Skip to content
2000
image of Unveiling Targeted Approaches to Combat Drug Resistance in Cancer Chemotherapy

Abstract

Despite significant advancements in medical science, cancer continues to be a major cause of morbidity and mortality worldwide. A key factor contributing to this persistent burden is the emergence of resistance to conventional therapeutic modalities, including chemotherapy, radiation therapy, and surgery. This phenomenon of drug resistance significantly hampers the efficacy of these treatments, leading to therapeutic failure and poor clinical outcomes. A detailed understanding of the molecular and cellular mechanisms underlying drug resistance is crucial for devising targeted strategies to overcome these barriers. In this review, we aim to critically assess and highlight various approaches that can effectively reduce chemotherapy resistance, with the goal of improving the therapeutic efficacy of chemotherapy and enhancing overall patient survival.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128380235250627143945
2025-07-14
2025-11-04
Loading full text...

Full text loading...

References

  1. National Center for Health Statistics (US) Health, United States, 2015: With Special Feature on Racial and Ethnic Health Disparities. Hyattsville (MD): National Center for Health Statistics (US) 2016 27308685
    [Google Scholar]
  2. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 20503121211034366 10.1177/20503121211034366 34408877
    [Google Scholar]
  3. Haider T. Tiwari R. Vyas S.P. Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol. Ther. 2019 200 85 109 10.1016/j.pharmthera.2019.04.011 31047907
    [Google Scholar]
  4. Boehm T. Folkman J. Browder T. O’Reilly M.S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 1997 390 6658 404 407 10.1038/37126 9389480
    [Google Scholar]
  5. Mansoori B. Mohammadi A. Davudian S. Shirjang S. Baradaran B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull. 2017 7 3 339 348 10.15171/apb.2017.041 29071215
    [Google Scholar]
  6. Housman G. Byler S. Heerboth S. Lapinska K. Longacre M. Snyder N. Sarkar S. Drug resistance in cancer: An overview. Cancers 2014 6 3 1769 1792 10.3390/cancers6031769 25198391
    [Google Scholar]
  7. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  8. Lippert T.H. Ruoff H.J. Volm M. Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung 2008 58 6 261 264 18677966
    [Google Scholar]
  9. Kelderman S. Schumacher T.N.M. Haanen J.B.A.G. Acquired and intrinsic resistance in cancer immunotherapy. Mol. Oncol. 2014 8 6 1132 1139 10.1016/j.molonc.2014.07.011 25106088
    [Google Scholar]
  10. Huang D. Duan H. Huang H. Tong X. Han Y. Ru G. Qu L. Shou C. Zhao Z. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci. Rep. 2016 6 1 20502 10.1038/srep20502 26846307
    [Google Scholar]
  11. Burrell R.A. McGranahan N. Bartek J. Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013 501 7467 338 345 10.1038/nature12625 24048066
    [Google Scholar]
  12. Kreso A. Dick J.E. Evolution of the cancer stem cell model. Cell Stem Cell 2014 14 3 275 291 10.1016/j.stem.2014.02.006 24607403
    [Google Scholar]
  13. Turner N.C. Reis-Filho J.S. Genetic heterogeneity and cancer drug resistance. Lancet Oncol. 2012 13 4 e178 e185 10.1016/S1470‑2045(11)70335‑7 22469128
    [Google Scholar]
  14. Moulder S. Intrinsic resistance to chemotherapy in breast cancer. Womens Health (Lond. Engl.) 2010 6 6 821 830 10.2217/WHE.10.60 21118040
    [Google Scholar]
  15. Greaves M. Maley C.C. Clonal evolution in cancer. Nature 2012 481 7381 306 313 10.1038/nature10762 22258609
    [Google Scholar]
  16. Kuczynski E.A. Sargent D.J. Grothey A. Kerbel R.S. Drug rechallenge and treatment beyond progression—implications for drug resistance. Nat. Rev. Clin. Oncol. 2013 10 10 571 587 10.1038/nrclinonc.2013.158 23999218
    [Google Scholar]
  17. Gillet J.P. Calcagno A.M. Varma S. Davidson B. Bunkholt Elstrand M. Ganapathi R. Kamat A.A. Sood A.K. Ambudkar S.V. Seiden M.V. Rueda B.R. Gottesman M.M. Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma. Clin. Cancer Res. 2012 18 11 3197 3206 10.1158/1078‑0432.CCR‑12‑0056 22492981
    [Google Scholar]
  18. Traverso N. Ricciarelli R. Nitti M. Marengo B. Furfaro A.L. Pronzato M.A. Marinari U.M. Domenicotti C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev. 2013 2013 1 10 10.1155/2013/972913 23766865
    [Google Scholar]
  19. Ding L. Ley T.J. Larson D.E. Miller C.A. Koboldt D.C. Welch J.S. Ritchey J.K. Young M.A. Lamprecht T. McLellan M.D. McMichael J.F. Wallis J.W. Lu C. Shen D. Harris C.C. Dooling D.J. Fulton R.S. Fulton L.L. Chen K. Schmidt H. Kalicki-Veizer J. Magrini V.J. Cook L. McGrath S.D. Vickery T.L. Wendl M.C. Heath S. Watson M.A. Link D.C. Tomasson M.H. Shannon W.D. Payton J.E. Kulkarni S. Westervelt P. Walter M.J. Graubert T.A. Mardis E.R. Wilson R.K. DiPersio J.F. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012 481 7382 506 510 10.1038/nature10738 22237025
    [Google Scholar]
  20. Quintás-Cardama A. Kantarjian H.M. Cortes J.E. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Contr. 2009 16 2 122 131 10.1177/107327480901600204 19337198
    [Google Scholar]
  21. Jabbour E.J. Cortes J.E. Kantarjian H.M. Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: A clinical perspective and emerging treatment options. Clin. Lymphoma Myeloma Leuk. 2013 13 5 515 529 10.1016/j.clml.2013.03.018 23890944
    [Google Scholar]
  22. Kimura S. Ando T. Kojima K. BCR-ABL point mutations and TKI treatment in CML patients. J. Hematol. Transfus. 2014 2 3 1022 10.47739/2333‑6684/1022
    [Google Scholar]
  23. Challagundla K.B. Wise P.M. Neviani P. Chava H. Murtadha M. Xu T. Kennedy R. Ivan C. Zhang X. Vannini I. Fanini F. Amadori D. Calin G.A. Hadjidaniel M. Shimada H. Jong A. Seeger R.C. Asgharzadeh S. Goldkorn A. Fabbri M. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J. Natl. Cancer Inst. 2015 107 7 djv135 10.1093/jnci/djv135 25972604
    [Google Scholar]
  24. Sun Y. Tumor microenvironment and cancer therapy resistance. Cancer Lett. 2016 380 1 205 215 10.1016/j.canlet.2015.07.044 26272180
    [Google Scholar]
  25. Wang Y. Cheetham A.G. Angacian G. Su H. Xie L. Cui H. Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv. Drug Deliv. Rev. 2017 110-111 112 126 10.1016/j.addr.2016.06.015 27370248
    [Google Scholar]
  26. Wang M. Thanou M. Targeting nanoparticles to cancer. Pharmacol. Res. 2010 62 2 90 99 10.1016/j.phrs.2010.03.005 20380880
    [Google Scholar]
  27. Alfarouk K.O. Stock C.M. Taylor S. Walsh M. Muddathir A.K. Verduzco D. Bashir A.H.H. Mohammed O.Y. Elhassan G.O. Harguindey S. Reshkin S.J. Ibrahim M.E. Rauch C. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int. 2015 15 1 71 10.1186/s12935‑015‑0221‑1 26180516
    [Google Scholar]
  28. Vadlapatla R. Vadlapudi A. Pal D. Mitra A. Mechanisms of drug resistance in cancer chemotherapy: Coordinated role and regulation of efflux transporters and metabolizing enzymes. Curr. Pharm. Des. 2013 19 40 7126 7140 10.2174/13816128113199990493 23829373
    [Google Scholar]
  29. Wu Q. Yang Z. Nie Y. Shi Y. Fan D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014 347 2 159 166 10.1016/j.canlet.2014.03.013 24657660
    [Google Scholar]
  30. Choi Y. Yu A.M. ABC transporters in multidrug resistance and pharmacokinetics, and strategies for drug development. Curr. Pharm. Des. 2014 20 5 793 807 10.2174/138161282005140214165212 23688078
    [Google Scholar]
  31. Vasiliou V. Vasiliou K. Nebert D.W. Human ATP-binding cassette (ABC) transporter family. Hum. Genomics 2008 3 3 281 290 10.1186/1479‑7364‑3‑3‑281 19403462
    [Google Scholar]
  32. Wilkens S. Structure and mechanism of ABC transporters. F1000Prime Rep. 2015 7 14 10.12703/P7‑14 25750732
    [Google Scholar]
  33. Binkhathlan Z. Lavasanifar A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: Current status and future perspectives. Curr. Cancer Drug Targets 2013 13 3 326 346 10.2174/15680096113139990076 23369096
    [Google Scholar]
  34. Ahmed F. Haass N.K. Microenvironment-driven dynamic heterogeneity and phenotypic plasticity as a mechanism of melanoma therapy resistance. Front. Oncol. 2018 8 173 10.3389/fonc.2018.00173 29881716
    [Google Scholar]
  35. Allen J.D. Brinkhuis R.F. Wijnholds J. Schinkel A.H. The mouse Bcrp1/Mxr/Abcp gene: amplification and overexpression in cell lines selected for resistance to topotecan, mitoxantrone, or doxorubicin. Cancer Res. 1999 59 17 4237 4241 10485464
    [Google Scholar]
  36. Salehan M.R. Morse H.R. DNA damage repair and tolerance: A role in chemotherapeutic drug resistance. Br. J. Biomed. Sci. 2013 70 1 31 40 10.1080/09674845.2013.11669927 23617096
    [Google Scholar]
  37. Helleday T. Petermann E. Lundin C. Hodgson B. Sharma R.A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008 8 3 193 204 10.1038/nrc2342 18256616
    [Google Scholar]
  38. De Angelis P. Fjell B. Kravik K. Haug T. Tunheim S. Reichelt W. Beigi M. Clausen O. Galteland E. Stokke T. Molecular characterizations of derivatives of HCT116 colorectal cancer cells that are resistant to the chemotherapeutic agent 5-fluorouracil. Int. J. Oncol. 2004 24 5 1279 1288 10.3892/ijo.24.5.1279 15067352
    [Google Scholar]
  39. De Angelis P.M. Svendsrud D.H. Kravik K.L. Stokke T. Cellular response to 5-fluorouracil (5-FU) in 5-FU-resistant colon cancer cell lines during treatment and recovery. Mol. Cancer 2006 5 1 20 10.1186/1476‑4598‑5‑20 16709241
    [Google Scholar]
  40. Wang Y. Schmid-Bindert G. Zhou C. Erlotinib in the treatment of advanced non-small cell lung cancer: An update for clinicians. Ther. Adv. Med. Oncol. 2012 4 1 19 29 10.1177/1758834011427927 22229045
    [Google Scholar]
  41. Gridelli C. De Marinis F. Di Maio M. Cortinovis D. Cappuzzo F. Mok T. Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: Review of the evidence. Lung Cancer 2011 71 3 249 257 10.1016/j.lungcan.2010.12.008 21216486
    [Google Scholar]
  42. Tang J. Salama R. Gadgeel S.M. Sarkar F.H. Ahmad A. Erlotinib resistance in lung cancer: Current progress and future perspectives. Front. Pharmacol. 2013 4 15 10.3389/fphar.2013.00015 23407898
    [Google Scholar]
  43. Bell D.W. Gore I. Okimoto R.A. Godin-Heymann N. Sordella R. Mulloy R. Sharma S.V. Brannigan B.W. Mohapatra G. Settleman J. Haber D.A. Inherited susceptibility to lung cancer may be associated with the T790M drug resistance mutation in EGFR. Nat. Genet. 2005 37 12 1315 1316 10.1038/ng1671 16258541
    [Google Scholar]
  44. Ma C. Wei S. Song Y. T790M and acquired resistance of EGFR TKI: A literature review of clinical reports. J. Thorac. Dis. 2011 3 1 10 18 22263058
    [Google Scholar]
  45. Dagogo-Jack I. Shaw A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2018 15 2 81 94 10.1038/nrclinonc.2017.166 29115304
    [Google Scholar]
  46. Chen X. Qian Y. Wu S. The Warburg effect: Evolving interpretations of an established concept. Free Radic. Biol. Med. 2015 79 253 263 10.1016/j.freeradbiomed.2014.08.027 25277420
    [Google Scholar]
  47. Landau D.A. Carter S.L. Stojanov P. McKenna A. Stevenson K. Lawrence M.S. Sougnez C. Stewart C. Sivachenko A. Wang L. Wan Y. Zhang W. Shukla S.A. Vartanov A. Fernandes S.M. Saksena G. Cibulskis K. Tesar B. Gabriel S. Hacohen N. Meyerson M. Lander E.S. Neuberg D. Brown J.R. Getz G. Wu C.J. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 2013 152 4 714 726 10.1016/j.cell.2013.01.019 23415222
    [Google Scholar]
  48. Navin N. Krasnitz A. Rodgers L. Cook K. Meth J. Kendall J. Riggs M. Eberling Y. Troge J. Grubor V. Levy D. Lundin P. Månér S. Zetterberg A. Hicks J. Wigler M. Inferring tumor progression from genomic heterogeneity. Genome Res. 2010 20 1 68 80 10.1101/gr.099622.109 19903760
    [Google Scholar]
  49. Gerlinger M. Rowan A.J. Horswell S. Larkin J. Endesfelder D. Gronroos E. Martinez P. Matthews N. Stewart A. Tarpey P. Varela I. Phillimore B. Begum S. McDonald N.Q. Butler A. Jones D. Raine K. Latimer C. Santos C.R. Nohadani M. Eklund A.C. Spencer-Dene B. Clark G. Pickering L. Stamp G. Gore M. Szallasi Z. Downward J. Futreal P.A. Swanton C. Swanton C. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012 366 10 883 892 10.1056/NEJMoa1113205 22397650
    [Google Scholar]
  50. Bashashati A. Ha G. Tone A. Ding J. Prentice L.M. Roth A. Rosner J. Shumansky K. Kalloger S. Senz J. Yang W. McConechy M. Melnyk N. Anglesio M. Luk M.T.Y. Tse K. Zeng T. Moore R. Zhao Y. Marra M.A. Gilks B. Yip S. Huntsman D.G. McAlpine J.N. Shah S.P. Distinct evolutionary trajectories of primary high‐grade serous ovarian cancers revealed through spatial mutational profiling. J. Pathol. 2013 231 1 21 34 10.1002/path.4230 23780408
    [Google Scholar]
  51. Burrell R.A. Swanton C. Tumour heterogeneity and the evolution of polyclonal drug resistance. Mol. Oncol. 2014 8 6 1095 1111 10.1016/j.molonc.2014.06.005 25087573
    [Google Scholar]
  52. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  53. Hanahan D. Coussens L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 21 3 309 322 10.1016/j.ccr.2012.02.022 22439926
    [Google Scholar]
  54. Casey J.R. Grinstein S. Orlowski J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010 11 1 50 61 10.1038/nrm2820 19997129
    [Google Scholar]
  55. Swietach P. Vaughan-Jones R.D. Harris A.L. Hulikova A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014 369 1638 20130099 10.1098/rstb.2013.0099 24493747
    [Google Scholar]
  56. Sharma M. Astekar M. Soi S. Manjunatha B. Shetty D. Radhakrishnan R. pH gradient reversal: An emerging hallmark of cancers. Recent Patents Anticancer Drug Discov. 2015 10 3 244 258 10.2174/1574892810666150708110608 26152150
    [Google Scholar]
  57. Taylor S. Spugnini E.P. Assaraf Y.G. Azzarito T. Rauch C. Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist. Updat. 2015 23 69 78 10.1016/j.drup.2015.08.004 26341193
    [Google Scholar]
  58. Webb B.A. Chimenti M. Jacobson M.P. Barber D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer 2011 11 9 671 677 10.1038/nrc3110 21833026
    [Google Scholar]
  59. Wojtkowiak J.W. Verduzco D. Schramm K.J. Gillies R.J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm. 2011 8 6 2032 2038 10.1021/mp200292c 21981633
    [Google Scholar]
  60. Fischer K.R. Durrans A. Lee S. Sheng J. Li F. Wong S.T.C. Choi H. El Rayes T. Ryu S. Troeger J. Schwabe R.F. Vahdat L.T. Altorki N.K. Mittal V. Gao D. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance. Nature 2015 527 7579 472 476 10.1038/nature15748 26560033
    [Google Scholar]
  61. Du B. Shim J. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 2016 21 7 965 10.3390/molecules21070965 27455225
    [Google Scholar]
  62. Brunen D. Willems S. Kellner U. Midgley R. Simon I. Bernards R. TGF-β: An emerging player in drug resistance. Cell Cycle 2013 12 18 2960 2968 10.4161/cc.26034 23974105
    [Google Scholar]
  63. Oshimori N. Oristian D. Fuchs E. TGF-β promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell 2015 160 5 963 976 10.1016/j.cell.2015.01.043 25723170
    [Google Scholar]
  64. Li J. Liu H. Yu J. Yu H. Chemoresistance to doxorubicin induces epithelial-mesenchymal transition via upregulation of transforming growth factor β signaling in HCT116 colon cancer cells. Mol. Med. Rep. 2015 12 1 192 198 10.3892/mmr.2015.3356 25684678
    [Google Scholar]
  65. Bhola N.E. Balko J.M. Dugger T.C. Kuba M.G. Sánchez V. Sanders M. Stanford J. Cook R.S. Arteaga C.L. TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J. Clin. Invest. 2013 123 3 1348 1358 10.1172/JCI65416 23391723
    [Google Scholar]
  66. Wu Y Ginther C Kim J Mosher N Chung S . Expression of Wnt3 activates Wnt/β-catenin pathway and promotes EMT-like phenotype in trastuzumab-resistant HER2-overexpressing breast cancer cells. Mol cancer Res MCR 2012 10 1597 606 10.1158/1541‑7786.MCR‑12‑0155‑T.
    [Google Scholar]
  67. Della Corte C.M. Bellevicine C. Vicidomini G. Vitagliano D. Malapelle U. Accardo M. Fabozzi A. Fiorelli A. Fasano M. Papaccio F. Martinelli E. Troiani T. Troncone G. Santini M. Bianco R. Ciardiello F. Morgillo F. SMO gene amplification and activation of the hedgehog pathway as novel mechanisms of resistance to anti-epidermal growth factor receptor drugs in human lung cancer. Clin. Cancer Res. 2015 21 20 4686 4697 10.1158/1078‑0432.CCR‑14‑3319 26124204
    [Google Scholar]
  68. Frei E. III Karon M. Levin R.H. Freireich E.J. Taylor R.J. Hananian J. Selawry O. Holland J.F. Hoogstraten B. Wolman I.J. Abir E. Sawitsky A. Lee S. Mills S.D. Burgert O. Jr Spurr C.L. Patterson R.B. Ebaugh F.G. James G.W. III Moon J.H. The effectiveness of combinations of antileukemic agents in inducing and maintaining remission in children with acute leukemia. Blood 1965 26 5 642 656 10.1182/blood.V26.5.642.642 5321112
    [Google Scholar]
  69. Blagosklonny M.V. Overcoming limitations of natural anticancer drugs by combining with artificial agents. Trends Pharmacol. Sci. 2005 26 2 77 81 10.1016/j.tips.2004.12.002 15681024
    [Google Scholar]
  70. Khdair A. Di Chen Patil Y. Ma L. Dou Q.P. Shekhar M.P.V. Panyam J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J. Control. Release 2010 141 2 137 144 10.1016/j.jconrel.2009.09.004 19751777
    [Google Scholar]
  71. Gottesman M.M. Fojo T. Bates S.E. Multidrug resistance in cancer: Role of ATP–dependent transporters. Nat. Rev. Cancer 2002 2 1 48 58 10.1038/nrc706 11902585
    [Google Scholar]
  72. Hanahan D. Bergers G. Bergsland E. Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J. Clin. Invest. 2000 105 8 1045 1047 10.1172/JCI9872 10772648
    [Google Scholar]
  73. Gorski D.H. Beckett M.A. Jaskowiak N.T. Calvin D.P. Mauceri H.J. Salloum R.M. Seetharam S. Koons A. Hari D.M. Kufe D.W. Weichselbaum R.R. Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res. 1999 59 14 3374 3378 10416597
    [Google Scholar]
  74. Chen K. Huang Y. Chen J. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin. 2013 34 6 732 740 10.1038/aps.2013.27 23685952
    [Google Scholar]
  75. Takebe N. Miele L. Harris P.J. Jeong W. Bando H. Kahn M. Yang S.X. Ivy S.P. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: Clinical update. Nat. Rev. Clin. Oncol. 2015 12 8 445 464 10.1038/nrclinonc.2015.61 25850553
    [Google Scholar]
  76. Leary M. Heerboth S. Lapinska K. Sarkar S. Sensitization of drug resistant cancer cells: A matter of combination therapy. Cancers 2018 10 12 483 10.3390/cancers10120483 30518036
    [Google Scholar]
  77. Denny W.A. Prodrug strategies in cancer therapy. Eur. J. Med. Chem. 2001 36 7-8 577 595 10.1016/S0223‑5234(01)01253‑3 11600229
    [Google Scholar]
  78. Meijer C. Mulder N.H. Timmer-Bosscha H. Sluiter W.J. Meersma G.J. de Vries E.G. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. Cancer Res. 1992 52 24 6885 6889 1458477
    [Google Scholar]
  79. Longley D.B. Johnston P.G. Molecular mechanisms of drug resistance. J. Pathol. 2005 205 2 275 292 10.1002/path.1706 15641020
    [Google Scholar]
  80. Hughes L.R. Stephens T.C. Boyle F.T. Jackman A.L. Raltitrexed (Tomudex TM), a highly polyglutamatable antifolate thymidylate synthase inhibitor. Antifolate drugs in cancer therapy Cancer Drug Discovery and Development. Jackman A.L. Totowa Humana Press 1999 147 165 10.1007/978‑1‑59259‑725‑3_6
    [Google Scholar]
  81. Holohan C. Van Schaeybroeck S. Longley D.B. Johnston P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer 2013 13 10 714 726 10.1038/nrc3599 24060863
    [Google Scholar]
  82. Marin J.J. Al-Abdulla R. Lozano E. Briz O. Bujanda L. Banales J.M. Macias R.I. Mechanisms of resistance to chemotherapy in gastric cancer. Anticancer. Agents Med. Chem. 2016 16 3 318 334 10.2174/1871520615666150803125121 26234359
    [Google Scholar]
  83. Haider T. Pandey V. Banjare N. Gupta P.N. Soni V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep. 2020 72 5 1125 1151 10.1007/s43440‑020‑00138‑7 32700248
    [Google Scholar]
  84. Gmeiner W.H. Ghosh S. Nanotechnology for cancer treatment. Nanotechnol. Rev. 2015 3 2 111 122 26082884
    [Google Scholar]
  85. Kaiser J. When less is more. Science 2017 355 6330 1144 1146 10.1126/science.355.6330.1144 28302821
    [Google Scholar]
  86. Moriceau G. Hugo W. Hong A. Shi H. Kong X. Yu C.C. Koya R.C. Samatar A.A. Khanlou N. Braun J. Ruchalski K. Seifert H. Larkin J. Dahlman K.B. Johnson D.B. Algazi A. Sosman J.A. Ribas A. Lo R.S. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell 2015 27 2 240 256 10.1016/j.ccell.2014.11.018 25600339
    [Google Scholar]
  87. Amin A.D. Rajan S.S. Liang W.S. Pongtornpipat P. Groysman M.J. Tapia E.O. Peters T.L. Cuyugan L. Adkins J. Rimsza L.M. Lussier Y.A. Puvvada S.D. Schatz J.H. Evidence suggesting that discontinuous dosing of ALK kinase inhibitors may prolong control of ALK+ tumors. Cancer Res. 2015 75 14 2916 2927 10.1158/0008‑5472.CAN‑14‑3437 26018086
    [Google Scholar]
  88. Hay N. Reprogramming glucose metabolism in cancer: Can it be exploited for cancer therapy? Nat. Rev. Cancer 2016 16 10 635 649 10.1038/nrc.2016.77 27634447
    [Google Scholar]
  89. Zhu A. Lee D. Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol. 2011 38 1 55 69 10.1053/j.seminoncol.2010.11.012 21362516
    [Google Scholar]
  90. Koppenol W.H. Bounds P.L. Dang C.V. Otto Warburg’s contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 2011 11 5 325 337 10.1038/nrc3038 21508971
    [Google Scholar]
  91. Vander Heiden M.G. Cantley L.C. Thompson C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009 324 5930 1029 1033 10.1126/science.1160809 19460998
    [Google Scholar]
  92. Cairns R.A. Harris I.S. Mak T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011 11 2 85 95 10.1038/nrc2981 21258394
    [Google Scholar]
  93. Deng J.J. Zhang W. Xu X.M. Zhang F. Tao W.P. Ye J.J. Ge W. Twist mediates an aggressive phenotype in human colorectal cancer cells. Int. J. Oncol. 2016 48 3 1117 1124 10.3892/ijo.2016.3342 26782761
    [Google Scholar]
  94. Haslehurst A.M. Koti M. Dharsee M. Nuin P. Evans K. Geraci J. Childs T. Chen J. Li J. Weberpals J. Davey S. Squire J. Park P.C. Feilotter H. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer 2012 12 1 91 10.1186/1471‑2407‑12‑91 22429801
    [Google Scholar]
  95. Siebzehnrubl F.A. Silver D.J. Tugertimur B. Deleyrolle L.P. Siebzehnrubl D. Sarkisian M.R. Devers K.G. Yachnis A.T. Kupper M.D. Neal D. Nabilsi N.H. Kladde M.P. Suslov O. Brabletz S. Brabletz T. Reynolds B.A. Steindler D.A. The ZEB1 pathway links glioblastoma initiation, invasion and chemoresistance. EMBO Mol. Med. 2013 5 8 1196 1212 10.1002/emmm.201302827 23818228
    [Google Scholar]
  96. Lazarova D. Bordonaro M. ZEB1 mediates drug resistance and EMT in p300-deficient CRC. J. Cancer 2017 8 8 1453 1459 10.7150/jca.18762 28638460
    [Google Scholar]
  97. Zhou Z. Zhang L. Xie B. Wang X. Yang X. Ding N. Zhang J. Liu Q. Tan G. Feng D. Sun L.Q. FOXC2 promotes chemoresistance in nasopharyngeal carcinomas via induction of epithelial mesenchymal transition. Cancer Lett. 2015 363 2 137 145 10.1016/j.canlet.2015.04.008 25896630
    [Google Scholar]
  98. Zheng X. Carstens J.L. Kim J. Scheible M. Kaye J. Sugimoto H. Wu C.C. LeBleu V.S. Kalluri R. Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer. Nature 2015 527 7579 525 530 10.1038/nature16064 26560028
    [Google Scholar]
  99. Saxena M. Stephens M.A. Pathak H. Rangarajan A. Transcription factors that mediate epithelial–mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2011 2 7 e179 10.1038/cddis.2011.61 21734725
    [Google Scholar]
  100. Zhu K. Chen L. Han X. Wang J. Wang J. Short hairpin RNA targeting Twist1 suppresses cell proliferation and improves chemosensitivity to cisplatin in HeLa human cervical cancer cells. Oncol. Rep. 2012 27 4 1027 1034 10.3892/or.2012.1633 22245869
    [Google Scholar]
  101. Tsou S.H. Chen T.M. Hsiao H.T. Chen Y.H. A critical dose of doxorubicin is required to alter the gene expression profiles in MCF-7 cells acquiring multidrug resistance. PLoS One 2015 10 1 e0116747 10.1371/journal.pone.0116747 25635866
    [Google Scholar]
  102. Li W. Liu C. Tang Y. Li H. Zhou F. Lv S. Overexpression of Snail accelerates adriamycin induction of multidrug resistance in breast cancer cells. Asian Pac. J. Cancer Prev. 2011 12 10 2575 2580 22320957
    [Google Scholar]
  103. Chen W.J. Wang H. Tang Y. Liu C.L. Li H.L. Li W.T. Multidrug resistance in breast cancer cells during epithelial-mesenchymal transition is modulated by breast cancer resistant protein. Chin. J. Cancer 2010 29 2 151 157 10.5732/cjc.009.10447 20109342
    [Google Scholar]
  104. Hamada S. Satoh K. Hirota M. Kanno A. Umino J. Ito H. Masamune A. Kikuta K. Kume K. Shimosegawa T. The homeobox gene MSX2 determines chemosensitivity of pancreatic cancer cells via the regulation of transporter gene ABCG2. J. Cell. Physiol. 2012 227 2 729 738 10.1002/jcp.22781 21465479
    [Google Scholar]
  105. Lee S.H. Oh S-Y. Do S.I. Lee H.J. Kang H.J. Rho Y.S. Bae W.J. Lim Y.C. SOX2 regulates self-renewal and tumorigenicity of stem-like cells of head and neck squamous cell carcinoma. Br. J. Cancer 2014 111 11 2122 2130 10.1038/bjc.2014.528 25321191
    [Google Scholar]
  106. Mato E. González C. Moral A. Pérez J.I. Bell O. Lerma E. de Leiva A. ABCG2/BCRP gene expression is related to epithelial–mesenchymal transition inducer genes in a papillary thyroid carcinoma cell line (TPC-1). J. Mol. Endocrinol. 2014 52 3 289 300 10.1530/JME‑14‑0051 24643400
    [Google Scholar]
  107. Sun L. Ke J. He Z. Chen Z. Huang Q. Ai W. Wang G. Wei Y. Zou X. Zhang S. Lan P. Hong C. HES1 promotes colorectal cancer cell resistance to 5- Fluro uracil by inducing of EMT and ABC transporter proteins. J. Cancer 2017 8 14 2802 2808 10.7150/jca.19142 28928869
    [Google Scholar]
  108. Uchibori K. Kasamatsu A. Sunaga M. Yokota S. Sakurada T. Kobayashi E. Yoshikawa M. Uzawa K. Ueda S. Tanzawa H. Sato N. Establishment and characterization of two 5-fluorouracil-resistant hepatocellular carcinoma cell lines. Int. J. Oncol. 2012 40 4 1005 1010 10.3892/ijo.2011.1300 22179686
    [Google Scholar]
  109. G B. Arfuso F. Millward M. Dharmarajan A. Warrier S. Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties. PLoS One 2015 10 6 e0127517 10.1371/journal.pone.0127517 26030909
    [Google Scholar]
  110. Hou Y. Zhu Q. Li Z. Peng Y. Yu X. Yuan B. Liu Y. Liu Y. Yin L. Peng Y. Jiang Z. Li J. Xie B. Duan Y. Tan G. Gulina K. Gong Z. Sun L. Fan X. Li X. The FOXM1–ABCC5 axis contributes to paclitaxel resistance in nasopharyngeal carcinoma cells. Cell Death Dis. 2017 8 3 e2659 10.1038/cddis.2017.53 28277541
    [Google Scholar]
  111. Roskoski R. Li X. Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol. Res. 2017 120 116 132 10.1016/j.phrs.2017.03.010. 28330784
    [Google Scholar]
  112. Song Z. Lin Y. Zhang X. Feng C. Lu Y. Gao Y. Dong C. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int. J. Nanomedicine 2017 12 1941 1958 10.2147/IJN.S125573 28331317
    [Google Scholar]
  113. Yamamoto S. Kato A. Sakurai Y. Hada T. Harashima H. Modality of tumor endothelial VEGFR2 silencing-mediated improvement in intratumoral distribution of lipid nanoparticles. J. Control. Release 2017 251 1 10 10.1016/j.jconrel.2017.02.010 28192155
    [Google Scholar]
  114. Mitamura T. Pradeep S. McGuire M. Wu S.Y. Ma S. Hatakeyama H. Lyons Y.A. Hisamatsu T. Noh K. Villar-Prados A. Chen X. Ivan C. Rodriguez-Aguayo C. Hu W. Lopez-Berestein G. Coleman R.L. Sood A.K. Induction of anti-VEGF therapy resistance by upregulated expression of microseminoprotein (MSMP). Oncogene 2018 37 6 722 731 10.1038/onc.2017.348 29059175
    [Google Scholar]
  115. Ansori A.N.M. Antonius Y. Susilo R.J.K. Hayaza S. Kharisma V.D. Parikesit A.A. Zainul R. Jakhmola V. Saklani T. Rebezov M. Ullah M.E. Maksimiuk N. Derkho M. Burkov P. Application of CRISPR-Cas9 genome editing technology in various fields: A review. Narra J 2023 3 2 e184 10.52225/narra.v3i2.184 38450259
    [Google Scholar]
  116. Uddin F. Rudin C.M. Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front. Oncol. 2020 10 1387 10.3389/fonc.2020.01387 32850447
    [Google Scholar]
  117. Shabbir M.A.B. Shabbir M.Z. Wu Q. Mahmood S. Sajid A. Maan M.K. Ahmed S. Naveed U. Hao H. Yuan Z. CRISPR-cas system: Biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann. Clin. Microbiol. Antimicrob. 2019 18 1 21 10.1186/s12941‑019‑0317‑x 31277669
    [Google Scholar]
  118. Gholizadeh P. Köse Ş. Dao S. Ganbarov K. Tanomand A. Dal T. Aghazadeh M. Ghotaslou R. Ahangarzadeh Rezaee M. Yousefi B. Samadi Kafil H. How CRISPR-Cas system could be used to combat antimicrobial resistance. Infect. Drug Resist. 2020 13 1111 1121 10.2147/IDR.S247271 32368102
    [Google Scholar]
  119. Jiyuki Takahiro Ogiya Yusuke Yoshiwara Kazutaka Endo Seiko Fujisaki Yoshihiko Use of therapeutic agent comprising anti-her2 antibody-drug conjugate. TW Patent I827534B 2024
  120. Corman A.J. Srinivasan M. Won C. Selby M.J. Chen B. Cardarelli M.J. Huang H. Cancer treatment method using human monoclonal antibody and anti-PD-1 antibody alone or in combination with other immunotherapy against Programmed Death 1 (PD- 1). JP Patent 5872377B2 2016
  121. Kawakami Koji Koji Kawakami Masayuki Kono Masayuki Kono Tomohisa Omi Tomohisa Horibe Nakajima Horibe Omi Mari Mari Nakajima Reiyo Haramoto Yang Haramoto Reiyo Anti-cancer chimeric peptide with excellent selectivity. JP Patent 5837712B 2015
  122. Svetlana O.D. Peter D.C. Brian E.T. Allen J.E. Toni B.K. Paul P. Mark X.S. Susan D.S. Monomethyl valine compounds that can be conjugated to a ligand. JP Patent 5551661B2 2014
  123. Kan, J. Thomson S. Argast G.M. O'Connor M.E. Robinson M. Feng. B. Heyer J. Chiu M.I. Use of EMT gene signatures in cancer drug discovery, diagnostics, and treatment. US Patent 9896730B2 2018
  124. Hudson L. Therapeutic and diagnostic target for cancer comprising dll3 binding reagents. KR Patent 102167550B12 2020
  125. Allen J. Anti-CD22 antibodies and immunoconjugates and methods of use. US Patent 8394607B2 2013
  126. Philip E. Luster T.R. Steven W. Fc Fusion constructs binding to Phosphatidylserine and their therapeutic use. EP Patent 1853631B1 2016
  127. Chung, L.W.K. Mrdenovich S. Yi Z. Zhu G.J. Ruoxiang, W.; Chang, F.N.; Taszynski, G.P.Use of simvastatin, chemotherapeutic drug and heptamethine cyanine dye conjugate to improve sensitivity of tumor to hormone antagonist and drug. CN Patent 110087649B 2022
  128. Xiaomen W. Dingke W Luipin D Nikolovska-Koleskazaneta Ruzaneta Nikolovska-Koleskas Kius Qiugopin Wanggopin Wangdangan Kindangan Kinsanjeev Kumar Kumar Sanjeev MDM2 small molecule inhibitors and uses thereof. JP Patent 5638023B 2014
  129. van de Winkel J. Palen P. Glaus I. O'Prince J. de Wiers Mi. Hugt M.v. Badsgard O. Risby S. Combined treatment of CD38-expressing tumors. JP Patent 6907165B2 2021
  130. Ding Z Shuhui CZ Substituted 2-hydropyrazol derivatives for anti-cancer drugs. patent TWI688559B 2020
  131. Lin T Xia Q Preparation method and application of multi-molecular microencapsulated nucleus-loaded artemisinin (DHA, ARM, ARS) for cancer treatment. CN patent 111035617A 2020
/content/journals/cpd/10.2174/0113816128380235250627143945
Loading
/content/journals/cpd/10.2174/0113816128380235250627143945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test