Skip to content
2000
image of Recent Developments in Vesicular Nanocarriers for Targeted Drug Delivery in Breast Cancer

Abstract

Breast cancer remains one of the most challenging malignancies worldwide due to its heterogeneity, which affects tumor behavior, progression, and treatment response. The complexity of breast cancer necessitates innovative therapeutic strategies to improve treatment outcomes. This review explores the potential of vesicular nanocarriers, including liposomes, niosomes, ethosomes, polymerosomes, phytosomes, and transferosomes, in enhancing breast cancer treatment efficacy through targeted drug delivery. A detailed analysis of recent progress in the functionalization and application of vesicular nanocarriers is discussed, highlighting their contribution to enhancing pharmacokinetics, drug solubility, and targeted delivery. Both passive and active targeting strategies were assessed for their ability to enhance tumor-specific drug accumulation. Vesicular nanocarriers offer significant advantages, including reduced systemic toxicity, improved drug bioavailability, and precise delivery to cancer cells. Passive targeting utilizes the enhanced permeation and retention effect for tumor accumulation, while active targeting employs surface modifications with antibodies, aptamers, or peptides to enhance specificity. The integration of vesicular nanocarriers in breast cancer therapy presents a promising strategy for more effective and personalized treatment approaches. Their ability to optimize drug delivery and minimize off-target effects highlights their potential to revolutionize breast cancer treatment.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128385024250625212516
2025-07-14
2025-09-08
Loading full text...

Full text loading...

References

  1. Kothari C. Diorio C. Durocher F. The importance of breast adipose tissue in breast cancer. Int. J. Mol. Sci. 2020 21 16 5760 10.3390/ijms21165760 32796696
    [Google Scholar]
  2. Houghton S.C. Hankinson S.E. Cancer progress and priorities: Breast cancer. Cancer Epidemiol. Biomarkers Prev. 2021 30 5 822 844 10.1158/1055‑9965.EPI‑20‑1193 33947744
    [Google Scholar]
  3. Wilkinson L. Gathani T. Understanding breast cancer as a global health concern. Br. J. Radiol. 2022 95 1130 20211033 10.1259/bjr.20211033 34905391
    [Google Scholar]
  4. Breast cancer statistics | facts & figures | NBCC. 2022 Available from: https://www.stopbreastcancer.org/information-center/facts-figures/
  5. Breast cancer awareness month, knowledge and news on women’s health (KNOWH) blog from FDA Office of women’s health. 2024 Available from: https://www.fda.gov/consumers/knowledgeand-news-women-owh-blog/breast-cancer-awareness-month#:~:text=October%20is%20Breast%20Cancer%20Awareness%20month!&text=Approximately%20one%20in%20eight%20women,women%20die%20from%20breast%20cancer
  6. Surakasula A. Nagarjunapu G. Raghavaiah K.V. A comparative study of pre- and post-menopausal breast cancer: Risk factors, presentation, characteristics and management. J. Res. Pharm. Pract. 2014 3 1 12 18 10.4103/2279‑042X.132704 24991630
    [Google Scholar]
  7. Dall G.V. Britt K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol. 2017 7 110 10.3389/fonc.2017.00110 28603694
    [Google Scholar]
  8. Familial breast cancer: Collaborative reanalysis of individual data from 52 epidemiological studies including 58 209 women with breast cancer and 101 986 women without the disease. Lancet 2001 358 9291 1389 1399 10.1016/S0140‑6736(01)06524‑2 11705483
    [Google Scholar]
  9. Smolarz B. Nowak A.Z. Romanowicz H. Breast cancer-epidemiology, classification, pathogenesis and treatment (review of literature). Cancers 2022 14 10 2569 10.3390/cancers14102569 35626173
    [Google Scholar]
  10. Shea E.K.H. Koh V.C.Y. Tan P.H. Invasive breast cancer: Current perspectives and emerging views. Pathology. international. 2020 70 5 242 252 10.1111/pin.12910 32039524
    [Google Scholar]
  11. Chen M. Wu J. Liu D. Combined estrogen receptor and progesterone receptor level can predict survival outcome in human epidermal growth factor receptor 2-positive early breast cancer. Clin. Breast Cancer 2022 22 2 e147 e156 10.1016/j.clbc.2021.05.012 34244052
    [Google Scholar]
  12. Fei F. Siegal G.P. Wei S. Characterization of estrogen receptor-low-positive breast cancer. Breast Cancer Res. Treat. 2021 188 1 225 235 10.1007/s10549‑021‑06148‑0 33694051
    [Google Scholar]
  13. Pandey P. Kumar Arya D. Kumar Ramar M. Chidambaram K. Rajinikanth P.S. Engineered nanomaterials as an effective tool for HER2+ breast cancer therapy. Drug Discov. Today 2022 27 9 2526 2540 10.1016/j.drudis.2022.06.007 35753642
    [Google Scholar]
  14. Sønderstrup I.M.H. Jensen M.B.R. Ejlertsen B. Subtypes in BRCA-mutated breast cancer. Hum. Pathol. 2019 84 192 201 10.1016/j.humpath.2018.10.005 30342055
    [Google Scholar]
  15. Guzmán-Arocho Y.D. Rosenberg S.M. Garber J.E. Clinicopathological features and BRCA1 and BRCA2 mutation status in a prospective cohort of young women with breast cancer. Br. J. Cancer 2022 126 2 302 309 10.1038/s41416‑021‑01597‑2 34703009
    [Google Scholar]
  16. Loibl S. Gianni L. HER2-positive breast cancer. Lancet 2017 389 10087 2415 2429 10.1016/S0140‑6736(16)32417‑5 27939064
    [Google Scholar]
  17. Rakha E.A. Reis-Filho J.S. Ellis I.O. Basal-like breast cancer: A critical review. J. Clin. Oncol. 2008 26 15 2568 2581 10.1200/JCO.2007.13.1748 18487574
    [Google Scholar]
  18. Fujiwara-Tani R. Mori S. Ogata R. Claudin-4: A new molecular target for epithelial cancer therapy. Int. J. Mol. Sci. 2023 24 6 5494 10.3390/ijms24065494 36982569
    [Google Scholar]
  19. Tewabe A. Abate A. Tamrie M. Seyfu A. Abdela Siraj E. Targeted drug delivery - from magic bullet to nanomedicine: Principles, challenges, and future perspectives. J. Multidiscip. Healthc. 2021 14 1711 1724 10.2147/JMDH.S313968 34267523
    [Google Scholar]
  20. Kunde S.S. Wairkar S. Targeted delivery of albumin nanoparticles for breast cancer: A review. Colloids Surf. B Biointerfaces 2022 213 112422 10.1016/j.colsurfb.2022.112422 35231688
    [Google Scholar]
  21. Din F. Aman W. Ullah I. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine 2017 12 7291 7309 10.2147/IJN.S146315 29042776
    [Google Scholar]
  22. Kyriakoudi A. Spanidi E. Mourtzinos I. Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: formulation approaches and applications. Plants 2021 10 6 1238 10.3390/plants10061238 34207139
    [Google Scholar]
  23. Chavda V.P. Nalla L.V. Balar P. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 2023 15 4 1023 10.3390/cancers15041023 36831369
    [Google Scholar]
  24. Cheng H. Liao J. Ma Y. Sarwar M.T. Yang H. Advances in targeted therapy for tumor with nanocarriers: A review. Mater. Today Bio 2025 31 101583 10.1016/j.mtbio.2025.101583 40061211
    [Google Scholar]
  25. Costa B. Amorim I. Gärtner F. Vale N. Understanding breast cancer: From conventional therapies to repurposed drugs. Eur. J. Pharm. Sci. 2020 151 105401 10.1016/j.ejps.2020.105401 32504806
    [Google Scholar]
  26. Burguin A. Diorio C. Durocher F. Breast cancer treatments: Updates and new challenges. J. Pers. Med. 2021 11 8 808 10.3390/jpm11080808 34442452
    [Google Scholar]
  27. Darby S. McGale P. Correa C. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death: Meta-analysis of individual patient data for 10 801 women in 17 randomised trials. Lancet 2011 378 9804 1707 1716 10.1016/S0140‑6736(11)61629‑2 22019144
    [Google Scholar]
  28. Balaji K. Subramanian B. Yadav P. Anu Radha C. Ramasubramanian V. Radiation therapy for breast cancer: Literature review. Med. Dosim. 2016 41 3 253 257 10.1016/j.meddos.2016.06.005 27545009
    [Google Scholar]
  29. Mayo C.S. Urie M.M. Fitzgerald T.J. Hybrid IMRT plans-concurrently treating conventional and IMRT beams for improved breast irradiation and reduced planning time. Int. J. Radiat. Oncol. Biol. Phys. 2005 61 3 922 932 10.1016/j.ijrobp.2004.10.033 15708276
    [Google Scholar]
  30. Hortobagyi G.N. Progress in systemic chemotherapy of primary breast cancer: An overview. J. Natl. Cancer Inst. Monogr. 2001 2001 30 72 79 10.1093/oxfordjournals.jncimonographs.a003465 11773296
    [Google Scholar]
  31. Ezike T.C. Okpala U.S. Onoja U.L. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  32. Huang L. Huang X.H. Yang X. Novel nano-drug delivery system for natural products and their application. Pharmacol. Res. 2024 201 107100 10.1016/j.phrs.2024.107100 38341055
    [Google Scholar]
  33. Amjad M.T. Chidharla A. Kasi A. Cancer Chemotherapy. In: StatPearls. Treasure Island, FL StatPearls Publishing 2025 33232037
    [Google Scholar]
  34. Emran T.B. Shahriar A. Mahmud A.R. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol. 2022 12 891652 10.3389/fonc.2022.891652 35814435
    [Google Scholar]
  35. Bassiouni Y. Faddah L. Nanocarrier-based drugs: The future promise for treatment of breast cancer. J. Appl. Pharm. Sci. 2012 2 5 225 232 10.7324/JAPS.2012.2530
    [Google Scholar]
  36. Widakowich C. de Azambuja E. Gil T. Molecular targeted therapies in breast cancer: Where are we now? Int. J. Biochem. Cell Biol. 2007 39 7-8 1375 1387 10.1016/j.biocel.2007.04.015 17543572
    [Google Scholar]
  37. Dhankhar R. Vyas S.P. Jain A.K. Arora S. Rath G. Goyal A.K. Advances in novel drug delivery strategies for breast cancer therapy. Artif. Cells Blood Substit. Immobil. Biotechnol. 2010 38 5 230 249 10.3109/10731199.2010.494578 20677900
    [Google Scholar]
  38. Ke X. Shen L. Molecular targeted therapy of cancer: The progress and future prospect. Frontiers in Laboratory Medicine 2017 1 2 69 75 10.1016/j.flm.2017.06.001
    [Google Scholar]
  39. Strebhardt K. Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat. Rev. Cancer 2008 8 6 473 480 10.1038/nrc2394 18469827
    [Google Scholar]
  40. Wilkes G.M. Targeted therapy: Attacking cancer with molecular and immunological targeted agents. Asia Pac. J. Oncol. Nurs. 2018 5 2 137 155 10.4103/apjon.apjon_79_17 29607374
    [Google Scholar]
  41. Wang X. Zhang H. Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist. 2019 2 2 141 160 10.20517/cdr.2019.10 34322663
    [Google Scholar]
  42. Sherr C.J. Bartek J. Cell cycle–targeted cancer therapies. Annu. Rev. Cancer Biol. 2017 1 1 41 57 10.1146/annurev‑cancerbio‑040716‑075628
    [Google Scholar]
  43. Hanahan D Weinberg RA Hallmarks of cancer: The next generation. cell 2011 144 5 646 74 10.1016/j.cell.2011.02.013 213762302
    [Google Scholar]
  44. Mukherjee D. Raikwar S. Recent update on nanocarrier(s) as the targeted therapy for breast cancer. AAPS PharmSciTech 2024 25 6 153 10.1208/s12249‑024‑02867‑x 38961013
    [Google Scholar]
  45. Wu J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med. 2021 11 8 771 10.3390/jpm11080771 34442415
    [Google Scholar]
  46. Golombek S.K. May J.N. Theek B. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018 130 17 38 10.1016/j.addr.2018.07.007 30009886
    [Google Scholar]
  47. Petersen A.L. Hansen A.E. Gabizon A. Andresen T.L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 2012 64 13 1417 1435 10.1016/j.addr.2012.09.003 22982406
    [Google Scholar]
  48. Bertrand N. Wu J. Xu X. Kamaly N. Farokhzad O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 2014 66 2 25 10.1016/j.addr.2013.11.009 24270007
    [Google Scholar]
  49. Deshpande P.P. Biswas S. Torchilin V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine 2013 8 9 1509 1528 10.2217/nnm.13.118 23914966
    [Google Scholar]
  50. Glasgow M.D.K. Chougule M.B. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J. Biomed. Nanotechnol. 2015 11 11 1859 1898 10.1166/jbn.2015.2145 26554150
    [Google Scholar]
  51. Di Lorenzo G. Ricci G. Severini G.M. Romano F. Biffi S. Imaging and therapy of ovarian cancer: Clinical application of nanoparticles and future perspectives. Theranostics 2018 8 16 4279 4294 10.7150/thno.26345 30214620
    [Google Scholar]
  52. Biffi S. Voltan R. Rampazzo E. Prodi L. Zauli G. Secchiero P. Applications of nanoparticles in cancer medicine and beyond: Optical and multimodal in vivo imaging, tissue targeting and drug delivery. Expert Opin. Drug Deliv. 2015 12 12 1837 1849 10.1517/17425247.2015.1071791 26289673
    [Google Scholar]
  53. Li R. Zheng K. Yuan C. Chen Z. Huang M. Be active or not: The relative contribution of active and passive tumor targeting of nanomaterials. Nanotheranostics 2017 1 4 346 357 10.7150/ntno.19380 29071198
    [Google Scholar]
  54. Biffi S. Voltan R. Bortot B. Zauli G. Secchiero P. Actively targeted nanocarriers for drug delivery to cancer cells. Expert Opin. Drug Deliv. 2019 16 5 481 496 10.1080/17425247.2019.1604679 30955393
    [Google Scholar]
  55. Jain S. Jain V. Mahajan S. Lipid based vesicular drug delivery systems. Advances in Pharmaceutics 2014 2014 1 574673
    [Google Scholar]
  56. Soltani F. Parhiz H. Mokhtarzadeh A. Ramezani M. Synthetic and biological vesicular nano-carriers designed for gene delivery. Curr. Pharm. Des. 2015 21 42 6214 6235 10.2174/1381612821666151027153410 26503143
    [Google Scholar]
  57. Kapoor B. Gupta R. Gulati M. Singh S.K. Khursheed R. Gupta M. The why, where, who, how, and what of the vesicular delivery systems. Adv. Colloid Interface Sci. 2019 271 101985 10.1016/j.cis.2019.07.006 31351415
    [Google Scholar]
  58. Pande S. Liposomes for drug delivery: Review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artif. Cells Nanomed. Biotechnol. 2023 51 1 428 440 10.1080/21691401.2023.2247036 37594208
    [Google Scholar]
  59. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  60. Wang J. Gong J. Wei Z. Strategies for liposome drug delivery systems to improve tumor treatment efficacy. AAPS PharmSciTech 2022 23 1 27 10.1208/s12249‑021‑02179‑4 34907483
    [Google Scholar]
  61. Rolle F. Bincoletto V. Gazzano E. Coencapsulation of disulfiram and doxorubicin in liposomes strongly reverses multidrug resistance in breast cancer cells. Int. J. Pharm. 2020 580 119191 10.1016/j.ijpharm.2020.119191 32142738
    [Google Scholar]
  62. Liu D. Zhang Q. Wang J. Guan S. Cai D. Liu J. Inhibition of growth and metastasis of breast cancer by targeted delivery of 17-hydroxy-jolkinolide B via hyaluronic acid-coated liposomes. Carbohydr. Polym. 2021 257 117572 10.1016/j.carbpol.2020.117572 33541631
    [Google Scholar]
  63. Bhardwaj P. Tripathi P. Gupta R. Pandey S. Niosomes: A review on niosomal research in the last decade. J. Drug Deliv. Sci. Technol. 2020 56 101581 10.1016/j.jddst.2020.101581
    [Google Scholar]
  64. Marianecci C. Di Marzio L. Rinaldi F. Niosomes from 80s to present: The state of the art. Adv. Colloid Interface Sci. 2014 205 187 206 10.1016/j.cis.2013.11.018 24369107
    [Google Scholar]
  65. Moammeri A. Chegeni M.M. Sahrayi H. Current advances in niosomes applications for drug delivery and cancer treatment. Mater. Today Bio 2023 23 100837 10.1016/j.mtbio.2023.100837 37953758
    [Google Scholar]
  66. Mehrarya M. Gharehchelou B. Haghighi Poodeh S. Niosomal formulation for antibacterial applications. J. Drug Target. 2022 30 5 476 493 10.1080/1061186X.2022.2032094 35060818
    [Google Scholar]
  67. Haseli S. Pourmadadi M. Samadi A. A novel pH ‐responsive nanoniosomal emulsion for sustained release of curcumin from a chitosan‐based nanocarrier: Emphasis on the concurrent improvement of loading, sustained release, and apoptosis induction. Biotechnol. Prog. 2022 38 5 e3280 10.1002/btpr.3280 35678755
    [Google Scholar]
  68. Chen S. Hanning S. Falconer J. Locke M. Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019 144 18 39 10.1016/j.ejpb.2019.08.015 31446046
    [Google Scholar]
  69. Saharkhiz S. Nasri N. Naderi N. Dini G. Ghalehshahi S.S. Firoozbakht F. Evaluating a targeted Palbociclib-Trastuzumab loaded smart niosome platform for treating HER2 positive breast cancer cells. Int. J. Pharm. X 2024 7 100237 10.1016/j.ijpx.2024.100237 38516198
    [Google Scholar]
  70. Touitou E. Dayan N. Bergelson L. Godin B. Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control. Release 2000 65 3 403 418 10.1016/S0168‑3659(99)00222‑9 10699298
    [Google Scholar]
  71. Abdulbaqi I.M. Darwis Y. Khan N.A. Assi R.A. Khan A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomedicine 2016 11 2279 2304 10.2147/IJN.S105016 27307730
    [Google Scholar]
  72. Paiva-Santos A.C. Silva A.L. Guerra C. Ethosomes as nanocarriers for the development of skin delivery formulations. Pharm. Res. 2021 38 6 947 970 10.1007/s11095‑021‑03053‑5 34036520
    [Google Scholar]
  73. Chauhan N. Vasava P. Khan S.L. Ethosomes: A novel drug carrier. Ann. Med. Surg. 2022 82 104595 10.1016/j.amsu.2022.104595 36124209
    [Google Scholar]
  74. Patel D. Bhargava P. Ethosomes-A phyto drug delivery system. Adv Res Bio Pharm 2012 2 1 8
    [Google Scholar]
  75. Romero E. Morilla M. Highly deformable and highly fluid vesicles as potential drug delivery systems: Theoretical and practical considerations. Int. J. Nanomedicine 2013 8 3171 3186 10.2147/IJN.S33048 23986634
    [Google Scholar]
  76. Rathore A. Khambete H. Jain S. Preparation and characterization of repaglinide loaded ethosomal gel for the treatment of NIDDM. Int. J. Pharm. Biol. Arch. 2013 4 2 385 390
    [Google Scholar]
  77. Kumar N. Dubey A. Mishra A. Tiwari P. Ethosomes: A novel approach in transdermal drug delivery system. Int J Pharm Life Sci 2020 11 5
    [Google Scholar]
  78. Nasri S. Ebrahimi-Hosseinzadeh B. Rahaie M. Hatamian-Zarmi A. Sahraeian R. Thymoquinone-loaded ethosome with breast cancer potential: Optimization, in vitro and biological assessment. J. Nanostructure Chem. 2020 10 1 19 31 10.1007/s40097‑019‑00325‑w
    [Google Scholar]
  79. Naik U.S. The synthesis and characterisation of novel ultra-flexible lipidic vesicles using propanol. Masters thesis, University of Central Lancashire 2013
    [Google Scholar]
  80. Rajan R. Jose S. Biju Mukund V.P. Vasudevan D. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res. 2011 2 3 138 143 10.4103/2231‑4040.85524 22171309
    [Google Scholar]
  81. Sachan R. Parashar T. Singh V. Singh G. Tyagi S. Patel C. Drug carrier transfersomes: A novel tool for transdermal drug delivery system. IJRDPL 2013 2 2 309 316
    [Google Scholar]
  82. Opatha S.A.T. Titapiwatanakun V. Chutoprapat R. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  83. Chen M. Shamim M.A. Shahid A. Topical delivery of carvedilol loaded nano-transfersomes for skin cancer chemoprevention. Pharmaceutics 2020 12 12 1151 10.3390/pharmaceutics12121151 33260886
    [Google Scholar]
  84. Matharoo N. Mohd H. Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1918 10.1002/wnan.1918 37527953
    [Google Scholar]
  85. Fernández-García R. Lalatsa A. Statts L. Bolás-Fernández F. Ballesteros M.P. Serrano D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020 573 118817 10.1016/j.ijpharm.2019.118817 31678520
    [Google Scholar]
  86. Rai S. Pandey V. Rai G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017 8 1 1325708 10.1080/20022727.2017.1325708 30410704
    [Google Scholar]
  87. Pandey A. Mittal A. Chauhan N. Alam S. Role of surfactants as penetration enhancer in transdermal drug delivery system. J. Mol. Pharm. Org. Process Res. 2014 2 2 2 7 10.4172/2329‑9053.1000113
    [Google Scholar]
  88. Mishra V. Bansal K.K. Verma A. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018 10 4 191 10.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  89. Fernandes N.B. Velagacherla V. Spandana K.J. Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy. Int. J. Pharm. 2024 650 123686 10.1016/j.ijpharm.2023.123686 38070658
    [Google Scholar]
  90. Discher B.M. Won Y.Y. Ege D.S. Polymersomes: Tough vesicles made from diblock copolymers. Science 1999 284 5417 1143 1146 10.1126/science.284.5417.1143 10325219
    [Google Scholar]
  91. Martin C. Aibani N. Callan J.F. Callan B. Recent advances in amphiphilic polymers for simultaneous delivery of hydrophobic and hydrophilic drugs. Ther. Deliv. 2016 7 1 15 31 10.4155/tde.15.84 26652620
    [Google Scholar]
  92. Zhu Y. Cao S. Huo M. van Hest J.C.M. Che H. Recent advances in permeable polymersomes: Fabrication, responsiveness, and applications. Chem. Sci. 2023 14 27 7411 7437 10.1039/D3SC01707A 37449076
    [Google Scholar]
  93. Araste F. Aliabadi A. Abnous K. Taghdisi S.M. Ramezani M. Alibolandi M. Self-assembled polymeric vesicles: Focus on polymersomes in cancer treatment. J. Control. Release 2021 330 502 528 10.1016/j.jconrel.2020.12.027 33358973
    [Google Scholar]
  94. Wu D. Abezgauz L. Danino D. Ho C.C. Alternating polymer vesicles. Soft Matter 2008 4 5 1066 1071 10.1039/b715608a 32907140
    [Google Scholar]
  95. Nicolas J. Mura S. Brambilla D. Mackiewicz N. Couvreur P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 2013 42 3 1147 1235 10.1039/C2CS35265F 23238558
    [Google Scholar]
  96. Kauscher U. Holme M.N. Björnmalm M. Stevens M.M. Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. Adv. Drug Deliv. Rev. 2019 138 259 275 10.1016/j.addr.2018.10.012 30947810
    [Google Scholar]
  97. Sueyoshi D. Anraku Y. Komatsu T. Urano Y. Kataoka K. Enzyme-loaded polyion complex vesicles as in vivo nanoreactors working sustainably under the blood circulation: Characterization and functional evaluation. Biomacromolecules 2017 18 4 1189 1196 10.1021/acs.biomac.6b01870 28233988
    [Google Scholar]
  98. Li Y. Thambi T. Lee D.S. Co‐delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv. Healthc. Mater. 2018 7 1 1700886 10.1002/adhm.201700886 28941203
    [Google Scholar]
  99. Shahriari M. Taghdisi S.M. Abnous K. Ramezani M. Alibolandi M. Synthesis of hyaluronic acid-based polymersomes for doxorubicin delivery to metastatic breast cancer. Int. J. Pharm. 2019 572 118835 10.1016/j.ijpharm.2019.118835 31726198
    [Google Scholar]
  100. Barani M. Sangiovanni E. Angarano M. Phytosomes as innovative delivery systems for phytochemicals: A comprehensive review of literature. Int. J. Nanomedicine 2021 16 6983 7022 10.2147/IJN.S318416 34703224
    [Google Scholar]
  101. Nagar G. Phytosomes: A novel drug delivery for herbal extracts. Int. J. Pharm. Sci. Res. 2019 9 924 930
    [Google Scholar]
  102. Lu M. Qiu Q. Luo X. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci 2019 14 3 265 274 10.1016/j.ajps.2018.05.011 32104457
    [Google Scholar]
  103. Alharbi W.S. Almughem F.A. Almehmady A.M. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 2021 13 9 1475 10.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  104. Khanzode M.B. Kajale A.D. Channawar M.A. Gawande S.R. Review on phytosomes: A novel drug delivery system. GSCBPS 2020 13 1 203 211 10.30574/gscbps.2020.13.1.0345
    [Google Scholar]
  105. Kalita B. Das M.K. Sharma A.K. Novel phytosome formulations in making herbal extracts more effective. J. Pharm. Technol. 2013 6 11 1295 1301
    [Google Scholar]
  106. Karpuz M. Gunay M.S. Ozer A.Y. Liposomes and phytosomes for phytoconstituents. In: Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Elsevier 2020 525 553 10.1016/B978‑0‑12‑819666‑3.00018‑3
    [Google Scholar]
  107. Gaikwad S.S. Morade Y.Y. Kothule A.M. Kshirsagar S.J. Laddha U.D. Salunkhe K.S. Overview of phytosomes in treating cancer: Advancement, challenges, and future outlook. Heliyon 2023 9 6 e16561 10.1016/j.heliyon.2023.e16561 37260890
    [Google Scholar]
  108. Talaat S.M. Elnaggar Y.S.R. El-Ganainy S.O. Gowayed M.A. Allam M. Abdallah O.Y. Self-assembled fisetin-phospholipid complex: Fisetin-integrated phytosomes for effective delivery to breast cancer. Eur. J. Pharm. Biopharm. 2023 189 174 188 10.1016/j.ejpb.2023.06.009 37343893
    [Google Scholar]
  109. Gkionis L. Campbell R.A. Aojula H. Harris L.K. Tirella A. Manufacturing drug co-loaded liposomal formulations targeting breast cancer: Influence of preparative method on liposomes characteristics and in vitro toxicity. Int. J. Pharm. 2020 590 119926 10.1016/j.ijpharm.2020.119926 33010397
    [Google Scholar]
  110. Chowdhury N. Chaudhry S. Hall N. Targeted delivery of doxorubicin liposomes for her-2+ breast cancer treatment. AAPS PharmSciTech 2020 21 6 202 10.1208/s12249‑020‑01743‑8 32696338
    [Google Scholar]
  111. Dabbagh Moghaddam F. Akbarzadeh I. Marzbankia E. Farid M. Khaledi L. Reihani A.H. Delivery of melittin-loaded niosomes for breast cancer treatment: An in vitro and in vivo evaluation of anti-cancer effect. Cancer Nanotechnol. 2021 12 1 14
    [Google Scholar]
  112. Kanaani L. Javadi I. Ebrahimifar M. Ebrahimi Shahmabadi H. Akbarzadeh Khiyav A. Mehrdiba T. Effects of cisplatin-loaded niosomal nanoparticleson bt-20 human breast carcinoma cells. Asian Pac. J. Cancer Prev. 2017 18 2 365 368 10.22034/apjcp.2017.18.2.365 28345332
    [Google Scholar]
  113. AlEbadi N.N. Al-Lami M.S. Formulation and in-vitro evaluation of ethosomes using anastrozole as a modeling drug. AJPS 2022 22 4 90 105 10.32947/ajps.v22i4.971
    [Google Scholar]
  114. Apolinário A.C. Hauschke L. Nunes J.R. Lourenço F.R. Lopes L.B. Design of multifunctional ethosomes for topical fenretinide delivery and breast cancer chemoprevention. Colloids Surf. A Physicochem. Eng. Asp. 2021 623 126745 10.1016/j.colsurfa.2021.126745
    [Google Scholar]
  115. Sundralingam U. Chakravarthi S. Radhakrishnan A.K. Muniyandy S. Palanisamy U.D. Efficacy of emu oil transfersomes for local transdermal delivery of 4-OH tamoxifen in the treatment of breast cancer. Pharmaceutics 2020 12 9 807 10.3390/pharmaceutics12090807 32854385
    [Google Scholar]
  116. Saxena A. Kori M.L. Preparation and characterization of pH-responsive transferosomes for transdermal delivery of paclitaxel. Int. J. Adv. Sci. Res. 2020 11 01 27 34
    [Google Scholar]
  117. Zavvar T. Babaei M. Abnous K. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int. J. Pharm. 2020 578 119091 10.1016/j.ijpharm.2020.119091 32007591
    [Google Scholar]
  118. Nosrati H. Adinehvand R. Manjili H.K. Rostamizadeh K. Danafar H. Synthesis, characterization, and kinetic release study of methotrexate loaded mPEG-PCL polymersomes for inhibition of MCF-7 breast cancer cell line. Pharm. Dev. Technol. 2019 24 1 89 98 10.1080/10837450.2018.1425433 29307260
    [Google Scholar]
  119. Wanjiru J. Gathirwa J. Sauli E. Swai H.S. Formulation, optimization, and evaluation of Moringa oleifera leaf polyphenol-loaded phytosome delivery system against breast cancer cell lines. Molecules 2022 27 14 4430 10.3390/molecules27144430 35889305
    [Google Scholar]
  120. Komeil I.A. Abdallah O.Y. El-Refaie W.M. Surface modified genistein phytosome for breast cancer treatment: In-vitro appraisal, pharmacokinetics, and in-vivo antitumor efficacy. Eur. J. Pharm. Sci. 2022 179 106297 10.1016/j.ejps.2022.106297 36156294
    [Google Scholar]
  121. Real-world study of the efficacy and safety of paclitaxel liposome combined with anti-HER-2 monoclonal antibody as first-line salvage treatment of HER-2 positive advanced breast cancer. NCT06481553 2024
    [Google Scholar]
  122. Pilot A. A pilot, single-arm, phase II trial of tamoxifen plus pegylated liposomal doxorubicin in patients with metastatic triple negative breast cancer. NCT06434064 2024
    [Google Scholar]
  123. Open-label, single center, single-arm, phase 2 study of neoadjuvant pembrolizumab in combination with carboplatin and paclitaxel in patients with stage 1 cT1b-T1cN0M0 triple negative breast cancer. NCT06318897 2024
    [Google Scholar]
  124. An open-label, randomized phase 3 study of MK-2870 as a single agent and in combination with pembrolizumab versus treatment of physician's choice in participants with HR+/HER2- unresectable locally advanced or metastatic breast cancer. NCT06312176 2024
    [Google Scholar]
  125. Joun I. Nixdorf S. Deng W. Advances in lipid-based nanocarriers for breast cancer metastasis treatment. Front Med Technol 2022 4 893056 10.3389/fmedt.2022.893056 36062261
    [Google Scholar]
  126. Shi J. Kantoff P.W. Wooster R. Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer 2017 17 1 20 37 10.1038/nrc.2016.108 27834398
    [Google Scholar]
  127. Kumari N.U. Pardhi E. Chary P.S. Mehra N.K. Exploring contemporary breakthroughs in utilizing vesicular nanocarriers for breast cancer therapy. Ther. Deliv. 2024 15 4 279 303 10.4155/tde‑2023‑0092 38374774
    [Google Scholar]
  128. Mugundhan S.L. Mohan M. Nanoscale strides: Exploring innovative therapies for breast cancer treatment. RSC Advances 2024 14 20 14017 14040 10.1039/D4RA02639J 38686289
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128385024250625212516
Loading
/content/journals/cpd/10.2174/0113816128385024250625212516
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test