Skip to content
2000
image of Quercetin and Citreorosein from Halodule uninervis Leaf Show the Best Binding Against Breast Cancer Targets AKT1, EGFR, and ESR1

Abstract

Introduction

The marine ecosystem, known for its diverse biochemistry and organisms adapted to harsh environments, contains numerous plants with promising anticancer potential. , a seagrass, contains a variety of bioactive compounds that provide various pharmacological properties. However, its potential anticancer effects against breast cancer remain largely unexplored.

Methods

HRLC-MS analysis was conducted to identify the phytochemicals in the ethanolic extract of leaves. Several publicly available databases, including SEA, STP, MALACARDS, DISGENET, and OMIM, were used to identify target genes. Protein-protein interaction (PPI) networks, gene ontology, and pathway analysis were carried out through the STRING and DAVID databases. Molecular docking was performed by Autodock Vina, while molecular dynamics (MD) simulations and MMPBSA analyses were conducted using GROMACS, demonstrating the stability of the complexes up to 200 ns.

Results

The top five therapeutically active phytochemicals were Quercetin, Arborinine, Methyl 3,4,5-trimethoxycinnamate, Citreorosein, and Scopolin. The five hub genes, AKT1, EGFR, TNF, ESR1, and GAPDH, were found by network analyses. Molecular docking and MD simulation demonstrate that Quercetin and Citreorosein are the best phytochemicals exhibiting the highest affinities to breast cancer targets AKT1, EGFR, and ESR1.

Discussion

For the first time, this study investigates the potential of citreorosein and quercetin, two phytochemicals predominantly found in leaves, to inhibit the activity of AKT1, EGFR, and ESR1. However, as these results are based on predictive computational analyses, further experimental validation is necessary to confirm their precise mechanisms of action.

Conclusion

Phytochemicals, namely Quercetin and Citreorosein, may have an impact on the progression of breast cancer by binding to the key targets AKT1, ESR1, and EGFR.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128408970250717095140
2025-07-29
2025-09-10
Loading full text...

Full text loading...

References

  1. Giaquinto A.N. Sung H. Miller K.D. Breast Cancer Statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  2. O’Sullivan C.C. Loprinzi C.L. Haddad T.C. Updates in the evaluation and management of breast cancer. Mayo Clin. Proc. 2018 93 6 794 807 10.1016/j.mayocp.2018.03.025 29866283
    [Google Scholar]
  3. Yiallourou A. Pantavou K. Markozannes G. Non-genetic factors and breast cancer: An umbrella review of meta-analyses. BMC Cancer 2024 24 1 903 10.1186/s12885‑024‑12641‑8 39061008
    [Google Scholar]
  4. Martin A.M. Weber B.L. Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst. 2000 92 14 1126 1135 10.1093/jnci/92.14.1126 10904085
    [Google Scholar]
  5. Youn H.J. Han W. A review of the epidemiology of breast cancer in Asia: Focus on risk factors. Asian Pac. J. Cancer Prev. 2020 21 4 867 880 10.31557/APJCP.2020.21.4.867 32334446
    [Google Scholar]
  6. Corben A.D. Pathology of invasive breast disease. Surg. Clin. North Am. 2013 93 2 363 392 10.1016/j.suc.2013.01.003 23464691
    [Google Scholar]
  7. Amin M.B. Greene F.L. Edge S.B. Compton C.C. Gershenwald J.E. Brookland R.K. The eighth edition AJCC cancer staging manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging In: CA Cancer J Clin. 2017 67 2 93 99 10.3322/caac.21388 28094848
    [Google Scholar]
  8. Allison K.H. Hammond M.E.H. Dowsett M. Estrogen and progesterone receptor testing in breast cancer: ASCO/CAP guideline update. J. Clin. Oncol. 2020 38 12 1346 1366 10.1200/JCO.19.02309 31928404
    [Google Scholar]
  9. Waks A.G. Winer E.P. Breast cancer treatment: A review. JAMA 2019 321 3 288 300 10.1001/jama.2018.19323 30667505
    [Google Scholar]
  10. Burguin A. Diorio C. Durocher F. Breast cancer treatments: Updates and new challenges. J. Pers. Med. 2021 11 8 808 10.3390/jpm11080808 34442452
    [Google Scholar]
  11. Trayes K.P. Cokenakes S.E.H. Breast cancer treatment. Am. Fam. Physician 2021 104 2 171 178 [PMID: 34383430
    [Google Scholar]
  12. Ye F. Dewanjee S. Li Y. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol. Cancer 2023 22 1 105 10.1186/s12943‑023‑01805‑y 37415164
    [Google Scholar]
  13. Smolarz B. Nowak A.Z. Romanowicz H. Breast cancer—epidemiology, classification, pathogenesis and treatment (Review of Literature). Cancers 2022 14 10 2569 10.3390/cancers14102569 35626173
    [Google Scholar]
  14. Caswell-Jin J.L. Plevritis S.K. Tian L. Change in survival in metastatic breast cancer with treatment advances: Meta-analysis and systematic review. JNCI Cancer Spectr. 2018 2 4 pky062 10.1093/jncics/pky062 30627694
    [Google Scholar]
  15. Poorvu P.D. Frazier A.L. Feraco A.M. Cancer treatment-related infertility: A critical review of the evidence. JNCI Cancer Spectr. 2019 3 1 pkz008 10.1093/jncics/pkz008 31360893
    [Google Scholar]
  16. Huehnchen P. van Kampen A. Boehmerle W. Endres M. Cognitive impairment after cytotoxic chemotherapy. Neurooncol. Pract. 2020 7 1 11 21 10.1093/nop/npz052 32257280
    [Google Scholar]
  17. Zaj czkowska R, Kocot-Kpska M, Leppert W, Wrzosek A, Mika J, Wordliczek J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019 20 6 1451 10.3390/ijms20061451 30909387
    [Google Scholar]
  18. Safarzadeh E. Sandoghchian Shotorbani S. Baradaran B. Herbal medicine as inducers of apoptosis in cancer treatment. Adv. Pharm. Bull. 2014 4 421 427 [PMID: 25364657
    [Google Scholar]
  19. Greenwell M. Rahman P.K.S.M. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res. 2015 6 10 4103 4112 10.13040/IJPSR.0975‑8232.6(10).4103‑12 26594645
    [Google Scholar]
  20. Gono C.M.P. Ahmadi P. Hertiani T. Septiana E. Putra M.Y. Chianese G. A comprehensive update on the bioactive compounds from seagrasses. Mar. Drugs 2022 20 7 406 10.3390/md20070406 35877699
    [Google Scholar]
  21. Kontiza I. Vagias C. Jakupovic J. Moreau D. Roussakis C. Roussis V. Cymodienol and cymodiene: New cytotoxic diarylheptanoids from the sea grass Cymodocea nodosa. Tetrahedron Lett. 2005 46 16 2845 2847 10.1016/j.tetlet.2005.02.123
    [Google Scholar]
  22. Styshova O.N. Popov A.M. Artyukov A.A. Klimovich A.A. Main constituents of polyphenol complex from seagrasses of the genus Zostera, their antidiabetic properties and mechanisms of action. Exp. Ther. Med. 2017 13 5 1651 1659 10.3892/etm.2017.4217 28565749
    [Google Scholar]
  23. Hua K.F. Hsu H.Y. Su Y.C. Study on the antiinflammatory activity of methanol extract from seagrass Zostera japonica. J. Agric. Food Chem. 2006 54 2 306 311 10.1021/jf0509658 16417284
    [Google Scholar]
  24. Ross C. Puglisi M.P. Paul V.J. Antifungal defenses of seagrasses from the Indian River Lagoon, Florida. Aquat. Bot. 2008 88 2 134 141 10.1016/j.aquabot.2007.09.003
    [Google Scholar]
  25. Kontiza I. Stavri M. Zloh M. Vagias C. Gibbons S. Roussis V. New metabolites with antibacterial activity from the marine angiosperm Cymodocea nodosa. Tetrahedron 2008 64 8 1696 1702 10.1016/j.tet.2007.12.007
    [Google Scholar]
  26. Kannan R.R.R. Arumugam R. Anantharaman P. Antibacterial potential of three seagrasses against human pathogens. Asian Pac. J. Trop. Med. 2010 3 11 890 893 10.1016/S1995‑7645(10)60214‑3
    [Google Scholar]
  27. Short F.T. Short C.A. Novak A.B. Seagrasses. The Wetland Book. Dordrecht Springer 2018 73 91 10.1007/978‑94‑007‑4001‑3_262
    [Google Scholar]
  28. Ravilla L. Navaith Ahmed S. Kalaivani P. Vanitha V. A review on halodule uninervis - A potent seagrass. Int J Res Pharm Sci 2020 11 1 875 879
    [Google Scholar]
  29. Collier C.J. Waycott M. Ospina A.G. Responses of four Indo-West Pacific seagrass species to shading. Mar. Pollut. Bull. 2012 65 4-9 342 354 10.1016/j.marpolbul.2011.06.017 21741666
    [Google Scholar]
  30. Behera D.P. Nayak L. Sporadic occurrence of sea grass bed, Holodule uninervis near Sidha gumpha of Chilika lagoon: a good sign for biodiversity augmentation Int Jo Curr Sc 2015 17 E 105 108
    [Google Scholar]
  31. Skelton P.A. South G.R. Seagrass biodiversity of the Fiji and Samoa islands, South Pacific. N. Z. J. Mar. Freshw. Res. 2006 40 2 345 356 10.1080/00288330.2006.9517426
    [Google Scholar]
  32. Wehbe N. Bechelany M. Badran A. Al-Sawalmih A. Mesmar J.E. Baydoun E. A Phytochemical analysis and the pharmacological implications of the seagrass Halodule uninervis: An overview. Pharmaceuticals 2024 17 8 993 10.3390/ph17080993 39204098
    [Google Scholar]
  33. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2016 2017 7 1 13 10.1038/srep42717 28256516
    [Google Scholar]
  34. Abdullah-Zawawi M.R. Govender N. Karim M.B. Altaf-Ul-Amin M. Kanaya S. Mohamed-Hussein Z.A. Chemoinformatics-driven classification of Angiosperms using sulfur-containing compounds and machine learning algorithm. Plant Methods 2022 18 1 118 10.1186/s13007‑022‑00951‑6 36335358
    [Google Scholar]
  35. Wang Z. Liang L. Yin Z. Lin J. Improving chemical similarity ensemble approach in target prediction. J. Cheminform. 2016 8 1 20 10.1186/s13321‑016‑0130‑x 27110288
    [Google Scholar]
  36. Gfeller D. Grosdidier A. Wirth M. Daina A. Michielin O. Zoete V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014 42 W1 W32-8 10.1093/nar/gku293 24792161
    [Google Scholar]
  37. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020 48 D1 D845 D855 10.1093/nar/gkz1021 31680165
    [Google Scholar]
  38. Rappaport N. Twik M. Plaschkes I. MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017 45 D1 D877 D887 10.1093/nar/gkw1012 27899610
    [Google Scholar]
  39. Amberger J.S. Bocchini C.A. Schiettecatte F. Scott A.F. Hamosh A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res. 2015 43 D1 D789 D798 10.1093/nar/gku1205 25428349
    [Google Scholar]
  40. Srinivasan M. Gangurde A. Chandane A.Y. Tagalpallewar A. Pawar A. Baheti A.M. Integrating network pharmacology and in silico analysis deciphers Withaferin-A’s anti-breast cancer potential via hedgehog pathway and target network interplay. Brief. Bioinform. 2024 25 2 bbae032 10.1093/bib/bbae032 38446743
    [Google Scholar]
  41. Szklarczyk D. Kirsch R. Koutrouli M. Nastou K. Mehryary F. Hachilif R. The STRING database in 2023: Protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023 51 D1 D638 D646 10.1093/nar/gkac1000 36370105
    [Google Scholar]
  42. Shannon P. Markiel A. Ozier O. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  43. Sherman B.T. Hao M. Qiu J. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216-21 10.1093/nar/gkac194 35325185
    [Google Scholar]
  44. Guo X. Su L. Shi M. Network pharmacology and transcriptomics to explore the pharmacological mechanisms of 20(S)-Protopanaxatriol in the treatment of depression. Int. J. Mol. Sci. 2024 25 14 7574 10.3390/ijms25147574 39062817
    [Google Scholar]
  45. Jiao Y. Shi C. Sun Y. Unraveling the role of Scutellaria baicalensis for the treatment of breast cancer using network pharmacology, molecular docking, and molecular dynamics simulation. Int. J. Mol. Sci. 2023 24 4 3594 10.3390/ijms24043594 36835006
    [Google Scholar]
  46. Wu W.I. Voegtli W.C. Sturgis H.L. Dizon F.P. Vigers G.P.A. Brandhuber B.J. Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 2010 5 9 12913 10.1371/journal.pone.0012913 20886116
    [Google Scholar]
  47. Stamos J. Sliwkowski M.X. Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 2002 277 48 46265 46272 10.1074/jbc.M207135200 12196540
    [Google Scholar]
  48. Shiau A.K. Barstad D. Loria P.M. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998 95 7 927 937 10.1016/S0092‑8674(00)81717‑1 9875847
    [Google Scholar]
  49. Jenkins J.L. Tanner J.J. High-resolution structure of human D -glyceraldehyde-3-phosphate dehydrogenase. Acta Crystallogr. D Biol. Crystallogr. 2006 62 3 290 301 10.1107/S0907444905042289 16510976
    [Google Scholar]
  50. He M.M. Smith A.S. Oslob J.D. Flanagan W.M. Braisted A.C. Whitty A. Small-molecule inhibition of TNF-α. Science 2005 310 1022 1025 10.1126/science.1116304
    [Google Scholar]
  51. Abraham M.J. Murtola T. Schulz R. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  52. Huang J. MacKerell A.D. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J. Comput. Chem. 2013 34 25 2135 2145 10.1002/jcc.23354 23832629
    [Google Scholar]
  53. Maruyama Y. Igarashi R. Ushiku Y. Mitsutake A. Analysis of protein folding simulation with moving root mean square deviation. J. Chem. Inf. Model. 2023 63 5 1529 1541 10.1021/acs.jcim.2c01444 36821519
    [Google Scholar]
  54. Tiburu E.K. Issah I. Darko M. Investigating the conformation of S100 protein under physiological parameters using computational modeling: A clue for rational drug design. Open Biomed. Eng. J. 2018 12 1 36 50 10.2174/1874120701812010036 30069254
    [Google Scholar]
  55. Ahmed M.C. Crehuet R. Lindorff-Larsen K. Computing, analyzing, and comparing the radius of gyration and hydrodynamic radius in conformational ensembles of intrinsically disordered proteins. Methods Mol. Biol. 2020 2141 429 445 10.1007/978‑1‑0716‑0524‑0_21 32696370
    [Google Scholar]
  56. Eisenhaber F. Lijnzaad P. Argos P. Sander C. Scharf M. The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J. Comput. Chem. 1995 16 3 273 284 10.1002/jcc.540160303
    [Google Scholar]
  57. Valdés-Tresanco M.S. Valdés-Tresanco M.E. Valiente P.A. Moreno E. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 2021 17 10 6281 6291 10.1021/acs.jctc.1c00645 34586825
    [Google Scholar]
  58. Singh V. Ram M. Kumar R. Prasad R. Roy B.K. Singh K.K. Phosphorylation: Implications in cancer. Protein J. 2017 36 1 1 6 10.1007/s10930‑017‑9696‑z 28108801
    [Google Scholar]
  59. Rajagopal T. Seshachalam A. Rathnam K.K. Impact of xenobiotic-metabolizing gene polymorphisms on breast cancer risk in South Indian women. Breast Cancer Res. Treat. 2021 186 3 823 837 10.1007/s10549‑020‑06028‑z 33392841
    [Google Scholar]
  60. Yang Y. Karakhanova S. Werner J. Bazhin A. Reactive oxygen species in cancer biology and anticancer therapy. Curr. Med. Chem. 2013 20 30 3677 3692 10.2174/0929867311320999165 23862622
    [Google Scholar]
  61. Scalia A. Doumani L. Kindt N. Journé F. Trelcat A. Carlier S. The interplay between atherosclerosis and cancer: Breast cancer cells increase the expression of endothelial cell adhesion markers. Biology 2023 12 7 896 10.3390/biology12070896 37508329
    [Google Scholar]
  62. Guo Y.J. Pan W.W. Liu S.B. Shen Z.F. Xu Y. Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 10.3892/etm.2020.8454 32104259
    [Google Scholar]
  63. Miricescu D. Totan A. Stanescu-Spinu I-I. Constantin Badoiu S. Stefani C. Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects International Journal of Molecular Sciences 2020 22 1 173 10.3390/ijms22010173 33375317
    [Google Scholar]
  64. Cheng H. Shcherba M. Pendurti G. Liang Y. Piperdi B. Perez-Soler R. Targeting the PI3K/AKT/mTOR pathway: Potential for lung cancer treatment. Lung Cancer Manag. 2014 3 1 67 75 10.2217/lmt.13.72 25342981
    [Google Scholar]
  65. George B. Gui B. Raguraman R. AKT1 transcriptomic landscape in breast cancer cells. Cells 2022 11 15 2290 10.3390/cells11152290 35892586
    [Google Scholar]
  66. Liu X. Adorno-Cruz V. Chang Y.F. EGFR inhibition blocks cancer stem cell clustering and lung metastasis of triple negative breast cancer. Theranostics 2021 11 13 6632 6643 10.7150/thno.57706 33995681
    [Google Scholar]
  67. Song X. Liu Z. Yu Z. EGFR promotes the development of triple negative breast cancer through JAK/STAT3 signaling. Cancer Manag. Res. 2020 12 703 717 10.2147/CMAR.S225376 32099467
    [Google Scholar]
  68. Liu W. Lu X. Shi P. TNF-α increases breast cancer stem-like cells through up-regulating TAZ expression via the non-canonical NF-κB pathway. Sci. Rep. 2020 10 1 1804 10.1038/s41598‑020‑58642‑y 31913322
    [Google Scholar]
  69. Geerts D. Cusick J.K. Connelly L. Editorial: The tumor necrosis factor superfamily: An increasing role in breast cancer. Front. Oncol. 2020 10 622588 10.3389/fonc.2020.622588 33415081
    [Google Scholar]
  70. Nagy Z. Jeselsohn R. ESR1 fusions and therapeutic resistance in metastatic breast cancer. Front. Oncol. 2023 12 January 1037531 10.3389/fonc.2022.1037531 36686845
    [Google Scholar]
  71. Zhang J.Y. Zhang F. Hong C.Q. Critical protein GAPDH and its regulatory mechanisms in cancer cells. Cancer Biol. Med. 2015 12 1 10 22 10.7497/j.issn.2095‑3941.2014.0019 25859407
    [Google Scholar]
  72. Higashimura Y. Nakajima Y. Yamaji R. Up-regulation of glyceraldehyde-3-phosphate dehydrogenase gene expression by HIF-1 activity depending on Sp1 in hypoxic breast cancer cells. Arch. Biochem. Biophys. 2011 509 1 1 8 10.1016/j.abb.2011.02.011 21338575
    [Google Scholar]
  73. Lu Y. Suh S.J. Li X. Citreorosein inhibits production of proinflammatory cytokines by blocking mitogen activated protein kinases, nuclear factor-κB and activator protein-1 activation in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 2012 35 6 938 945 10.1248/bpb.35.938 22687535
    [Google Scholar]
  74. Su L. Xu C. Huang H. Effects of tumor necrosis factor-alpha inhibitors on lipid profiles in patients with psoriasis: A systematic review and meta-analysis. Front. Immunol. 2024 15 1354593 10.3389/fimmu.2024.1354593 38500874
    [Google Scholar]
  75. Jiang J. Yang Y. Wang F. Mao W. Wang Z. Liu Z. Quercetin inhibits breast cancer cell proliferation and survival by targeting Akt/mTOR/PTEN signaling pathway. Chem. Biol. Drug Des. 2024 103 6 14557 10.1111/cbdd.14557 38825578
    [Google Scholar]
  76. Senthilkumar K. Arunkumar R. Elumalai P. Quercetin inhibits invasion, migration and signalling molecules involved in cell survival and proliferation of prostate cancer cell line (PC-3). Cell Biochem. Funct. 2011 29 2 87 95 10.1002/cbf.1725 21308698
    [Google Scholar]
  77. Selvakumar P. Badgeley A. Murphy P. Flavonoids and other polyphenols act as epigenetic modifiers in breast cancer. Nutrients 2020 12 3 761 10.3390/nu12030761 32183060
    [Google Scholar]
  78. Ganguly S. Arora I. Tollefsbol T.O. Impact of stilbenes as epigenetic modulators of breast cancer risk and associated biomarkers. Int. J. Mol. Sci. 2021 22 18 10033 10.3390/ijms221810033 34576196
    [Google Scholar]
  79. Humphries B. Wang Z. Yang C. MicroRNA regulation of epigenetic modifiers in breast cancer. Cancers 2019 11 7 897 10.3390/cancers11070897 31252590
    [Google Scholar]
  80. Busch C. Burkard M. Leischner C. Lauer U.M. Frank J. Venturelli S. Epigenetic activities of flavonoids in the prevention and treatment of cancer. Clin. Epigenetics 2015 7 1 64 10.1186/s13148‑015‑0095‑z 26161152
    [Google Scholar]
  81. Nimal S. Kumbhar N. Pote M.S. Bankar R. Shaikh M. Gacche R. Reversal of epithelial to mesenchymal transition in triple negative breast cancer through epigenetic modulations by dietary flavonoid Galangin and its combination with SAHA. Cell Commun. Signal. 2025 23 1 163 10.1186/s12964‑025‑02174‑3 40176095
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128408970250717095140
Loading
/content/journals/cpd/10.2174/0113816128408970250717095140
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test