
    [Google Scholar]
  184. Garg A.D. Nowis D. Golab J. Vandenabeele P. Krysko D.V. Agostinis P. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation. Biochim. Biophys. Acta 2010 1805 1 53 71 19720113
    [Google Scholar]
  185. Fabian K.P. Kowalczyk J.T. Reynolds S.T. Hodge J.W. Dying of stress: Chemotherapy, radiotherapy, and small-molecule inhibitors in immunogenic cell death and immunogenic modulation. Cells 2022 11 23 3826 10.3390/cells11233826 36497086
    [Google Scholar]
  186. Grottker F. Gehre S. Reichardt C.M. Radiotherapy combined with docetaxel alters the immune phenotype of HNSCC cells and results in increased surface expression of CD137 and release of HMGB1 of specifically HPV-positive tumor cells. Neoplasia 2023 45 100944 10.1016/j.neo.2023.100944 37857049
    [Google Scholar]
  187. Cho W.J. Kessel D. Rakowski J. Photodynamic therapy as a potent radiosensitizer in head and neck squamous cell carcinoma. Cancers 2021 13 6 1193 10.3390/cancers13061193 33801879
    [Google Scholar]
  188. Galassi C. Klapp V. Yamazaki T. Galluzzi L. Molecular determinants of immunogenic cell death elicited by radiation therapy. Immunol. Rev. 2024 321 1 20 32 10.1111/imr.13271 37679959
    [Google Scholar]
  189. Darragh L.B. Gadwa J. Pham T.T. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nat. Commun. 2022 13 1 7015 10.1038/s41467‑022‑34676‑w 36385142
    [Google Scholar]
  190. Telarovic I. Yong C.S.M. Kurz L. Delayed tumor-draining lymph node irradiation preserves the efficacy of combined radiotherapy and immune checkpoint blockade in models of metastatic disease. Nat. Commun. 2024 15 1 5500 10.1038/s41467‑024‑49873‑y 38951172
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128398373250910100446
Loading
/content/journals/cpd/10.2174/0113816128398373250910100446
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test