Skip to content
2000
image of Lipid-Based Nanocarriers as a Promising Delivery System in the Management of Acne

Abstract

Introduction

Acne vulgaris is a prevalent dermatological condition resulting from inflammation, follicular hyperkeratinization, and bacterial growth. Standard treatments, whether topical or oral, frequently encounter challenges such as limited skin penetration, drug instability, and undesirable side effects. The report found that lipid-based nanocarriers have emerged as a promising alternative, demonstrating the potential for enhanced therapeutic effectiveness, better skin bioavailability, controlled drug release, and targeted delivery specifically to sebaceous glands, which help minimize systemic side effects.

Aim

This review article aims to explore the therapeutic potential of various lipid nanocarriers, including Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs), liposomes, microemulsions, niosomes, and ethosomes particularly by examining the mechanisms through which they penetrate the stratum corneum and deeper skin layers to enhance drug delivery.

Methodology

This review comprehensively surveys lipid-based nanocarriers for acne vulgaris treatment, drawing from a systematic literature search across Google Scholar, Science Direct, Scopus, Web of Science, and PubMed for publications between 2015 and 2025. The search strategy employed keywords such as “lipid nanocarrier,” “acne vulgaris,” “animal models,” or “preclinical studies,” and “clinical trials” to capture the research landscape.

Results

The review compiles evidence from multiple preclinical experiments and clinical trials regarding the effectiveness of lipid nanocarriers in managing acne. It explores the different pathways these lipid nanocarriers use to permeate the skin and reach target sites. Additionally, it also covers different patents filed by various researchers focusing on the application of lipid nanocarriers for acne management.

Conclusion

Lipid nanocarriers represent a significant advancement in dermatological drug delivery, particularly for acne management. By leveraging various skin penetration mechanisms to improve drug targeting to the pilosebaceous unit, they offer potential for more effective treatment compared to conventional methods. While promising, ongoing research and development are necessary to overcome current limitations and fully harness the potential of lipid nanocarriers in clinical practice.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128404408250707111455
2025-07-17
2025-11-05
Loading full text...

Full text loading...

References

  1. Vasam M. Korutla S. Bohara R.A. Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances. Biochem. Biophys. Rep. 2023 36 101578 10.1016/j.bbrep.2023.101578 38076662
    [Google Scholar]
  2. Liu L. Xue Y. Chen Y. Chen T. Zhong J. Shao X. Chen J. Acne and risk of mental disorders: A two-sample Mendelian randomization study based on large genome-wide association data. Front. Public Health 2023 11 1156522 10.3389/fpubh.2023.1156522 37064666
    [Google Scholar]
  3. Melnik B.C. Acne transcriptomics: Fundamentals of acne pathogenesis and isotretinoin treatment. Cells 2023 12 22 2600 10.3390/cells12222600 37998335
    [Google Scholar]
  4. Li L. Zhang J. Cheng W. Di F. Wang C. An Q. Saponins of Paris polyphylla for the improvement of acne: Anti-inflammatory, antibacterial, antioxidant and immunomodulatory effects. Molecules 2024 29 8 1793 10.3390/molecules29081793 38675613
    [Google Scholar]
  5. Dainichi T. Iwata M. Inflammatory loops in the epithelial–immune microenvironment of the skin and skin appendages in chronic inflammatory diseases. Front. Immunol. 2023 14 1274270 10.3389/fimmu.2023.1274270 37841246
    [Google Scholar]
  6. Elsaie M.L. Aly D.G. The immunogenetics of acne. The Immunogenetics of Dermatologic Diseases. Springer 2022 137 154 10.1007/978‑3‑030‑92616‑8_6
    [Google Scholar]
  7. Condrò G. Guerini M. Castello M. Perugini P. Acne vulgaris, atopic dermatitis and rosacea: The role of the skin microbiota—A review. Biomedicines 2022 10 10 2523 10.3390/biomedicines10102523 36289784
    [Google Scholar]
  8. Boonchaya P Rojhirunsakool S Kamanamool N Khunkhet S Yooyongsatit S Udompataikul M Taweechotipatr M. Minimum contact time of 1.25%, 2.5%, 5%, and 10% benzoyl peroxide for a bactericidal effect against Cutibacterium acnes. Clin Cosmet Investig Dermatol 2022 15 403 409 10.2147/CCID.S359055 35300432
    [Google Scholar]
  9. Agountaf I. Optimizing the use of topical retinoids in Moroccan patients with acne. PhD Thesis, National University of Pharmacy of Ministry of Healthcare of Ukraine, Kharkiv, 2023
    [Google Scholar]
  10. Almeman A. Evaluating the efficacy and safety of alpha-hydroxy acids in dermatological practice: A comprehensive clinical and legal review. Clin. Cosmet. Investig. Dermatol. 2024 17 1661 1685 10.2147/CCID.S453243 39050562
    [Google Scholar]
  11. Bonamonte D. De Marco A. Giuffrida R. Conforti C. Barlusconi C. Foti C. Romita P. Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects. Dermatol. Ther. 2020 33 6 13824 10.1111/dth.13824 32531105
    [Google Scholar]
  12. Odorici G. Monfrecola G. Bettoli V. Tetracyclines and photosensitive skin reactions: A narrative review. Dermatol. Ther. 2021 34 4 14978 10.1111/dth.14978 33991382
    [Google Scholar]
  13. Sitohang I.B.S. Isotretinoin for treating acne vulgaris. Int. J. Appl. Pharm. 2021 13 2 20 25 10.22159/ijap.2021v13i2.40045
    [Google Scholar]
  14. Dhurat R. Shukla D. Lim R.K. Wambier C.G. Goren A. Spironolactone in adolescent acne vulgaris. Dermatol. Ther. 2021 34 1 14680 10.1111/dth.14680 33326148
    [Google Scholar]
  15. Bagatin E. Rocha M.A.D. Freitas T.H.P. Costa C.S. Treatment challenges in adult female acne and future directions. Expert Rev. Clin. Pharmacol. 2021 14 6 687 701 10.1080/17512433.2021.1917376 33957838
    [Google Scholar]
  16. Graber E.M. Treating acne with the tetracycline class of antibiotics: A review. Dermatol. Rev. 2021 2 6 321 330 10.1002/der2.49
    [Google Scholar]
  17. Stein Gold L. Kwong P. Draelos Z. Arekapudi K.L. Levy-Hacham O. Erlich M. Desai S.R. Impact of topical vehicles and cutaneous delivery technologies on patient adherence and treatment outcomes in acne and rosacea. J. Clin. Aesthet. Dermatol. 2023 16 5 26 34 37288283
    [Google Scholar]
  18. Oliveira R. Almeida I.F. Patient-centric design of topical dermatological medicines. Pharmaceuticals 2023 16 4 617 10.3390/ph16040617 37111373
    [Google Scholar]
  19. Chehelgerdi M. Chehelgerdi M. Allela O.Q.B. Pecho R.D.C. Jayasankar N. Rao D.P. Thamaraikani T. Vasanthan M. Viktor P. Lakshmaiya N. Saadh M.J. Amajd A. Abo-Zaid M.A. Castillo-Acobo R.Y. Ismail A.H. Amin A.H. Akhavan-Sigari R. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation. Mol. Cancer 2023 22 1 169 10.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  20. Pradhan P. Jana K. Ghosh S. Debnath B. Rout S.K. Rai V.K. Kar B. Kar D. Ghosh G. Rath G. Recent advances in bioactive flavonoids-based nanotherapeutics as promising neuroprotectants in epilepsy. Curr. Aging Sci. 2025 18 10.2174/0118746098369369250119112935
    [Google Scholar]
  21. Jacob S. Nair A.B. Shah J. Gupta S. Boddu S.H.S. Sreeharsha N. Joseph A. Shinu P. Morsy M.A. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—An overview on recent advances. Pharmaceutics 2022 14 3 533 10.3390/pharmaceutics14030533 35335909
    [Google Scholar]
  22. Dash P. Halder J. Rajwar T.K. Pradhan D. Das C. Rai V. Kar B. Ghosh G. Rath G. Pharmacokinetics of nanoparticles for infectious diseases. In:Applications of Nanotherapeutics and Nanotheranostics in managing Infectious Diseases Elsevier 2025 649 663
    [Google Scholar]
  23. Mahanty R. Dubey D. Pradhan D. Rai V. Rajwar T.K. Saha I. Satpathy B. Halder J. Mishra A. Rout S.R. Dash P. Kar B. Das C. Ghosh G. Rath G. In silico and therapeutic efficacy of glycyrrhizin‐based silver nanoparticles against bacteria related to periodontitis. ChemistrySelect 2025 10 1 202405251 10.1002/slct.202405251
    [Google Scholar]
  24. Salvioni L. Morelli L. Ochoa E. Labra M. Fiandra L. Palugan L. Prosperi D. Colombo M. The emerging role of nanotechnology in skincare. Adv. Colloid Interface Sci. 2021 293 102437 10.1016/j.cis.2021.102437 34023566
    [Google Scholar]
  25. Ellison C.A. Tankersley K.O. Obringer C.M. Carr G.J. Manwaring J. Rothe H. Duplan H. Géniès C. Grégoire S. Hewitt N.J. Jamin C.J. Klaric M. Lange D. Rolaki A. Schepky A. Partition coefficient and diffusion coefficient determinations of 50 compounds in human intact skin, isolated skin layers and isolated stratum corneum lipids. Toxicol. In Vitro 2020 69 104990 10.1016/j.tiv.2020.104990 32882340
    [Google Scholar]
  26. Alam M. Mishra A. Yadav K.S. Pradhan D. Kar B. Ghosh G. Rath G. Rai V.K. Development and evaluation of dutasteride nanoemulgel for the topical delivery against androgenic alopecia. Pharm. Nanotechnol. 2024 12 5 459 470 10.2174/0122117385269151231031161411 38173065
    [Google Scholar]
  27. Ojha B. Jain V.K. Gupta S. Talegaonkar S. Jain K. Nanoemulgel: A promising novel formulation for treatment of skin ailments. Polym. Bull. 2022 79 7 4441 4465 10.1007/s00289‑021‑03729‑3
    [Google Scholar]
  28. Keck C.M. Specht D. Brüßler J. Influence of lipid matrix composition on biopharmaceutical properties of lipid nanoparticles. J. Control. Release 2021 338 149 163 10.1016/j.jconrel.2021.08.016 34389366
    [Google Scholar]
  29. Kang Y. Zhang S. Wang G. Yan Z. Wu G. Tang L. Wang W. Nanocarrier-based transdermal drug delivery systems for dermatological therapy. Pharmaceutics 2024 16 11 1384 10.3390/pharmaceutics16111384 39598508
    [Google Scholar]
  30. Ahmad A. Ahsan H. Lipid-based formulations in cosmeceuticals and biopharmaceuticals. Biomed. Dermatol. 2020 4 1 12 10.1186/s41702‑020‑00062‑9
    [Google Scholar]
  31. Zoabi A. Touitou E. Margulis K. Recent advances in nanomaterials for dermal and transdermal applications. Colloids and Interfaces 2021 5 1 18 10.3390/colloids5010018
    [Google Scholar]
  32. Patel D Patel B Thakkar H. Lipid based nanocarriers: Promising drug delivery system for topical application. Eur J Lipid Sci Technol 2021 123 5 2000264 10.1002/ejlt.202000264
    [Google Scholar]
  33. Plaza-Oliver M. Santander-Ortega M.J. Lozano M.V. Current approaches in lipid-based nanocarriers for oral drug delivery. Drug Deliv. Transl. Res. 2021 11 2 471 497 10.1007/s13346‑021‑00908‑7 33528830
    [Google Scholar]
  34. Sharma P. Kaul S. Jain N. Pandey M. Nagaich U. Enhanced skin penetration and efficacy: First and second generation lipoidal nanocarriers in skin cancer therapy. AAPS PharmSciTech 2024 25 6 170 10.1208/s12249‑024‑02884‑w 39044049
    [Google Scholar]
  35. Rodrigues L.B.O. Lima F.A. Alves C.P.B. Martins-Santos E. Aguiar M.M.G. Oliveira C.A. Oréfice R.L. Ferreira L.A.M. Goulart G.A.C. Ion pair strategy in solid lipid nanoparticles: A targeted approach to improve epidermal targeting with controlled adapalene release, resulting reduced skin irritation. Pharm. Res. 2020 37 8 148 10.1007/s11095‑020‑02866‑0 32681288
    [Google Scholar]
  36. Saeedi M. Morteza-Semnani K. Akbari J. Hajheydari Z. Goodarzi A. Rostamkalaei S.S. Hashemi S.M.H. Rahimnia S.M. Green formulation of spironolactone loaded chitosan-coated nano lipid carrier for treatment of acne vulgaris: a randomized double-blind clinical trial. Adv. Pharm. Bull. 2024 14 1 161 175 38585452
    [Google Scholar]
  37. Pinto F. de Barros D.P.C. Reis C. Fonseca L.P. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design. J. Mol. Liq. 2019 293 111468 10.1016/j.molliq.2019.111468
    [Google Scholar]
  38. Weinstein A. Koren A. Sprecher E. Zur E. Mehrabi J.N. Artzi O. The combined effect of tranilast 8% liposomal gel on the final cosmesis of acne scarring in patients concomitantly treated by isotretinoin: Prospective, double‐blind, split‐face study. Clin. Exp. Dermatol. 2020 45 1 41 47 10.1111/ced.14032 31260124
    [Google Scholar]
  39. Alam A. Mustafa G. Agrawal G.P. Hashmi S. Khan R.A. Aba Alkhayl F.F. Ullah Z. Ali M.S. Elkirdasy A.F. Khan S. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J. Drug Deliv. Sci. Technol. 2022 71 103277 10.1016/j.jddst.2022.103277
    [Google Scholar]
  40. Ghasemiyeh P. Moradishooli F. Daneshamouz S. Heidari R. Niroumand U. Mohammadi-Samani S. Optimization, characterization, and follicular targeting assessment of tretinoin and bicalutamide loaded niosomes. Sci. Rep. 2023 13 1 20023 10.1038/s41598‑023‑47302‑6 37973805
    [Google Scholar]
  41. Chen Y. Feng X. Meng S. Site-specific drug delivery in the skin for the localized treatment of skin diseases. Expert Opin. Drug Deliv. 2019 16 8 847 867 10.1080/17425247.2019.1645119 31311345
    [Google Scholar]
  42. Badawi N. El-Say K. Attia D. El-Nabarawi M. Elmazar M. Teaima M. Development of pomegranate extract-loaded solid lipid nanoparticles: Quality by design approach to screen the variables affecting the quality attributes and characterization. ACS Omega 2020 5 34 21712 21721 10.1021/acsomega.0c02618 32905321
    [Google Scholar]
  43. Safta D.A. Bogdan C. Moldovan M.L. SLNs and NLCs for skin applications: Enhancing the bioavailability of natural bioactives. Pharmaceutics 2024 16 10 1270 10.3390/pharmaceutics16101270 39458602
    [Google Scholar]
  44. Varma S. Dey S. Palanisamy D. Cellular uptake pathways of nanoparticles: Process of endocytosis and factors affecting their fate. Curr. Pharm. Biotechnol. 2022 23 5 679 706 10.2174/1389201022666210714145356 34264182
    [Google Scholar]
  45. Chutoprapat R. Kopongpanich P. Chan L.W. A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: Topical delivery of phytochemicals for the treatment of Acne Vulgaris. Molecules 2022 27 11 3460 10.3390/molecules27113460 35684396
    [Google Scholar]
  46. Pawar R. Dawre S. Solid lipid nanoparticles dispersed topical hydrogel for Co-delivery of adapalene and minocycline for acne treatment. J. Drug Deliv. Sci. Technol. 2023 80 104149 10.1016/j.jddst.2023.104149
    [Google Scholar]
  47. Gupta S. Wairkar S. Bhatt L.K. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne. J. Microencapsul. 2020 37 8 557 565 10.1080/02652048.2020.1823499 32924680
    [Google Scholar]
  48. Nautiyal A. Wairkar S. A reduced dose of Azelaic acid-loaded solid lipid nanoparticles for treatment of hyperpigmentation: In vitro characterization and cell line studies. J. Drug Deliv. Sci. Technol. 2023 80 104158 10.1016/j.jddst.2023.104158
    [Google Scholar]
  49. Parua P. Ghosh S. Jana K. Seth A. Debnath B. Rout S.K. Sarangi M.K. Dash R. Halder J. Rajwar T.K. Therapeutic potential of neutralizing monoclonal antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. Curr. Pharm. Des. 2024 31 10 753 773 10.2174/0113816128334441241108050528 39543801
    [Google Scholar]
  50. Fahimnia F. Nemattalab M. Hesari Z. Development and characterization of a topical gel, containing lavender (Lavandula angustifolia) oil loaded solid lipid nanoparticles. BMC Complement. Med. Ther. 2024 24 1 155 10.1186/s12906‑024‑04440‑2 38589838
    [Google Scholar]
  51. Viegas C. Patrício A.B. Prata J.M. Nadhman A. Chintamaneni P.K. Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023 15 6 1593 10.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  52. Ferreira K.C.B. Valle A.B.C.S. Paes C.Q. Tavares G.D. Pittella F. Nanostructured lipid carriers for the formulation of topical anti-inflammatory nanomedicines based on natural substances. Pharmaceutics 2021 13 9 1454 10.3390/pharmaceutics13091454 34575531
    [Google Scholar]
  53. Xu Y. Fourniols T. Labrak Y. Préat V. Beloqui A. des Rieux A. Surface modification of lipid-based nanoparticles. ACS Nano 2022 16 5 7168 7196 10.1021/acsnano.2c02347 35446546
    [Google Scholar]
  54. Tenchov R. Hughes K.J. Ganesan M. Iyer K.A. Ralhan K. Lotti Diaz L.M. Bird R.E. Ivanov J.M. Zhou Q.A. Transforming medicine: Cutting-edge applications of nanoscale materials in drug delivery. ACS Nano 2025 19 4 4011 4038 10.1021/acsnano.4c09566 39823199
    [Google Scholar]
  55. Ahsan A. Thomas N. Barnes T.J. Subramaniam S. Loh T.C. Joyce P. Prestidge C.A. Lipid nanocarriers-enabled delivery of antibiotics and antimicrobial adjuvants to overcome bacterial biofilms. Pharmaceutics 2024 16 3 396 10.3390/pharmaceutics16030396 38543290
    [Google Scholar]
  56. Elmowafy M. Shalaby K. Ali H.M. Alruwaili N.K. Salama A. Ibrahim M.F. Akl M.A. Ahmed T.A. Impact of nanostructured lipid carriers on dapsone delivery to the skin: In vitro and in vivo studies. Int. J. Pharm. 2019 572 118781 10.1016/j.ijpharm.2019.118781 31715347
    [Google Scholar]
  57. Zhong J. Zhao N. Song Q. Du Z. Shu P. Topical retinoids: Novel derivatives, nano lipid‐based carriers, and combinations to improve chemical instability and skin irritation. J. Cosmet. Dermatol. 2024 23 10 3102 3115 10.1111/jocd.16415 38952060
    [Google Scholar]
  58. Malik D.S. Kaur G. Exploring therapeutic potential of azelaic acid loaded NLCs for the treatment of acne vulgaris. J. Drug Deliv. Sci. Technol. 2020 55 101418 10.1016/j.jddst.2019.101418
    [Google Scholar]
  59. Dragicevic N. Maibach H.I. Liposomes and other nanocarriers for the treatment of acne vulgaris: Improved therapeutic efficacy and skin tolerability. Pharmaceutics 2024 16 3 309 10.3390/pharmaceutics16030309 38543203
    [Google Scholar]
  60. Safaei M. Khalighi F. Behabadi F.A. Abpeikar Z. Goodarzi A. Kouhpayeh S.A. Najafipour S. Ramezani V. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance. Nanomedicine 2023 18 24 1745 1768 10.2217/nnm‑2023‑0176 37965906
    [Google Scholar]
  61. Şahin Bektay H. Sağıroğlu A.A. Bozali K. Güler E.M. Güngör S. The design and optimization of ceramide NP-loaded liposomes to restore the skin barrier. Pharmaceutics 2023 15 12 2685 10.3390/pharmaceutics15122685 38140026
    [Google Scholar]
  62. Liu X. Falconer R.A. Liposomal nanocarriers to enhance skin delivery of chemotherapeutics in cancer therapy. Bioengineering 2025 12 2 133 10.3390/bioengineering12020133 40001653
    [Google Scholar]
  63. Guillot A.J. Martínez-Navarrete M. Garrigues T.M. Melero A. Skin drug delivery using lipid vesicles: A starting guideline for their development. J. Control. Release 2023 355 624 654 10.1016/j.jconrel.2023.02.006 36775245
    [Google Scholar]
  64. Wu W. Wang Z. Wu Y. Wu H. Chen T. Xue Y. Wang Y. Jiang C. Shen C. Liu L. Zhu H. Liu Q. Mechanisms of penetration enhancement and transport utilizing skin keratine liposomes for the topical delivery of Licochalcone A. Molecules 2022 27 8 2504 10.3390/molecules27082504 35458701
    [Google Scholar]
  65. Pourtalebi Jahromi L. Rothammer M. Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv. Drug Deliv. Rev. 2023 200 115028 10.1016/j.addr.2023.115028 37517778
    [Google Scholar]
  66. Arooj A. Rehman A.U. Iqbal M. Naz I. Alhodaib A. Ahmed N. Development of adapalene loaded liposome based gel for acne. Gels 2023 9 2 135 10.3390/gels9020135 36826305
    [Google Scholar]
  67. Alvi S.B. Rajalakshmi P.S. Jogdand A. Sanjay A.Y. B V. John R. Rengan A.K. Iontophoresis mediated localized delivery of liposomal gold nanoparticles for photothermal and photodynamic therapy of acne. Biomater. Sci. 2021 9 4 1421 1430 10.1039/D0BM01712D 33398318
    [Google Scholar]
  68. Tsai M.J. Lin C.Y. Trousil J. Sung C.T. Lee M.H. Fang J.Y. Yang S.C. Proteinase K/retinoic acid-loaded cationic liposomes as multifunctional anti-acne therapy to disorganize biofilm and regulate keratinocyte proliferation. Int. J. Nanomedicine 2023 18 3879 3896 10.2147/IJN.S416966 37483315
    [Google Scholar]
  69. Anestopoulos I. Kiousi D.E. Klavaris A. Galanis A. Salek K. Euston S.R. Pappa A. Panayiotidis M.I. Surface active agents and their health-promoting properties: Molecules of multifunctional significance. Pharmaceutics 2020 12 7 688 10.3390/pharmaceutics12070688 32708243
    [Google Scholar]
  70. Shukla T. Upmanyu N. Agrawal M. Saraf S. Saraf S. Alexander A. Biomedical applications of microemulsion through dermal and transdermal route. Biomed. Pharmacother. 2018 108 1477 1494 10.1016/j.biopha.2018.10.021 30372850
    [Google Scholar]
  71. Qu J. Wan Y. Tian M. Lv W. Microemulsions based on diverse surfactant molecular structure: Comparative analysis and mechanistic study. Processes 2023 11 12 3409 10.3390/pr11123409
    [Google Scholar]
  72. Tessema E.N. Heuschkel S. Shukla A. Neubert R.H.H. Use of Microemulsions for Topical Drug Delivery. Percutaneous Absorption. CRC Press 2021 479 502 10.1201/9780429202971‑36
    [Google Scholar]
  73. Shao B. Sun L. Xu N. Gu H. Ji H. Wu L. Development and evaluation of topical delivery of microemulsions containing adapalene (MEs-Ap) for acne. AAPS PharmSciTech 2021 22 3 125 10.1208/s12249‑021‑01989‑w 33825087
    [Google Scholar]
  74. Badawi N.M. Yehia R.M. Lamie C. Abdelrahman K.A. Attia D.A. Helal D.A. Tackling acne vulgaris by fabrication of tazarotene-loaded essential oil-based microemulsion: In vitro and in vivo evaluation. Int. J. Pharm. X 2023 5 100185 10.1016/j.ijpx.2023.100185 37396622
    [Google Scholar]
  75. Gull A. Ahmed S. Ahmad F.J. Nagaich U. Chandra A. Hydrogel thickened microemulsion; a local cargo for the co- delivery of cinnamaldehyde and berberine to treat acne vulgaris. J. Drug Deliv. Sci. Technol. 2020 58 101835 10.1016/j.jddst.2020.101835
    [Google Scholar]
  76. Salimi A. Zadeh B. Godazgari S. Rahdar A. Development and evaluation of azelaic acid-loaded microemulsion for transfollicular drug delivery through guinea pig skin: A mechanistic study. Adv. Pharm. Bull. 2020 10 2 239 246 10.34172/apb.2020.028 32373492
    [Google Scholar]
  77. Li D. Martini N. Wu Z. Chen S. Falconer J.R. Locke M. Zhang Z. Wen J. Niosomal nanocarriers for enhanced dermal delivery of epigallocatechin gallate for protection against oxidative stress of the skin. Pharmaceutics 2022 14 4 726 10.3390/pharmaceutics14040726 35456560
    [Google Scholar]
  78. Witika B.A. Bassey K.E. Demana P.H. Siwe-Noundou X. Poka M.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. 2022 23 17 9668 10.3390/ijms23179668 36077066
    [Google Scholar]
  79. Sguizzato M. Esposito E. Cortesi R. Lipid-based nanosystems as a tool to overcome skin barrier. Int. J. Mol. Sci. 2021 22 15 8319 10.3390/ijms22158319 34361084
    [Google Scholar]
  80. Rezaeizadeh M. Eskanlou A. Pardakhty A. Pournamdari M. Daneshpajooh M. Preparation and physicochemical characterizations of niosomal benzoyl peroxide and clindamycin phosphate formulation for acne vulgaris. J. Pharm. Innov. 2024 19 1 1 10.1007/s12247‑024‑09807‑z
    [Google Scholar]
  81. Kanpipit N. Thapphasaraphong S. Phupaboon S. Puthongking P. The characteristics and biological activities of niosome‐entrapped salicylic acid‐contained oleoresin from Dipterocarpus alatus for skin product applications. Adv. Pharmacol. Pharm. Sci. 2024 2024 1 1642653 10.1155/2024/1642653 39350790
    [Google Scholar]
  82. Kashani-Asadi-Jafari F. Hadjizadeh A. Niosome-encapsulated doxycycline hyclate for potentiation of acne therapy: Formulation and characterization. Pharm. Nanotechnol. 2022 10 1 56 68 10.2174/2211738510666220224103406 35209832
    [Google Scholar]
  83. Mahajan K. Sharma P. Abbot V. Chauhan K. Ethosomes as a carrier for transdermal drug delivery system: Methodology and recent developments. J. Liposome Res. 2024 34 4 697 714 10.1080/08982104.2024.2339896 38676416
    [Google Scholar]
  84. Cláudia Paiva-Santos A. Gama M. Peixoto D. Sousa-Oliveira I. Ferreira-Faria I. Zeinali M. Abbaspour-Ravasjani S. Mascarenhas-Melo F. Hamishehkar H. Veiga F. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis. Int. J. Pharm. 2022 618 121656 10.1016/j.ijpharm.2022.121656 35278601
    [Google Scholar]
  85. Paiva-Santos A.C. Silva A.L. Guerra C. Peixoto D. Pereira-Silva M. Zeinali M. Mascarenhas-Melo F. Castro R. Veiga F. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm. Res. 2021 38 6 947 970 10.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  86. Gupta M.K. Sansare V. Shrivastava B. Jadhav S. Gurav P. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery. J. Liposome Res. 2022 32 3 211 223 10.1080/08982104.2021.1968430 34727833
    [Google Scholar]
  87. Nair R.S. Billa N. Leong C.O. Morris A.P. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M ® membrane and excised human skin. Pharm. Dev. Technol. 2021 26 2 243 251 10.1080/10837450.2020.1860087 33274672
    [Google Scholar]
  88. Richard C. Cassel S. Blanzat M. Vesicular systems for dermal and transdermal drug delivery. RSC Advances 2021 11 1 442 451 10.1039/D0RA09561C 35423006
    [Google Scholar]
  89. Abu-Huwaij R. Zidan A.N. Unlocking the potential of cosmetic dermal delivery with ethosomes: A comprehensive review. J. Cosmet. Dermatol. 2024 23 1 17 26 10.1111/jocd.15895 37393573
    [Google Scholar]
  90. Kar B. Pradhan D. Halder J. Rai V.K. Ghosh G. Rath G. Antiviral application of carbohydrate polymers: A review. Curr. Pharm. Des. 2023 29 18 1441 1458 10.2174/1381612829666230526142421 37246329
    [Google Scholar]
  91. Ansari SA Qadir A Warsi MH Mujeeb M Aqil M Mir SR Sharma S Ethosomes-based gel formulation of karanjin for treatment of acne vulgaris: In vitro investigations and preclinical assessment. 3 Biotech 2021 11 11 456 10.1007/s13205‑021‑02978‑3 34631355
    [Google Scholar]
  92. Kar B. Rout S.R. Halder J. Mahanty R. Mishra A. Saha I. Rajwar T.K. Dash P. Das C. Pradhan D. Rai V.K. Ghosh G. Rath G. The recent development of luteolin-loaded nanocarrier in targeting cancer. Curr. Pharm. Des. 2024 30 27 2129 2141 10.2174/0113816128313713240628063301 38963114
    [Google Scholar]
  93. Bisht A. Hemrajani C. Upadhyay N. Nidhi P. Rolta R. Rathore C. Gupta G. Dua K. Chellappan D.K. Dev K. Sourirajan A. Aljabali A.A.A. Bakshi H.A. Negi P. Tambuwala M.M. Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne. Ther. Deliv. 2022 13 1 13 29 10.4155/tde‑2021‑0059 34842461
    [Google Scholar]
  94. Yu Z. Lv H. Han G. Ma K. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation. PLoS One 2016 11 7 0159967 10.1371/journal.pone.0159967 27441661
    [Google Scholar]
  95. Khan H.M.S. Tanveer N. Arshad T. Rasool F. Uddin M.N. Kazi M. Encapsulation of alpha arbutin, a depigmenting agent, in nanosized ethosomes: Invitro and invivo human studies. Heliyon 2023 9 9 19326 10.1016/j.heliyon.2023.e19326 37681127
    [Google Scholar]
  96. Alfehaid F.S. Nair A.B. Shah H. Aldhubiab B. Shah J. Mewada V. Jacob S. Attimarad M. Enhanced transdermal delivery of apremilast loaded ethosomes: Optimization, characterization and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2024 91 105211 10.1016/j.jddst.2023.105211
    [Google Scholar]
  97. Li Y. Xu F. Li X. Chen S.Y. Huang L.Y. Bian Y.Y. Wang J. Shu Y.T. Yan G.J. Dong J. Yin S.P. Gu W. Chen J. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability. Int. J. Pharm. 2021 592 119936 10.1016/j.ijpharm.2020.119936 33038455
    [Google Scholar]
  98. Ghangas S. Ashok P.K. Hooda T. Enhancing oral bioavailability of isotretinoin by using solid lipid nanoparticles (SLNs). Indian J. Pharm. Educ. Res. 2024 58 2 453 459 10.5530/ijper.58.2.51
    [Google Scholar]
  99. Sharma S. Kanugo A. Gaikwad J. Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: A quality by design approach. Mater. Technol. 2022 37 8 735 744 10.1080/10667857.2021.1873637
    [Google Scholar]
  100. Aland R. Ganesan M. Rao P. In vivo evaluation of tazarotene solid lipid nanoparticles gel for topical delivery. Int. J. Pharm. Sci. Drug Res. 2019 11 45 50 10.25004/IJPSDR.2019.110107
    [Google Scholar]
  101. Dhillon P. Mirza M.A. Anwer M.K. Alshetaili A.S. Alshahrani S.M. Iqbal Z. Development and optimization of erythromycin-loaded lipid-based gel by Taguchi design: In vitro characterization and antimicrobial evaluation. Braz. J. Pharm. Sci. 2019 55 17395 10.1590/s2175‑97902019000217395
    [Google Scholar]
  102. Lima F.A. Vilela R.V.R. Oréfice R.L. Silva I.R. Reis E.C.O. Carvalho L.A.C. Maria-Engler S.S. Ferreira L.A.M. Goulart G.A.C. Nanostructured lipid carriers enhances the safety profile of tretinoin: in vitro and healthy human volunteers’ studies. Nanomedicine 2021 16 16 1391 1409 10.2217/nnm‑2021‑0031 34085552
    [Google Scholar]
  103. Abid F. Kim S. Savaliya B. Cesari L. Amirmostofian M. Abdella S. Trott D. Page S. Garg S. Targeting Acne: Development of monensin-loaded nanostructured lipid carriers. Int. J. Nanomedicine 2025 20 2181 2204 10.2147/IJN.S497108 39990290
    [Google Scholar]
  104. Patwekar S.L. Pedewad S.R. Gattani S. Development and evaluation of nanostructured lipid carriers-based gel of isotretinoin. Particul. Sci. Technol. 2018 36 7 832 843 10.1080/02726351.2017.1305026
    [Google Scholar]
  105. Fatima N. Rehman S. Nabi B. Baboota S. Ali J. Harnessing nanotechnology for enhanced topical delivery of clindamycin phosphate. J. Drug Deliv. Sci. Technol. 2019 54 101253 10.1016/j.jddst.2019.101253
    [Google Scholar]
  106. Shettigar P. Koland M. Sindhoor S.M. Prabhu A. Formulation and evaluation of clarithromycin loaded nanostructured lipid carriers for the treatment of acne. J. Pharm. Res. Int. 2021 33 26 38 10.9734/jpri/2021/v33i40B32260
    [Google Scholar]
  107. Leelaudomlipi P. Manchun S. Supakdamrongkul P. Sobharaksha P. Preparation of nanostructured lipid carriers (NLCs) loading violacein extract for anti-acne products. Key Eng. Mater. 2021 901 129 136 10.4028/www.scientific.net/KEM.901.129
    [Google Scholar]
  108. Eroğlu İ. Aslan M. Yaman Ü. Gultekinoglu M. Çalamak S. Kart D. Ulubayram K. Liposome-based combination therapy for acne treatment. J. Liposome Res. 2020 30 3 263 273 10.1080/08982104.2019.1630646 31185768
    [Google Scholar]
  109. Madan S. Nehate C. Barman T.K. Rathore A.S. Koul V. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: in vitro and in vivo studies. Drug Dev. Ind. Pharm. 2019 45 3 395 404 10.1080/03639045.2018.1546310 30442066
    [Google Scholar]
  110. Dawre S. Agarwal S. Development and characterization of adapalene loaded microemulsion-based hydrogel for acne treatment adapalene microemulsion. Int. J. Drug Deliv. Control. Release 2023 2 1 38 44 10.55124/jdcr.v2i1.233
    [Google Scholar]
  111. Salimi A. Sharifmakhmalzadeh B. amirabadi F. Design and evaluation of adapalene microemulsion for transfollicular drug delivery through guinea pig skin. J. Cosmet. Dermatol. 2024 23 1 289 295 10.1111/jocd.15933 37462297
    [Google Scholar]
  112. Meenongwa A. Keawbankrud W. Pimsee P. Rattanabun W. Phungsara N. Niosome gels encapsulate green mangosteen peel extract (Garcinia mangostana L.) as an anti-acne-inducing bacterial and anti-inflammatory activity. Creative Science 2024 16 2 254686 10.55674/cs.v16i2.254686
    [Google Scholar]
  113. Habib B.A. Abdeltawab N.F. Salah Ad-Din I. D-optimal mixture design for optimization of topical dapsone niosomes: In vitro characterization and in vivo activity against Cutibacterium acnes. Drug Deliv. 2022 29 1 821 836 10.1080/10717544.2022.2048131 35266431
    [Google Scholar]
  114. Liu R. Li M. Zhu Q. Liu H. Zhang X. Han X. Yu M. Zhou J. Han C. Development and characterization of a hydrogel containing chloramphenicol-loaded binary ethosomes for effective transdermal permeation and treatment acne in rat model. Int. J. Nanomedicine 2025 20 1697 1715 10.2147/IJN.S476937 39931531
    [Google Scholar]
  115. Iskandarsyah I. Apriani E.F. Rosana Y. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne. J. Adv. Pharm. Technol. Res. 2019 10 2 75 80 10.4103/japtr.JAPTR_289_18 31041186
    [Google Scholar]
  116. Superior efficacy of azithromycin and levamisole versus azithromycin alone in the treatment of inflammatory acne vulgaris: An investigator-blind randomized clinical trial on 169 patients NCT01348321 2011 Available from: https://clinicaltrials.gov/study/NCT01348321
  117. A multi-center, double-blind, randomized, placebo-controlled, parallel-group study comparing adapalene gel 0.3% to Differin® (Adapalene Gel 0.3%) and both active treatments to a placebo control in the treatment of acne vulgaris NCT02411942 2015 Available from: https://clinicaltrials.gov/study/NCT02411942
  118. Intralesional injections of triamcinolone for acne vulgaris NCT06170593 2023 Available from: https://clinicaltrials.gov/study/NCT06170593
  119. A phase 3 multi-center, double-blind, randomized, vehicle-controlled study of S6G5T-3 in the treatment of acne vulgaris NCT03761784 2018 Available from: https://clinicaltrials.gov/study/NCT03761784
  120. A long term study of GK530G in subjects with acne vulgaris NCT01910064 2013 Available from: https://clinicaltrials.gov/study/NCT01910064
  121. A prospective, multicenter, randomized, double-blind, vehicle-controlled phase 2 study to evaluate the safety and efficacy of a combination of 3% minocycline and 0.3% adapalene topical foam formulation for the treatment of moderate-to-severe acne (Study FX2016-40) NCT04104685 2019 Available from: https://clinicaltrials.gov/study/NCT04104685
  122. Randomized double-blind study on the benefit of spironolactone for treating acne in adult womam; NCT03334682 2017 Available from: https://clinicaltrials.gov/study/NCT03334682
  123. Efficacy and safety of adapalene 0.3%/benzoyl peroxide 2.5% gel plus doxycycline in severe inflammatory acne (non-nodulocystic) subjects NCT02899000 2016 Available from: https://clinicaltrials.gov/study/NCT02899000
  124. A study of tolerability, safety, and efficacy of DMT310 in patients with acne vulgaris NCT04106778 2019 Available from: https://clinicaltrials.gov/study/NCT04106778
  125. A long-term safety and efficacy study of CD5789 (Trifarotene) 50 μg/g cream in subjects with acne vulgaris NCT02189629 2014 Available from: https://clinicaltrials.gov/study/NCT02189629
  126. A randomized controlled trial of efficiency of moisturizer containing Licochalcone A, Decanediol, L-carnitine, and salicylic acid in reducing relapsing of acne in thai acne subjects NCT04002024 2019 Available from: https://clinicaltrials.gov/study/NCT04002024
  127. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of gevokizumab in subjects with moderate to severe acne vulgaris NCT01498874 2011 Available from: https://clinicaltrials.gov/study/NCT01498874
  128. A randomized, double-blind, vehicle-controlled efficacy and safety study of olumacostat glasaretil gel in subjects with acne vulgaris NCT03073486 2017 Available from: https://clinicaltrials.gov/study/NCT03073486
  129. An open-label study to investigate the efficacy and tolerability of Aczone gel 7.5% in the treatment of acne vulgaris in men and women with skin of color NCT03681470 2018 Available from: https://clinicaltrials.gov/study/NCT03681470
  130. A phase 3, multi-center, randomized, double-blind, vehicle-controlled study to evaluate the efficacy and safety of topical administration of minocycline hydrochloride foam (4%) in the treatment of moderate-to-severe acne vulgaris NCT04960930 2021 Available from: https://clinicaltrials.gov/study/NCT04960930
  131. A phase 3, multicenter, randomized, double-blind, vehicle-controlled, parallel-group clinical study comparing the efficacy and safety of IDP-126 gel in the treatment of acne vulgaris NCT04214652 2019 Available from: https://clinicaltrials.gov/study/NCT04214652
  132. Benzaknen® 5% gel in combination with dermotivin® soft liquid soap and non-comedogenic Cetaphil® dermacontrol moisturizer SPF30 in the treatment of mild-to-moderate acne vulgaris NCT02589405 2015 Available from: https://clinicaltrials.gov/study/NCT02589405
  133. An open-label, long-term extension study to evaluate the safety of cortexolone 17α-propionate (CB-03-01) cream, 1% applied twice daily in subjects with acne vulgaris NCT02682264 2016 Available from: https://clinicaltrials.gov/study/NCT02682264
  134. A multi-center open-label evaluation of the safety of sarecycline tablets in the treatment of acne vulgaris NCT02413346 2015 Available from: https://clinicaltrials.gov/study/NCT02413346
  135. A safety and efficacy study to compare dapsone dermal gel with vehicle control in patients with acne vulgaris NCT01974141 2013 Available from: https://clinicaltrials.gov/study/NCT01974141
  136. Evaluation of the effectiveness and tolerance of Effaclar ultra-concentrated serum in women with mandibular acne for 3 months, including 2 months of treatment NCT05457621 2022 Available from: https://clinicaltrials.gov/study/NCT05457621
  137. Randomized, open-label study to evaluate the efficacy and safety of Doryx tablets compared to doxycycline hyclate in the treatment of acne vulgaris NCT00635609 2008 Available from: https://clinicaltrials.gov/study/NCT00635609
  138. A phase 2, randomized, double-blind, vehicle-controlled, parallel-group, multicenter study to evaluate the safety and efficacy of CLS001 topical gel versus vehicle applied once daily for 12 weeks to female subjects with moderate to severe acne vulgaris NCT02571998 2015 Available from: https://clinicaltrials.gov/study/NCT02571998
  139. Innate immunity in acne vulgaris NCT01694433 2012 Available from: https://clinicaltrials.gov/study/NCT01694433
  140. Monocentric study prospective, open and, non-controlled for to evaluate the effectiveness, and tolerability, the safety of association of clindamycin phosphate 1.2% and tretinoin 0.025% in the treatment of acne vulgaris mild to moderate when used once daily for 12 weeks NCT00838812 2009 Available from: https://clinicaltrials.gov/study/NCT00838812
  141. A clinical study to assess the barrier impact of winlevi NCT06415292 2024 Available from: https://clinicaltrials.gov/study/NCT06415292
  142. A 12-week, randomized, double-blind, multicenter study comparing the clinical efficacy and safety of azelaic acid 15% gel (SH H 655 BA) with its vehicle (SH H 655 PBA) in patients with mild to moderate acne NCT00031096 2002 Available from: https://clinicaltrials.gov/study/NCT00031096
  143. Efficacy of microneedling with topical vitamin C in treatment of acne scarring NCT03522922 2018 Available from: https://clinicaltrials.gov/study/NCT03522922
  144. Clinical study for the effectiveness and safety of topical lupeol in mild to moderate acne NCT02205892 2014 Available from: https://clinicaltrials.gov/study/NCT02205892
  145. An evaluator-blind, randomized, vehicle-controlled efficiency of adjunctive use of a moisturizer containing Licochalcone A, L-carnitine, and 1,2-decanediol with adapalene gel for improvement local tolerance in Thai acne subjects NCT02173054 2014 Available from: https://clinicaltrials.gov/study/NCT02173054
  146. The use of Onexton in moderate acne vulgaris for patients with skin of color NCT03402893 2018 Available from: https://clinicaltrials.gov/study/NCT03402893
  147. A study of Safety and efficacy of topical methyl aminolevulinate 8mg/g with and without occlusion followed by red light exposure in subjects with facial acne NCT00833183 2009 Available from: https://clinicaltrials.gov/study/NCT00833183
  148. A Study of the revlite q-switched neodymium: Yttrium-aluminumgarnet Nd:YAG laser for the treatment for acne scars in Fitzpatrick skin types III-VI NCT01221922 2010 Available from: https://clinicaltrials.gov/study/NCT01221922
  149. A multicenter, randomized, double-blind, placebo-controlled clinical trial to determine the effects of (doxycycline hyclate 20mg)tablets [Periostat(R)] administered twice daily for the treatment of acne rosacea NCT00041977 2002 Available from: https://clinicaltrials.gov/study/NCT00041977
  150. Efficacy of 45mg oral minocycline (Solodyn) and 45mg oral minocycline (solodyn) plus 15% azelaic acid (Finacea) in the treatment of acne rosacea NCT05014906 2010 Available from: https://clinicaltrials.gov/study/NCT05014906
  151. Ahmad J. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders. Cosmetics 2021 8 3 84 10.3390/cosmetics8030084
    [Google Scholar]
  152. Ricci A. Stefanuto L. Gasperi T. Bruni F. Tofani D. Lipid nanovesicles for antioxidant delivery in skin: Liposomes, ufasomes, ethosomes, and niosomes. Antioxidants 2024 13 12 1516 10.3390/antiox13121516 39765844
    [Google Scholar]
  153. Cao Y. Long J. Liu L. He T. Jiang L. Zhao C. Li Z. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci. 2017 186 33 42 10.1016/j.lfs.2017.08.003 28782531
    [Google Scholar]
  154. Okoro O.E. Adenle A. Ludovici M. Truglio M. Marini F. Camera E. Lipidomics of facial sebum in the comparison between acne and non-acne adolescents with dark skin. Sci. Rep. 2021 11 1 16591 10.1038/s41598‑021‑96043‑x 34400712
    [Google Scholar]
  155. Folle C. Díaz-Garrido N. Sánchez-López E. Marqués A.M. Badia J. Baldomà L. Espina M. Calpena A.C. García M.L. Surface-modified multifunctional thymol-loaded biodegradable nanoparticles for topical acne treatment. Pharmaceutics 2021 13 9 1501 10.3390/pharmaceutics13091501 34575577
    [Google Scholar]
  156. Vatiwutipong P. Vachmanus S. Noraset T. Tuarob S. Artificial intelligence in cosmetic dermatology: A systematic literature review. IEEE Access 2023 11 71407 71425 10.1109/ACCESS.2023.3295001
    [Google Scholar]
  157. El-Kayal M. Hatem S. A comparative study between nanostructured lipid carriers and invasomes for the topical delivery of luteolin: Design, optimization and pre-clinical investigations for psoriasis treatment. J. Drug Deliv. Sci. Technol. 2024 97 105740 10.1016/j.jddst.2024.105740
    [Google Scholar]
  158. Nayeem U. Garg A. Das A.K. Shree N. Yasmeen Sultana Y. Ahmed S. Khan M.A. Development and evaluation of the novel chitosan-based 1% clindamycin & 2.5% benzoyl peroxide transferosomal gel for topical acne treatment. J. Drug Deliv. Sci. Technol. 2023 89 105002 10.1016/j.jddst.2023.105002
    [Google Scholar]
  159. Zakaria F. Ashari S.E. Mat Azmi I.D. Abdul Rahman M.B. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases. J. Drug Deliv. Sci. Technol. 2022 68 103097 10.1016/j.jddst.2022.103097
    [Google Scholar]
  160. Chutoprapat R. Witarat J. Jongpanyangarm P. Mang Sung Thluai L. Khankaew P. Wah Chan L. Development of solid lipid microparticles (SLMs) containing asiatic acid for topical treatment of acne: Characterization, stability, in vitro and in vivo anti-acne assessment. Int. J. Pharm. 2024 654 123980 10.1016/j.ijpharm.2024.123980 38460769
    [Google Scholar]
  161. Su Q. Hu X. Yang M. He H. Jia Y. Lipidomic analysis of facial skin surface lipids in acne in young women. Int. J. Cosmet. Sci. 2024 46 3 424 436 10.1111/ics.12942 38229406
    [Google Scholar]
  162. Manita P.G. Garcia-Orue I. Santos-Vizcaino E. Hernandez R.M. Igartua M. 3D bioprinting of functional skin substitutes: From current achievements to future goals. Pharmaceuticals 2021 14 4 362 10.3390/ph14040362 33919848
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128404408250707111455
Loading
/content/journals/cpd/10.2174/0113816128404408250707111455
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: permeability ; lipid nanocarrier ; skin penetration ; follicular targeting ; stratum corneum ; Acne
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test