Skip to content
2000
Volume 32, Issue 7
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

Acne vulgaris is a prevalent dermatological condition resulting from inflammation, follicular hyperkeratinization, and bacterial growth. Standard treatments, whether topical or oral, frequently encounter challenges such as limited skin penetration, drug instability, and undesirable side effects. The report found that lipid-based nanocarriers have emerged as a promising alternative, demonstrating the potential for enhanced therapeutic effectiveness, better skin bioavailability, controlled drug release, and targeted delivery specifically to sebaceous glands, which help minimize systemic side effects.

Aim

This review article aims to explore the therapeutic potential of various lipid nanocarriers, including Solid Lipid Nanoparticles (SLNs), Nanostructured Lipid Carriers (NLCs), liposomes, microemulsions, niosomes, and ethosomes particularly by examining the mechanisms through which they penetrate the stratum corneum and deeper skin layers to enhance drug delivery.

Methodology

This review comprehensively surveys lipid-based nanocarriers for acne vulgaris treatment, drawing from a systematic literature search across Google Scholar, Science Direct, Scopus, Web of Science, and PubMed for publications between 2015 and 2025. The search strategy employed keywords such as “lipid nanocarrier,” “acne vulgaris,” “animal models,” or “preclinical studies,” and “clinical trials” to capture the research landscape.

Results

The review compiles evidence from multiple preclinical experiments and clinical trials regarding the effectiveness of lipid nanocarriers in managing acne. It explores the different pathways these lipid nanocarriers use to permeate the skin and reach target sites. Additionally, it also covers different patents filed by various researchers focusing on the application of lipid nanocarriers for acne management.

Conclusion

Lipid nanocarriers represent a significant advancement in dermatological drug delivery, particularly for acne management. By leveraging various skin penetration mechanisms to improve drug targeting to the pilosebaceous unit, they offer potential for more effective treatment compared to conventional methods. While promising, ongoing research and development are necessary to overcome current limitations and fully harness the potential of lipid nanocarriers in clinical practice.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128404408250707111455
2025-07-17
2026-01-31
Loading full text...

Full text loading...

References

  1. VasamM. KorutlaS. BoharaR.A. Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances.Biochem. Biophys. Rep.20233610157810.1016/j.bbrep.2023.101578 38076662
    [Google Scholar]
  2. LiuL. XueY. ChenY. Acne and risk of mental disorders: A two-sample Mendelian randomization study based on large genome-wide association data.Front. Public Health202311115652210.3389/fpubh.2023.1156522 37064666
    [Google Scholar]
  3. MelnikB.C. Acne transcriptomics: Fundamentals of acne pathogenesis and isotretinoin treatment.Cells20231222260010.3390/cells12222600 37998335
    [Google Scholar]
  4. LiL. ZhangJ. ChengW. DiF. WangC. AnQ. Saponins of Paris polyphylla for the improvement of acne: Anti-inflammatory, antibacterial, antioxidant and immunomodulatory effects.Molecules2024298179310.3390/molecules29081793 38675613
    [Google Scholar]
  5. DainichiT. IwataM. Inflammatory loops in the epithelial–immune microenvironment of the skin and skin appendages in chronic inflammatory diseases.Front. Immunol.202314127427010.3389/fimmu.2023.1274270 37841246
    [Google Scholar]
  6. ElsaieM.L. AlyD.G. The immunogenetics of acne.In: The Immunogenetics of Dermatologic Diseases.Springer202213715410.1007/978‑3‑030‑92616‑8_6
    [Google Scholar]
  7. CondròG. GueriniM. CastelloM. PeruginiP. Acne vulgaris, atopic dermatitis and rosacea: The role of the skin microbiota—a review.Biomedicines20221010252310.3390/biomedicines10102523 36289784
    [Google Scholar]
  8. BoonchayaP. RojhirunsakoolS. KamanamoolN. Minimum contact time of 1.25%, 2.5%, 5%, and 10% benzoyl peroxide for a bactericidal effect against Cutibacterium acnes.Clin. Cosmet. Investig. Dermatol.20221540340910.2147/CCID.S359055 35300432
    [Google Scholar]
  9. AgountafI. Optimizing the use of topical retinoids in Moroccan patients with acne.PhD Thesis, National University of Pharmacy of Ministry of Healthcare of Ukraine, Kharkiv,2023
    [Google Scholar]
  10. AlmemanA. Evaluating the efficacy and safety of alpha-hydroxy acids in dermatological practice: A comprehensive clinical and legal review.Clin. Cosmet. Investig. Dermatol.2024171661168510.2147/CCID.S453243 39050562
    [Google Scholar]
  11. BonamonteD. De MarcoA. GiuffridaR. Topical antibiotics in the dermatological clinical practice: Indications, efficacy, and adverse effects.Dermatol. Ther.20203361382410.1111/dth.13824 32531105
    [Google Scholar]
  12. OdoriciG. MonfrecolaG. BettoliV. Tetracyclines and photosensitive skin reactions: A narrative review.Dermatol. Ther.20213441497810.1111/dth.14978 33991382
    [Google Scholar]
  13. SitohangI.B.S. Isotretinoin for treating acne vulgaris.Int J Appl Pharm2021132202510.22159/ijap.2021v13i2.40045
    [Google Scholar]
  14. DhuratR. ShuklaD. LimR.K. WambierC.G. GorenA. Spironolactone in adolescent acne vulgaris.Dermatol. Ther.20213411468010.1111/dth.14680 33326148
    [Google Scholar]
  15. BagatinE. RochaM.A.D. FreitasT.H.P. CostaC.S. Treatment challenges in adult female acne and future directions.Expert Rev. Clin. Pharmacol.202114668770110.1080/17512433.2021.1917376 33957838
    [Google Scholar]
  16. GraberE.M. Treating acne with the tetracycline class of antibiotics: A review.Dermatol. Rev.20212632133010.1002/der2.49
    [Google Scholar]
  17. Stein GoldL. KwongP. DraelosZ. Impact of topical vehicles and cutaneous delivery technologies on patient adherence and treatment outcomes in acne and rosacea.J. Clin. Aesthet. Dermatol.20231652634 37288283
    [Google Scholar]
  18. OliveiraR. AlmeidaI.F. Patient-centric design of topical dermatological medicines.Pharmaceuticals202316461710.3390/ph16040617 37111373
    [Google Scholar]
  19. ChehelgerdiM. ChehelgerdiM. AllelaO.Q.B. Progressing nanotechnology to improve targeted cancer treatment: Overcoming hurdles in its clinical implementation.Mol. Cancer202322116910.1186/s12943‑023‑01865‑0 37814270
    [Google Scholar]
  20. PradhanP. JanaK. GhoshS. Recent advances in bioactive flavonoids-based nanotherapeutics as promising neuroprotectants in epilepsy.Curr. Aging Sci.20251810.2174/0118746098369369250119112935
    [Google Scholar]
  21. JacobS. NairA.B. ShahJ. Lipid nanoparticles as a promising drug delivery carrier for topical ocular therapy—an overview on recent advances.Pharmaceutics202214353310.3390/pharmaceutics14030533 35335909
    [Google Scholar]
  22. DashP. HalderJ. RajwarT.K. Pharmacokinetics of nanoparticles for infectious diseases.In: Applications of Nanotherapeutics and Nanotheranostics in Managing Infectious Diseases.Elsevier2025649663
    [Google Scholar]
  23. MahantyR. DubeyD. PradhanD. In silico and therapeutic efficacy of glycyrrhizin‐based silver nanoparticles against bacteria related to periodontitis.ChemistrySelect202510120240525110.1002/slct.202405251
    [Google Scholar]
  24. SalvioniL. MorelliL. OchoaE. The emerging role of nanotechnology in skincare.Adv. Colloid Interface Sci.202129310243710.1016/j.cis.2021.102437 34023566
    [Google Scholar]
  25. EllisonC.A. TankersleyK.O. ObringerC.M. Partition coefficient and diffusion coefficient determinations of 50 compounds in human intact skin, isolated skin layers and isolated stratum corneum lipids.Toxicol. In Vitro20206910499010.1016/j.tiv.2020.104990 32882340
    [Google Scholar]
  26. AlamM. MishraA. YadavK.S. Development and evaluation of dutasteride nanoemulgel for the topical delivery against Androgenic alopecia.Pharm. Nanotechnol.202412545947010.2174/0122117385269151231031161411 38173065
    [Google Scholar]
  27. OjhaB. JainV.K. GuptaS. TalegaonkarS. JainK. Nanoemulgel: A promising novel formulation for treatment of skin ailments.Polym. Bull.20227974441446510.1007/s00289‑021‑03729‑3
    [Google Scholar]
  28. KeckC.M. SpechtD. BrüßlerJ. Influence of lipid matrix composition on biopharmaceutical properties of lipid nanoparticles.J. Control. Release202133814916310.1016/j.jconrel.2021.08.016 34389366
    [Google Scholar]
  29. KangY. ZhangS. WangG. Nanocarrier-based transdermal drug delivery systems for dermatological therapy.Pharmaceutics20241611138410.3390/pharmaceutics16111384 39598508
    [Google Scholar]
  30. AhmadA. AhsanH. Lipid-based formulations in cosmeceuticals and biopharmaceuticals.Biomed. Dermatol.2020411210.1186/s41702‑020‑00062‑9
    [Google Scholar]
  31. ZoabiA. TouitouE. MargulisK. Recent advances in nanomaterials for dermal and transdermal applications.Colloids and Interfaces2021511810.3390/colloids5010018
    [Google Scholar]
  32. PatelD. PatelB. ThakkarH. Lipid based nanocarriers: Promising drug delivery system for topical application.Eur. J. Lipid Sci. Technol.20211235200026410.1002/ejlt.202000264
    [Google Scholar]
  33. Plaza-OliverM. Santander-OrtegaM.J. LozanoM.V. Current approaches in lipid-based nanocarriers for oral drug delivery.Drug Deliv. Transl. Res.202111247149710.1007/s13346‑021‑00908‑7 33528830
    [Google Scholar]
  34. SharmaP. KaulS. JainN. PandeyM. NagaichU. Enhanced skin penetration and efficacy: First and second generation lipoidal nanocarriers in skin cancer therapy.AAPS PharmSciTech202425617010.1208/s12249‑024‑02884‑w 39044049
    [Google Scholar]
  35. RodriguesL.B.O. LimaF.A. AlvesC.P.B. Ion pair strategy in solid lipid nanoparticles: A targeted approach to improve epidermal targeting with controlled adapalene release, resulting reduced skin irritation.Pharm. Res.202037814810.1007/s11095‑020‑02866‑0 32681288
    [Google Scholar]
  36. SaeediM. Morteza-SemnaniK. AkbariJ. Green formulation of spironolactone loaded chitosan-coated nano lipid carrier for treatment of acne vulgaris: A randomized double-blind clinical trial.Adv. Pharm. Bull.2024141161175 38585452
    [Google Scholar]
  37. PintoF. de BarrosD.P.C. ReisC. FonsecaL.P. Optimization of nanostructured lipid carriers loaded with retinoids by central composite design.J. Mol. Liq.201929311146810.1016/j.molliq.2019.111468
    [Google Scholar]
  38. WeinsteinA. KorenA. SprecherE. ZurE. MehrabiJ.N. ArtziO. The combined effect of tranilast 8% liposomal gel on the final cosmesis of acne scarring in patients concomitantly treated by isotretinoin: Prospective, double‐blind, split‐face study.Clin. Exp. Dermatol.2020451414710.1111/ced.14032 31260124
    [Google Scholar]
  39. AlamA. MustafaG. AgrawalG.P. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne.J. Drug Deliv. Sci. Technol.20227110327710.1016/j.jddst.2022.103277
    [Google Scholar]
  40. GhasemiyehP. MoradishooliF. DaneshamouzS. HeidariR. NiroumandU. Mohammadi-SamaniS. Optimization, characterization, and follicular targeting assessment of tretinoin and bicalutamide loaded niosomes.Sci. Rep.20231312002310.1038/s41598‑023‑47302‑6 37973805
    [Google Scholar]
  41. ChenY. FengX. MengS. Site-specific drug delivery in the skin for the localized treatment of skin diseases.Expert Opin. Drug Deliv.201916884786710.1080/17425247.2019.1645119 31311345
    [Google Scholar]
  42. BadawiN. El-SayK. AttiaD. El-NabarawiM. ElmazarM. TeaimaM. Development of pomegranate extract-loaded solid lipid nanoparticles: Quality by design approach to screen the variables affecting the quality attributes and characterization.ACS Omega2020534217122172110.1021/acsomega.0c02618 32905321
    [Google Scholar]
  43. SaftaD.A. BogdanC. MoldovanM.L. SLNs and NLCs for skin applications: Enhancing the bioavailability of natural bioactives.Pharmaceutics20241610127010.3390/pharmaceutics16101270 39458602
    [Google Scholar]
  44. VarmaS. DeyS. PalanisamyD. Cellular uptake pathways of nanoparticles: Process of endocytosis and factors affecting their fate.Curr. Pharm. Biotechnol.202223567970610.2174/1389201022666210714145356 34264182
    [Google Scholar]
  45. ChutoprapatR. KopongpanichP. ChanL.W. A mini-review on solid lipid nanoparticles and nanostructured lipid carriers: Topical delivery of phytochemicals for the treatment of acne vulgaris.Molecules20222711346010.3390/molecules27113460 35684396
    [Google Scholar]
  46. PawarR. DawreS. Solid lipid nanoparticles dispersed topical hydrogel for co-delivery of adapalene and minocycline for acne treatment.J. Drug Deliv. Sci. Technol.20238010414910.1016/j.jddst.2023.104149
    [Google Scholar]
  47. GuptaS. WairkarS. BhattL.K. Isotretinoin and α-tocopherol acetate-loaded solid lipid nanoparticle topical gel for the treatment of acne.J. Microencapsul.202037855756510.1080/02652048.2020.1823499 32924680
    [Google Scholar]
  48. NautiyalA. WairkarS. A reduced dose of Azelaic acid-loaded solid lipid nanoparticles for treatment of hyperpigmentation: In vitro characterization and cell line studies.J. Drug Deliv. Sci. Technol.20238010415810.1016/j.jddst.2023.104158
    [Google Scholar]
  49. ParuaP. GhoshS. JanaK. Therapeutic potential of neutralizing monoclonal antibodies (nMAbs) against SARS-CoV-2 Omicron Variant.Curr. Pharm. Des.2024311075377310.2174/0113816128334441241108050528 39543801
    [Google Scholar]
  50. FahimniaF. NemattalabM. HesariZ. Development and characterization of a topical gel, containing lavender (Lavandula angustifolia) oil loaded solid lipid nanoparticles.BMC Complement Med Ther202424115510.1186/s12906‑024‑04440‑2 38589838
    [Google Scholar]
  51. ViegasC. PatrícioA.B. PrataJ.M. NadhmanA. ChintamaneniP.K. FonteP. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review.Pharmaceutics2023156159310.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  52. FerreiraK.C.B. ValleA.B.C.S. PaesC.Q. TavaresG.D. PittellaF. Nanostructured lipid carriers for the formulation of topical anti-inflammatory nanomedicines based on natural substances.Pharmaceutics2021139145410.3390/pharmaceutics13091454 34575531
    [Google Scholar]
  53. XuY. FourniolsT. LabrakY. PréatV. BeloquiA. des RieuxA. Surface modification of lipid-based nanoparticles.ACS Nano20221657168719610.1021/acsnano.2c02347 35446546
    [Google Scholar]
  54. TenchovR. HughesK.J. GanesanM. Transforming medicine: Cutting-edge applications of nanoscale materials in drug delivery.ACS Nano20251944011403810.1021/acsnano.4c09566 39823199
    [Google Scholar]
  55. AhsanA. ThomasN. BarnesT.J. Lipid nanocarriers-enabled delivery of antibiotics and antimicrobial adjuvants to overcome bacterial biofilms.Pharmaceutics202416339610.3390/pharmaceutics16030396 38543290
    [Google Scholar]
  56. ElmowafyM. ShalabyK. AliH.M. Impact of nanostructured lipid carriers on dapsone delivery to the skin: In vitro and in vivo studies.Int. J. Pharm.201957211878110.1016/j.ijpharm.2019.118781 31715347
    [Google Scholar]
  57. ZhongJ. ZhaoN. SongQ. DuZ. ShuP. Topical retinoids: Novel derivatives, nano lipid‐based carriers, and combinations to improve chemical instability and skin irritation.J. Cosmet. Dermatol.202423103102311510.1111/jocd.16415 38952060
    [Google Scholar]
  58. MalikD.S. KaurG. Exploring therapeutic potential of azelaic acid loaded NLCs for the treatment of acne vulgaris.J. Drug Deliv. Sci. Technol.20205510141810.1016/j.jddst.2019.101418
    [Google Scholar]
  59. DragicevicN. MaibachH.I. Liposomes and other nanocarriers for the treatment of acne vulgaris: Improved therapeutic efficacy and skin tolerability.Pharmaceutics202416330910.3390/pharmaceutics16030309 38543203
    [Google Scholar]
  60. SafaeiM. KhalighiF. BehabadiF.A. Liposomal nanocarriers containing siRNA as small molecule-based drugs to overcome cancer drug resistance.Nanomedicine202318241745176810.2217/nnm‑2023‑0176 37965906
    [Google Scholar]
  61. Şahin BektayH. SağıroğluA.A. BozaliK. GülerE.M. GüngörS. The design and optimization of ceramide NP-loaded liposomes to restore the skin barrier.Pharmaceutics20231512268510.3390/pharmaceutics15122685 38140026
    [Google Scholar]
  62. LiuX. FalconerR.A. Liposomal nanocarriers to enhance skin delivery of chemotherapeutics in cancer therapy.Bioengineering202512213310.3390/bioengineering12020133 40001653
    [Google Scholar]
  63. GuillotA.J. Martínez-NavarreteM. GarriguesT.M. MeleroA. Skin drug delivery using lipid vesicles: A starting guideline for their development.J. Control. Release202335562465410.1016/j.jconrel.2023.02.006 36775245
    [Google Scholar]
  64. WuW. WangZ. WuY. Mechanisms of penetration enhancement and transport utilizing skin keratine liposomes for the topical delivery of licochalcone A.Molecules2022278250410.3390/molecules27082504 35458701
    [Google Scholar]
  65. JahromiL.P. RothammerM. FuhrmannG. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications.Adv. Drug Deliv. Rev.202320011502810.1016/j.addr.2023.115028 37517778
    [Google Scholar]
  66. AroojA. RehmanA.U. IqbalM. NazI. AlhodaibA. AhmedN. Development of adapalene loaded liposome based gel for acne.Gels20239213510.3390/gels9020135 36826305
    [Google Scholar]
  67. AlviS.B. RajalakshmiP.S. JogdandA. Iontophoresis mediated localized delivery of liposomal gold nanoparticles for photothermal and photodynamic therapy of acne.Biomater. Sci.2021941421143010.1039/D0BM01712D 33398318
    [Google Scholar]
  68. TsaiM.J. LinC.Y. TrousilJ. Proteinase K/retinoic acid-loaded cationic liposomes as multifunctional anti-acne therapy to disorganize biofilm and regulate keratinocyte proliferation.Int. J. Nanomedicine2023183879389610.2147/IJN.S416966 37483315
    [Google Scholar]
  69. AnestopoulosI. KiousiD.E. KlavarisA. Surface active agents and their health-promoting properties: Molecules of multifunctional significance.Pharmaceutics202012768810.3390/pharmaceutics12070688 32708243
    [Google Scholar]
  70. ShuklaT. UpmanyuN. AgrawalM. SarafS. SarafS. AlexanderA. Biomedical applications of microemulsion through dermal and transdermal route.Biomed. Pharmacother.20181081477149410.1016/j.biopha.2018.10.021 30372850
    [Google Scholar]
  71. QuJ. WanY. TianM. LvW. Microemulsions based on diverse surfactant molecular structure: Comparative analysis and mechanistic study.Processes20231112340910.3390/pr11123409
    [Google Scholar]
  72. TessemaE.N. HeuschkelS. ShuklaA. NeubertR.H.H. Use of microemulsions for topical drug delivery.In: Percutaneous Absorption.CRC Press202147950210.1201/9780429202971‑36
    [Google Scholar]
  73. ShaoB. SunL. XuN. GuH. JiH. WuL. Development and evaluation of topical delivery of microemulsions containing adapalene (MEs-Ap) for acne.AAPS PharmSciTech202122312510.1208/s12249‑021‑01989‑w 33825087
    [Google Scholar]
  74. BadawiN.M. YehiaR.M. LamieC. AbdelrahmanK.A. AttiaD.A. HelalD.A. Tackling acne vulgaris by fabrication of tazarotene-loaded essential oil-based microemulsion: In vitro and in vivo evaluation.Int. J. Pharm. X2023510018510.1016/j.ijpx.2023.100185 37396622
    [Google Scholar]
  75. GullA. AhmedS. AhmadF.J. NagaichU. ChandraA. Hydrogel thickened microemulsion; a local cargo for the co- delivery of cinnamaldehyde and berberine to treat acne vulgaris.J. Drug Deliv. Sci. Technol.20205810183510.1016/j.jddst.2020.101835
    [Google Scholar]
  76. SalimiA. ZadehB.S.M. GodazgariS. RahdarA. Development and evaluation of azelaic acid-loaded microemulsion for transfollicular drug delivery through guinea pig skin: A mechanistic study.Adv. Pharm. Bull.202010223924610.34172/apb.2020.028 32373492
    [Google Scholar]
  77. LiD. MartiniN. WuZ. Niosomal nanocarriers for enhanced dermal delivery of epigallocatechin gallate for protection against oxidative stress of the skin.Pharmaceutics202214472610.3390/pharmaceutics14040726 35456560
    [Google Scholar]
  78. WitikaB.A. BasseyK.E. DemanaP.H. Siwe-NoundouX. PokaM.S. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications.Int. J. Mol. Sci.20222317966810.3390/ijms23179668 36077066
    [Google Scholar]
  79. SguizzatoM. EspositoE. CortesiR. Lipid-based nanosystems as a tool to overcome skin barrier.Int. J. Mol. Sci.20212215831910.3390/ijms22158319 34361084
    [Google Scholar]
  80. RezaeizadehM. EskanlouA. PardakhtyA. PournamdariM. DaneshpajoohM. Preparation and physicochemical characterizations of niosomal benzoyl peroxide and clindamycin phosphate formulation for acne vulgaris.J. Pharm. Innov.2024191110.1007/s12247‑024‑09807‑z
    [Google Scholar]
  81. KanpipitN. ThapphasaraphongS. PhupaboonS. PuthongkingP. The characteristics and biological activities of niosome‐entrapped salicylic acid‐contained oleoresin from Dipterocarpus alatus for skin product applications.Adv. Pharmacol. Pharm. Sci.202420241164265310.1155/2024/1642653 39350790
    [Google Scholar]
  82. Kashani-Asadi-JafariF. HadjizadehA. Niosome-encapsulated doxycycline hyclate for potentiation of acne therapy: Formulation and characterization.Pharm. Nanotechnol.2022101566810.2174/2211738510666220224103406 35209832
    [Google Scholar]
  83. MahajanK. SharmaP. AbbotV. ChauhanK. Ethosomes as a carrier for transdermal drug delivery system: Methodology and recent developments.J. Liposome Res.202434469771410.1080/08982104.2024.2339896 38676416
    [Google Scholar]
  84. Paiva-SantosA.C. GamaM. PeixotoD. Nanocarrier-based dermopharmaceutical formulations for the topical management of atopic dermatitis.Int. J. Pharm.202261812165610.1016/j.ijpharm.2022.121656 35278601
    [Google Scholar]
  85. Paiva-SantosA.C. SilvaA.L. GuerraC. Ethosomes as nanocarriers for the development of skin delivery formulations.Pharm. Res.202138694797010.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  86. GuptaM.K. SansareV. ShrivastavaB. JadhavS. GuravP. Comprehensive review on use of phospholipid based vesicles for phytoactive delivery.J. Liposome Res.202232321122310.1080/08982104.2021.1968430 34727833
    [Google Scholar]
  87. NairR.S. BillaN. LeongC.O. MorrisA.P. An evaluation of tocotrienol ethosomes for transdermal delivery using Strat-M ® membrane and excised human skin.Pharm. Dev. Technol.202126224325110.1080/10837450.2020.1860087 33274672
    [Google Scholar]
  88. RichardC. CasselS. BlanzatM. Vesicular systems for dermal and transdermal drug delivery.RSC Advances202111144245110.1039/D0RA09561C 35423006
    [Google Scholar]
  89. Abu-HuwaijR. ZidanA.N. Unlocking the potential of cosmetic dermal delivery with ethosomes: A comprehensive review.J. Cosmet. Dermatol.2024231172610.1111/jocd.15895 37393573
    [Google Scholar]
  90. KarB. PradhanD. HalderJ. RaiV.K. GhoshG. RathG. Antiviral application of carbohydrate polymers: A review.Curr. Pharm. Des.202329181441145810.2174/1381612829666230526142421 37246329
    [Google Scholar]
  91. AnsariSA QadirA WarsiMH Ethosomes-based gel formulation of karanjin for treatment of acne vulgaris: In vitro investigations and preclinical assessment.3 Biotech2021111145610.1007/s13205‑021‑02978‑334631355
    [Google Scholar]
  92. KarB. RoutS.R. HalderJ. The recent development of luteolin-loaded nanocarrier in targeting cancer.Curr. Pharm. Des.202430272129214110.2174/0113816128313713240628063301 38963114
    [Google Scholar]
  93. BishtA. HemrajaniC. UpadhyayN. Azelaic acid and Melaleuca alternifolia essential oil co-loaded vesicular carrier for combinational therapy of acne.Ther. Deliv.2022131132910.4155/tde‑2021‑0059 34842461
    [Google Scholar]
  94. YuZ. LvH. HanG. MaK. Ethosomes loaded with cryptotanshinone for acne treatment through topical gel formulation.PLoS One2016117015996710.1371/journal.pone.0159967 27441661
    [Google Scholar]
  95. KhanH.M.S. TanveerN. ArshadT. RasoolF. UddinM.N. KaziM. Encapsulation of alpha arbutin, a depigmenting agent, in nanosized ethosomes: In vitro and in vivo human studies.Heliyon2023991932610.1016/j.heliyon.2023.e19326 37681127
    [Google Scholar]
  96. AlfehaidF.S. NairA.B. ShahH. Enhanced transdermal delivery of apremilast loaded ethosomes: Optimization, characterization and in vivo evaluation.J. Drug Deliv. Sci. Technol.20249110521110.1016/j.jddst.2023.105211
    [Google Scholar]
  97. LiY. XuF. LiX. Development of curcumin-loaded composite phospholipid ethosomes for enhanced skin permeability and vesicle stability.Int. J. Pharm.202159211993610.1016/j.ijpharm.2020.119936 33038455
    [Google Scholar]
  98. GhangasS. AshokP.K. HoodaT. Enhancing oral bioavailability of isotretinoin by using solid lipid nanoparticles (SLNs).Indian J Pharm Educ Res202458245345910.5530/ijper.58.2.51
    [Google Scholar]
  99. SharmaS. KanugoA. GaikwadJ. Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: A quality by design approach.Mater. Technol.202237873574410.1080/10667857.2021.1873637
    [Google Scholar]
  100. AlandR. GanesanM. RaoP.R. In vivo evaluation of tazarotene solid lipid nanoparticles gel for topical delivery.Int. J. Pharm. Sci. Drug Res.201911455010.25004/IJPSDR.2019.110107
    [Google Scholar]
  101. DhillonP. MirzaM.A. AnwerM.K. AlshetailiA.S. AlshahraniS.M. IqbalZ. Development and optimization of erythromycin-loaded lipid-based gel by Taguchi design: In vitro characterization and antimicrobial evaluation.Braz. J. Pharm. Sci.2019551739510.1590/s2175‑97902019000217395
    [Google Scholar]
  102. LimaF.A. VilelaR.V.R. OréficeR.L. Nanostructured lipid carriers enhances the safety profile of tretinoin: In vitro and healthy human volunteers’ studies.Nanomedicine202116161391140910.2217/nnm‑2021‑0031 34085552
    [Google Scholar]
  103. AbidF. KimS. SavaliyaB. Targeting acne: Development of monensin-loaded nanostructured lipid carriers.Int. J. Nanomedicine2025202181220410.2147/IJN.S497108 39990290
    [Google Scholar]
  104. PatwekarS.L. PedewadS.R. GattaniS. Development and evaluation of nanostructured lipid carriers-based gel of isotretinoin.Particul. Sci. Technol.201836783284310.1080/02726351.2017.1305026
    [Google Scholar]
  105. FatimaN. RehmanS. NabiB. BabootaS. AliJ. Harnessing nanotechnology for enhanced topical delivery of clindamycin phosphate.J. Drug Deliv. Sci. Technol.20195410125310.1016/j.jddst.2019.101253
    [Google Scholar]
  106. ShettigarP. KolandM. SindhoorS.M. PrabhuA. Formulation and evaluation of clarithromycin loaded nanostructured lipid carriers for the treatment of acne.J. Pharm. Res. Int.202133263810.9734/jpri/2021/v33i40B32260
    [Google Scholar]
  107. LeelaudomlipiP. ManchunS. SupakdamrongkulP. SobharakshaP. Preparation of nanostructured lipid carriers (NLCs) loading violacein extract for anti-acne products.Key Eng. Mater.202190112913610.4028/www.scientific.net/KEM.901.129
    [Google Scholar]
  108. Eroğluİ. AslanM. YamanÜ. Liposome-based combination therapy for acne treatment.J. Liposome Res.202030326327310.1080/08982104.2019.1630646 31185768
    [Google Scholar]
  109. MadanS. NehateC. BarmanT.K. RathoreA.S. KoulV. Design, preparation, and evaluation of liposomal gel formulations for treatment of acne: In vitro and in vivo studies.Drug Dev. Ind. Pharm.201945339540410.1080/03639045.2018.1546310 30442066
    [Google Scholar]
  110. DawreS AgarwalS Development and characterization of adapalene loaded microemulsion-based hydrogel for acne treatment adapalene microemulsion.Int J Drug Deliv Control Release202321384410.55124/jdcr.v2i1.233
    [Google Scholar]
  111. SalimiA. SharifmakhmalzadehB. amirabadiF. Design and evaluation of adapalene microemulsion for transfollicular drug delivery through guinea pig skin.J. Cosmet. Dermatol.202423128929510.1111/jocd.15933 37462297
    [Google Scholar]
  112. MeenongwaA. KeawbankrudW. PimseeP. RattanabunW. PhungsaraN. Niosome gels encapsulate green mangosteen peel extract (Garcinia mangostana L.) as an anti-acne-inducing bacterial and anti-inflammatory activity.Creative Science202416225468610.55674/cs.v16i2.254686
    [Google Scholar]
  113. HabibB.A. AbdeltawabN.F. Salah Ad-DinI. D-optimal mixture design for optimization of topical dapsone niosomes: In vitro characterization and in vivo activity against Cutibacterium acnes.Drug Deliv.202229182183610.1080/10717544.2022.2048131 35266431
    [Google Scholar]
  114. LiuR. LiM. ZhuQ. Development and characterization of a hydrogel containing chloramphenicol-loaded binary ethosomes for effective transdermal permeation and treatment acne in rat model.Int. J. Nanomedicine2025201697171510.2147/IJN.S476937 39931531
    [Google Scholar]
  115. IskandarsyahI. AprianiE.F. RosanaY. Formulation, characterization, and in vitro testing of azelaic acid ethosome-based cream against Propionibacterium acnes for the treatment of acne.J. Adv. Pharm. Technol. Res.2019102758010.4103/japtr.JAPTR_289_18 31041186
    [Google Scholar]
  116. Superior efficacy of azithromycin and levamisole versus of azithromycin alone in the treatment of inflammatory acne vulgaris: An investigator blind randomized clinical trial on 169 patients; NCT01348321.Available from: https://clinicaltrials.gov/study/NCT01348321.2011
  117. A multi-center, double-blind, randomized, placebo controlled, parallel-group study comparing adapalene gel 0.3% to differin® (Adapalene Gel 0.3%) and both active treatments to a placebo control in the treatment of acne vulgaris; NCT02411942.Available from: https://clinicaltrials.gov/study/NCT02411942.2015
  118. Intralesional injections of triamcinolone for acne vulgaris; NCT06170593.Available from: https://clinicaltrials.gov/study/NCT06170593.2023
  119. A phase 3 multi-center, double-blind, randomized, vehiclecontrolled study of S6G5T-3 in the treatment of acne vulgaris; NCT03761784.Available from: https://clinicaltrials.gov/study/NCT03761784.2018
  120. A long term study of GK530G in subjects with acne vulgaris; NCT01910064.Available from: https://clinicaltrials.gov/study/NCT01910064.2013
  121. A prospective, multicenter, randomized, double-blind, vehiclecontrolled phase 2 study to evaluate the safety and efficacy of a combination of 3% minocycline and 0.3% adapalene topical foam formulation for the treatment of moderate-to-severe acne (study FX2016 40); NCT04104685.Available from: https://clinicaltrials.gov/study/NCT04104685.2019
  122. Randomized double-blind study on the benefit of spironolactone for treating acne of adult woman; NCT03334682.Available from: https://clinicaltrials.gov/study/NCT03334682.2017
  123. Efficacy and safety of adapalene 0.3%/benzoyl peroxide 2.5% gel plus doxycycline in severe inflammatory acne (non-nodulocystic) Subjects; NCT02899000.Available from: https://clinicaltrials.gov/study/NCT02899000.2016
  124. A study of tolerability, safety, and efficacy, of DMT310 in patients with acne vulgaris; NCT04106778.Available from: https://clinicaltrials.gov/study/NCT04106778.2019
  125. A long-term safety and efficacy study of CD5789 (Trifarotene) 50 μg/g cream in subjects with acne vulgaris; NCT02189629.Available from: https://clinicaltrials.gov/study/NCT02189629.2014
  126. A randomized controlled trial of efficiency of moisturizer containing Licochalcone A, Decanediol, L-carnitine and salicylic acid in reducing relapsing of acne in thai acne subjects; NCT04002024.Available from: https://clinicaltrials.gov/study/NCT04002024.2019
  127. A randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of gevokizumab in subjects with moderate to severe acne vulgaris; NCT01498874.Available from: https://clinicaltrials.gov/study/NCT01498874.2011
  128. A randomized, double-blind, vehicle controlled, efficacy and safety study of olumacostat glasaretil gel in subjects with acne vulgaris; NCT03073486.Available from: https://clinicaltrials.gov/study/NCT03073486.2017
  129. An open-label study to investigate the efficacy and tolerability of aczone gel, 7.5% in the treatment of acne vulgaris in men and women with skin of color; NCT03681470.Available from: https://clinicaltrials.gov/study/NCT03681470.2018
  130. A phase 3, multi-center, randomized, double-blind, vehiclecontrolled study to evaluate the efficacy and safety of topical administration of minocycline hydrochloride foam (4%) in the treatment of moderate-to-severe acne vulgaris; NCT04960930.Available from: https://clinicaltrials.gov/study/NCT04960930.2021
  131. A phase 3, multicenter, randomized, double-blind, vehicle controlled, parallel-group, clinical study comparing the efficacy and safety of IDP-126 gel in the treatment of acne vulgaris; NCT04214652.Available from: https://clinicaltrials.gov/study/NCT04214652.2019
  132. Benzaknen® 5% gel in combination with dermotivin® soft liquid soap and non-comedogenic Cetaphil® dermacontrol moisturizer SPF30 in the treatment of mild-to-moderate acne vulgaris; NCT02589405.Available from: https://clinicaltrials.gov/study/NCT02589405.2015
  133. An open-label, long-term extension study to evaluate the safety of cortexolone 17α-propionate (CB-03-01) cream, 1% applied twicedaily in subjects with acne vulgaris; NCT02682264.Available from: https://clinicaltrials.gov/study/NCT02682264.2016
  134. A multi-center open-label evaluation of the safety of sarecycline tablets in the treatment of acne vulgaris; NCT02413346.Available from: https://clinicaltrials.gov/study/NCT02413346.2015
  135. A safety and efficacy study to compare dapsone dermal gel with vehicle control in patients with acne vulgaris; NCT01974141.Available from: https://clinicaltrials.gov/study/NCT01974141.2013
  136. Evaluation of the effectiveness and tolerance of effaclar ultra concentrated serum in women with mandibular acne for 3 months (including 2 months of treatment); NCT05457621.Available from: https://clinicaltrials.gov/study/NCT05457621.2022
  137. Randomized, open-label study to evaluate the efficacy and safety of doryx tablets compared to doxycycline hyclate in the treatment of acne vulgaris; NCT00635609.Available from: https://clinicaltrials.gov/study/NCT00635609.2008
  138. A phase 2, randomized, double-blind, vehicle-controlled, parallel group multicenter study to evaluate the safety and efficacy of CLS001 topical gel versus vehicle applied once daily for 12 weeks to female subjects with moderate to severe acne vulgaris; NCT02571998.Available from: https://clinicaltrials.gov/study/NCT02571998.2015
  139. Innate immunity in acne vulgaris; NCT01694433.Available from: https://clinicaltrials.gov/study/NCT01694433.2012
  140. Monocentric study, prospective, open and non controlled for to evaluate the effectiveness, and tolerability the safety of association of clindamycin phosphate 1.2% and tretinoin 0,025% in the treatment of acne vulgaris mild to moderate, when used once daily for 12 weeks; NCT00838812.Available from: https://clinicaltrials.gov/study/NCT00838812.2009
  141. A clinical study to assess the barrier impact of winlevi; NCT06415292.Available from: https://clinicaltrials.gov/study/NCT06415292.2024
  142. A 12-week, randomized, double-blind, multicenter study comparing the clinical efficacy and safety of azelaic acid 15% gel (SH H 655 BA) with its vehicle (SH H 655 PBA) in patients with mild to moderate acne; NCT00031096.Available from: https://clinicaltrials.gov/study/NCT00031096.2002
  143. Efficacy of microneedling with topical vitamin c in treatment of acne scarring; NCT03522922.Available from: https://clinicaltrials.gov/study/NCT03522922.2018
  144. Clinical study for the effectiveness and safety of topical lupeol in mild to moderate acne; NCT02205892.Available from: https://clinicaltrials.gov/study/NCT02205892.2014
  145. An evaluator-blind, randomized, vehicle-controlled efficiency of adjunctive usage of a moisturizer containing Licochalcone A, Lcarnitine and 1,2-decanediol with adapalene gel for improvement of local tolerance in thai acne subjects; NCT02173054.Available from: https://clinicaltrials.gov/study/NCT02173054.2014
  146. The use of onexton in moderate acne vulgaris for patients with skin of color; NCT03402893.Available from: https://clinicaltrials.gov/study/NCT03402893.2018
  147. A study of safety and efficacy of topical methylaminolevulinate 8mg/g with and without occlusion followed by red light exposure in subjects with facial acne; NCT00833183.Available from: https://clinicaltrials.gov/study/NCT00833183.2009
  148. A study of the revlite q-switched neodymium: Yttrium-aluminumgarnet (Nd:YAG) laser for the treatment of acne scars in fitzpatrick skin types III-VI; NCT01221922.Available from: https://clinicaltrials.gov/study/NCT01221922.2010
  149. A multicenter, randomized, double-blind, placebo-controlled, clinical trial to determine the effects of doxycycline hyclate 20 mg tablets [Periostat(R)] administered twice daily for the treatment of acne rosacea; NCT00041977.Available from: https://clinicaltrials.gov/study/NCT00041977.2002
  150. Efficacy of 45mg oral minocycline (solodyn) and 45mg oral minocycline (solodyn) plus 15% azelaic acid (finacea) in the treatment of acne rosacea; NCT05014906.Available from: https://clinicaltrials.gov/study/NCT05014906.2013
  151. AhmadJ. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders.Cosmetics2021838410.3390/cosmetics8030084
    [Google Scholar]
  152. RicciA. StefanutoL. GasperiT. BruniF. TofaniD. Lipid nanovesicles for antioxidant delivery in skin: Liposomes, ufasomes, ethosomes, and niosomes.Antioxidants20241312151610.3390/antiox13121516 39765844
    [Google Scholar]
  153. CaoY. LongJ. LiuL. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure.Life Sci.2017186334210.1016/j.lfs.2017.08.003 28782531
    [Google Scholar]
  154. OkoroO.E. AdenleA. LudoviciM. TruglioM. MariniF. CameraE. Lipidomics of facial sebum in the comparison between acne and non-acne adolescents with dark skin.Sci. Rep.20211111659110.1038/s41598‑021‑96043‑x 34400712
    [Google Scholar]
  155. FolleC. Díaz-GarridoN. Sánchez-LópezE. Surface-modified multifunctional thymol-loaded biodegradable nanoparticles for topical acne treatment.Pharmaceutics2021139150110.3390/pharmaceutics13091501 34575577
    [Google Scholar]
  156. VatiwutipongP VachmanusS NorasetT TuarobS Artificial intelligence in cosmetic dermatology: A systematic literature review.IEEE Access202311714072510.1109/ACCESS.2023.3295001
    [Google Scholar]
  157. El-KayalM. HatemS. A comparative study between nanostructured lipid carriers and invasomes for the topical delivery of luteolin: Design, optimization and pre-clinical investigations for psoriasis treatment.J. Drug Deliv. Sci. Technol.20249710574010.1016/j.jddst.2024.105740
    [Google Scholar]
  158. NayeemU. GargA. DasA.K. Development and evaluation of the novel chitosan-based 1% clindamycin & 2.5% benzoyl peroxide transferosomal gel for topical acne treatment.J. Drug Deliv. Sci. Technol.20238910500210.1016/j.jddst.2023.105002
    [Google Scholar]
  159. ZakariaF. AshariS.E. Mat AzmiI.D. Abdul RahmanM.B. Recent advances in encapsulation of drug delivery (active substance) in cubosomes for skin diseases.J. Drug Deliv. Sci. Technol.20226810309710.1016/j.jddst.2022.103097
    [Google Scholar]
  160. ChutoprapatR. WitaratJ. JongpanyangarmP. Mang Sung ThluaiL. KhankaewP. Wah ChanL. Development of solid lipid microparticles (SLMs) containing asiatic acid for topical treatment of acne: Characterization, stability, in vitro and in vivo anti-acne assessment.Int. J. Pharm.202465412398010.1016/j.ijpharm.2024.123980 38460769
    [Google Scholar]
  161. SuQ. HuX. YangM. HeH. JiaY. Lipidomic analysis of facial skin surface lipids in acne in young women.Int. J. Cosmet. Sci.202446342443610.1111/ics.12942 38229406
    [Google Scholar]
  162. ManitaP.G. Garcia-OrueI. Santos-VizcainoE. HernandezR.M. IgartuaM. 3D bioprinting of functional skin substitutes: From current achievements to future goals.Pharmaceuticals202114436210.3390/ph14040362 33919848
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128404408250707111455
Loading
/content/journals/cpd/10.2174/0113816128404408250707111455
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test