Skip to content
2000
image of Identification of Bioactive Ingredients and Mechanistic Pathways of Xuefu Zhuyu Decoction in Ventricular Remodeling: A Network Pharmacology, Molecular Docking and Molecular Dynamics Simulations

Abstract

Background

Xuefu Zhuyu Decoction (XFZYD) is clinically used in China to promote blood circulation, resolve blood stasis, and alleviate ventricular remodeling (VR). However, its molecular mechanisms remain unclear.

Objective

This study investigates the active components and underlying molecular mechanisms of XFZYD in treating VR.

Methods

Targets of XFZYD's active components and VR-related targets were identified. A protein-protein interaction (PPI) network and a drug-ingredient-target network were constructed. GO functional annotation and KEGG pathway enrichment analysis were performed to explore biological functions. Hub targets and their corresponding active ingredients were validated through molecular docking and molecular dynamics (MD) simulations.

Results

A total of 1,089 active ingredients with high gastrointestinal absorption (GI) and drug-likeness (DL ≥ 2) were identified. Five hundred and thirty-eight common targets were shared between XFZYD and VR, with 10 core targets, including AKT1, STAT3, TP53, EGFR, SRC, TNF, MAPK3, CTNNB1, IL6, and VEGFA. GO analysis revealed XFZYD's influence on wound healing, oxygen response, epithelial cell proliferation, and receptor signaling. KEGG analysis highlighted key pathways such as PI3K-Akt signaling, lipid and atherosclerosis, and fluid shear stress. Molecular docking revealed that active ingredients display favorable interactions with the hub genes, with binding energies from to -6.0 kcal/mol. These interactions were further validated through MD simulations, demonstrating stable binding throughout the 100 ns simulation period.

Conclusion

XFZYD exhibits therapeutic effects on VR through multiple active components and pathways, providing a scientific basis for its clinical application and further research.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128375610250608071339
2025-06-23
2025-09-23
Loading full text...

Full text loading...

References

  1. Knuuti J. Wijns W. Saraste A. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020 41 3 407 477 10.1093/eurheartj/ehz425 31504439
    [Google Scholar]
  2. Del Buono M.G. Moroni F. Montone R.A. Azzalini L. Sanna T. Abbate A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep. 2022 24 10 1505 1515 10.1007/s11886‑022‑01766‑6 35972638
    [Google Scholar]
  3. Jedrzejewska A. Braczko A. Kawecka A. Novel targets for a combination of mechanical unloading with pharmacotherapy in advanced heart failure. Int. J. Mol. Sci. 2022 23 17 9886 10.3390/ijms23179886 36077285
    [Google Scholar]
  4. Sulo G. Igland J. Vollset S.E. Heart failure complicating acute myocardial infarction; burden and timing of occurrence: A nation‐wide analysis including 86 771 patients from the cardiovascular disease in Norway (CVDNOR) project. J. Am. Heart Assoc. 2016 5 1 e002667 10.1161/JAHA.115.002667 26744379
    [Google Scholar]
  5. Weir R.A.P. McMurray J.J.V. Velazquez E.J. Epidemiology of heart failure and left ventricular systolic dysfunction after acute myocardial infarction: Prevalence, clinical characteristics, and prognostic importance. Am. J. Cardiol. 2006 97 10 13 25 10.1016/j.amjcard.2006.03.005 16698331
    [Google Scholar]
  6. Frantz S. Hundertmark M.J. Schulz-Menger J. Bengel F.M. Bauersachs J. left ventricular remodelling post-myocardial infarction: pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022 43 27 2549 2561 10.1093/eurheartj/ehac223 35511857
    [Google Scholar]
  7. Liang B. Zhang X. Gu N. Guanxin V relieves ventricular remodeling by inhibiting inflammation: Implication from virtual screening, systematic pharmacology, molecular docking, and experimental validation. Chin. J. Integr. Med. 2023 29 12 1077 1086 10.1007/s11655‑023‑3642‑z 37528325
    [Google Scholar]
  8. Fan S. Xiao G. Ni J. Guanxinning injection ameliorates cardiac remodeling in HF mouse and 3D heart spheroid models via p38/FOS/MMP1-mediated inhibition of myocardial hypertrophy and fibrosis. Biomed. Pharmacother. 2023 162 114642 10.1016/j.biopha.2023.114642 37027988
    [Google Scholar]
  9. Liang B. Li R. Liang Y. Gu N. Guanxin V acts as an antioxidant in ventricular remodeling. Front. Cardiovasc. Med. 2022 8 778005 10.3389/fcvm.2021.778005 35059446
    [Google Scholar]
  10. Liang D. Mechanism of Artemisia annua L. in the treatment of acute myocardial infarction: Network pharmacology, molecular docking and in vivo validation. Mol. Divers. 2024 28 5 3225 3242 10.1007/s11030‑023‑10750‑3 37898972
    [Google Scholar]
  11. Yang Y. Xu Y. Qian S. Systematic investigation of the multi-scale mechanisms of herbal medicine on treating ventricular remodeling: Theoretical and experimental studies. Phytomedicine 2023 112 154706 10.1016/j.phymed.2023.154706 36796187
    [Google Scholar]
  12. Wang X. Xing X. Huang P. A Chinese classical prescription Xuefu Zhuyu decoction in the treatment of coronary heart disease: An overview. Heliyon 2024 10 7 e28919 10.1016/j.heliyon.2024.e28919 38617912
    [Google Scholar]
  13. Jia D. Zhao M. Zhang X. Transcriptomic analysis reveals the critical role of chemokine signaling in the anti-atherosclerosis effect of Xuefu Zhuyu decoction. J. Ethnopharmacol. 2024 332 118245 10.1016/j.jep.2024.118245 38679399
    [Google Scholar]
  14. Chekalina N. Burmak Y. Petrov Y. Quercetin reduces the transcriptional activity of NF-kB in stable coronary artery disease. Indian Heart J. 2018 70 5 593 597 10.1016/j.ihj.2018.04.006 30392493
    [Google Scholar]
  15. Zhang Z.Z. Yu X.H. Tan W.H. Baicalein inhibits macrophage lipid accumulation and inflammatory response by activating the PPARγ/LXRα pathway. Clin. Exp. Immunol. 2022 209 3 316 325 10.1093/cei/uxac062 35749304
    [Google Scholar]
  16. Gupta S. Buttar H.S. Kaur G. Tuli H.S. Baicalein: Promising therapeutic applications with special reference to published patents. Pharm. Pat. Anal. 2022 11 1 23 32 10.4155/ppa‑2021‑0027 35345898
    [Google Scholar]
  17. Yang H.Y. Liu M.L. Luo P. Yao X.S. Zhou H. Network pharmacology provides a systematic approach to understanding the treatment of ischemic heart diseases with traditional Chinese medicine. Phytomedicine 2022 104 154268 10.1016/j.phymed.2022.154268 35777118
    [Google Scholar]
  18. Wu Y. Zhang F. Yang K. SymMap: An integrative database of traditional Chinese medicine enhanced by symptom mapping. Nucleic Acids Res. 2019 47 D1 D1110 D1117 10.1093/nar/gky1021 30380087
    [Google Scholar]
  19. Daina A. Zoete V. A BOILED‐Egg To predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016 11 11 1117 1121 10.1002/cmdc.201600182 27218427
    [Google Scholar]
  20. Tian S. Wang J. Li Y. Li D. Xu L. Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev. 2015 86 2 10 10.1016/j.addr.2015.01.009 25666163
    [Google Scholar]
  21. Wang M. Yang S. Shao M. Identification of potential bioactive ingredients and mechanisms of the Guanxin suhe pill on Angina pectoris by integrating network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med. 2021 2021 1 13 10.1155/2021/4280482 34422068
    [Google Scholar]
  22. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  23. Banerjee P. Kemmler E. Dunkel M. Preissner R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024 52 W1 W513-20 10.1093/nar/gkae303 38647086
    [Google Scholar]
  24. Tian X. Yin S. Liu Z. Cao J. Liu X. Qiu Q. Elucidation of the molecular mechanism of compound danshen dripping pills against angina pectoris based on network pharmacology and molecular docking. Curr. Pharm. Des. 2024 30 16 1247 1264 10.2174/0113816128287109240321074628 38584551
    [Google Scholar]
  25. Bardou P. Mariette J. Escudié F. Djemiel C. Klopp C. jvenn: An interactive Venn diagram viewer. BMC Bioinformatics 2014 15 1 293 10.1186/1471‑2105‑15‑293 25176396
    [Google Scholar]
  26. Szklarczyk D. Gable A.L. Lyon D. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  27. Li X. Tang H. Tang Q. Chen W. Decoding the mechanism of huanglian jiedu decoction in treating pneumonia based on network pharmacology and molecular docking. Front. Cell Dev. Biol. 2021 9 638366 10.3389/fcell.2021.638366 33681222
    [Google Scholar]
  28. Dong Y. Zheng Y. Zhu L. Hua-Tan-Sheng-Jing decoction treats obesity with oligoasthenozoospermia by up-regulating the PI3K-AKT and down-regulating the JNK MAPK signaling pathways: At the crossroad of obesity and oligoasthenozoospermia. Front. Pharmacol. 2022 13 896434 10.3389/fphar.2022.896434 35559247
    [Google Scholar]
  29. Liu T. Wang J. Tong Y. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J. Transl. Med. 2024 22 1 86 10.1186/s12967‑023‑04840‑x 38246999
    [Google Scholar]
  30. Yang X. Wang T. Tang Y. Shao Y. Gao Y. Wu P. Treatment of liver fibrosis in hepatolenticular degeneration with traditional Chinese medicine: Systematic review of meta-analysis, network pharmacology and molecular dynamics simulation. Front. Med. 2023 10 1193132 10.3389/fmed.2023.1193132 37250630
    [Google Scholar]
  31. Hiremath S. In silico docking analysis revealed the potential of phytochemicals present in Phyllanthus amarus and Andrographis paniculata, used in Ayurveda medicine in inhibiting SARS-CoV- 2. 3 Biotech 2021 11 2 44 10.1007/s13205‑020‑02578‑7
    [Google Scholar]
  32. Yang Y. Su C. Zhang X.Z. Mechanisms of Xuefu Zhuyu Decoction in the treatment of coronary heart disease based on integrated metabolomics and network pharmacology approach. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2023 1223 123712 10.1016/j.jchromb.2023.123712 37060624
    [Google Scholar]
  33. Pei Z. Guo X. Zheng F. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. Phytomedicine 2024 129 155566 10.1016/j.phymed.2024.155566 38565001
    [Google Scholar]
  34. Deng S. Gong X. Long Z. Xuefu Zhuyu decoction improves asthma‐induced asthenozoospermia based on network pharmacology and in vivo experiment. Andrologia 2021 53 10 e14198 10.1111/and.14198 34375006
    [Google Scholar]
  35. Huang B. Tang P. Liu Y. Xuefu Zhuyu decoction alleviates deep vein thrombosis through inhibiting the activation of platelets and neutrophils via sirtuin 1/nuclear factor kappa-B pathway. J. Ethnopharmacol. 2024 333 118485 10.1016/j.jep.2024.118485 38908490
    [Google Scholar]
  36. Liu D. Zeng Y. Liang P. Jiang Y. An S. Ren P. Efficacy and safety of Xuefu Zhuyu Granules combined with western medicine in the treatment of angina pectoris of coronary heart disease: A study protocol of a randomized, double-blind, placebo-controlled clinical trial. Medicine 2022 101 43 e31235 10.1097/MD.0000000000031235 36316861
    [Google Scholar]
  37. Yang X. Xiong X. Yang G. Wang J. Chinese patent medicine Xuefu Zhuyu capsule for the treatment of unstable angina pectoris: A systematic review of randomized controlled trials. Complement Ther Med. 2014 22 2 391 399 10.1016/j.ctim.2014.01.003 24731911
    [Google Scholar]
  38. Wang D. Wang P. Zhang R. Xi X. Efficacy and safety of Xuefu Zhuyu decoction combined with Western medicine for angina pectoris in coronary heart disease. Medicine 2020 99 50 e23195 10.1097/MD.0000000000023195 33327236
    [Google Scholar]
  39. Min Z. Quercetin inhibition of myocardial fibrosis through regulating MAPK signaling pathway via ROS. Pak J Pharm Sci 2019 32 (3 Special) 1355 9
    [Google Scholar]
  40. Kondo M. Izawa-Ishizawa Y. Goda M. Preventive effects of quercetin against the onset of atherosclerosis-related acute aortic syndromes in mice. Int. J. Mol. Sci. 2020 21 19 7226 10.3390/ijms21197226 33007902
    [Google Scholar]
  41. Saragusti A.C. Ortega M.G. Cabrera J.L. Estrin D.A. Marti M.A. Chiabrando G.A. Inhibitory effect of quercetin on matrix metalloproteinase 9 activity molecular mechanism and structure-activity relationship of the flavonoid-enzyme interaction. Eur. J. Pharmacol. 2010 644 1-3 138 145 10.1016/j.ejphar.2010.07.001 20619256
    [Google Scholar]
  42. Xiao L. Liu L. Guo X. Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: A critical role of NADPH oxidase. Food Chem. Toxicol. 2017 105 22 33 10.1016/j.fct.2017.03.048 28351769
    [Google Scholar]
  43. Jalili T. Carlstrom J. Kim S. Quercetin-supplemented diets lower blood pressure and attenuate cardiac hypertrophy in rats with aortic constriction. J. Cardiovasc. Pharmacol. 2006 47 4 531 541 10.1097/01.fjc.0000211746.78454.50 16680066
    [Google Scholar]
  44. Han J.J. Hao J. Kim C.H. Hong J.S. Ahn H.Y. Lee Y.S. Quercetin prevents cardiac hypertrophy induced by pressure overload in rats. J. Vet. Med. Sci. 2009 71 6 737 743 10.1292/jvms.71.737 19578281
    [Google Scholar]
  45. Pereira S.C. Parente J.M. Belo V.A. Quercetin decreases the activity of matrix metalloproteinase-2 and ameliorates vascular remodeling in renovascular hypertension. Atherosclerosis 2018 270 146 153 10.1016/j.atherosclerosis.2018.01.031 29425960
    [Google Scholar]
  46. Kondratiuk V.E. Synytsia Y.P. Effect of quercetin on the echocardiographic parameters of left ventricular diastolic function in patients with gout and essential hypertension. Wiad. Lek. 2018 71 8 1554 1559 [PMID: 30684340
    [Google Scholar]
  47. Feng H. Cao J. Zhang G. Wang Y. Kaempferol attenuates cardiac hypertrophy via regulation of ASK1/MAPK signaling pathway and oxidative stress. Planta Med. 2017 83 10 837 845 10.1055/s‑0043‑103415 28219095
    [Google Scholar]
  48. Gao H.L. Yu X.J. Hu H.B. Apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent ROS generation and cytokines in hypothalamic paraventricular nucleus. Cardiovasc. Toxicol. 2021 21 9 721 736 10.1007/s12012‑021‑09662‑1 34076830
    [Google Scholar]
  49. Liu B. Li L. Liu G. Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol. Sin. 2021 42 5 701 714 10.1038/s41401‑020‑0496‑1 32796955
    [Google Scholar]
  50. Wang A.W. Song L. Miao J. Baicalein attenuates angiotensin II-induced cardiac remodeling via inhibition of AKT/mTOR, ERK1/2, NF-κB, and calcineurin signaling pathways in mice. Am. J. Hypertens. 2015 28 4 518 526 10.1093/ajh/hpu194 25362112
    [Google Scholar]
  51. Shi R. Wei Z. Zhu D. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulm. Pharmacol. Ther. 2018 48 124 135 10.1016/j.pupt.2017.11.003 29133079
    [Google Scholar]
  52. Shiojima I. Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev. 2006 20 24 3347 3365 10.1101/gad.1492806 17182864
    [Google Scholar]
  53. Abeyrathna P. Su Y. The critical role of Akt in cardiovascular function. Vascul. Pharmacol. 2015 74 38 48 10.1016/j.vph.2015.05.008 26025205
    [Google Scholar]
  54. Araki S. Izumiya Y. Hanatani S. Akt1-mediated skeletal muscle growth attenuates cardiac dysfunction and remodeling after experimental myocardial infarction. Circ. Heart Fail. 2012 5 1 116 125 10.1161/CIRCHEARTFAILURE.111.964783 22135402
    [Google Scholar]
  55. Vandoorne K. Vandsburger M.H. Raz T. Chronic Akt1 deficiency attenuates adverse remodeling and enhances angiogenesis after myocardial infarction. Circ. Cardiovasc. Imaging 2013 6 6 992 1000 10.1161/CIRCIMAGING.113.000828 24134954
    [Google Scholar]
  56. Condorelli G. Drusco A. Stassi G. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. USA 2002 99 19 12333 12338 10.1073/pnas.172376399 12237475
    [Google Scholar]
  57. Wohlschlaeger J. Schmitz K.J. Palatty J. Roles of cyclooxygenase-2 and phosphorylated Akt (Thr308) in cardiac hypertrophy regression mediated by left-ventricular unloading. J. Thorac. Cardiovasc. Surg. 2007 133 1 37 43 10.1016/j.jtcvs.2006.07.042 17198778
    [Google Scholar]
  58. Enomoto D. Obana M. Miyawaki A. Maeda M. Nakayama H. Fujio Y. Cardiac-specific ablation of the STAT3 gene in the subacute phase of myocardial infarction exacerbated cardiac remodeling. Am. J. Physiol. Heart Circ. Physiol. 2015 309 3 H471 H480 10.1152/ajpheart.00730.2014 26055795
    [Google Scholar]
  59. Liu Y. Che G. Di Z. Sun W. Tian J. Ren M. Calycosin-7-O-β-d-glucoside attenuates myocardial ischemia-reperfusion injury by activating JAK2/STAT3 signaling pathway via the regulation of IL-10 secretion in mice. Mol. Cell. Biochem. 2020 463 1-2 175 187 10.1007/s11010‑019‑03639‑z 31712941
    [Google Scholar]
  60. Harhous Z. Booz G.W. Ovize M. Bidaux G. Kurdi M. An update on the multifaceted roles of STAT3 in the heart. Front. Cardiovasc. Med. 2019 6 150 10.3389/fcvm.2019.00150 31709266
    [Google Scholar]
  61. Hilfiker-Kleiner D. Shukla P. Klein G. Continuous glycoprotein-130-mediated signal transducer and activator of transcription-3 activation promotes inflammation, left ventricular rupture, and adverse outcome in subacute myocardial infarction. Circulation 2010 122 2 145 155 10.1161/CIRCULATIONAHA.109.933127 20585009
    [Google Scholar]
  62. Andreadou I. Efentakis P. Balafas E. Empagliflozin limits myocardial infarction in vivo and cell death in vitro: Role of STAT3, mitochondria, and redox aspects. Front. Physiol. 2017 8 1077 10.3389/fphys.2017.01077 29311992
    [Google Scholar]
  63. Xue F. Nie X. Shi J. Quercetin inhibits LPS-induced inflammation and ox-LDL-induced lipid deposition. Front. Pharmacol. 2017 8 40 10.3389/fphar.2017.00040 28217098
    [Google Scholar]
  64. Liu D. Luo H. Qiao C. SHP-1/STAT3 interaction is related to luteolin-induced myocardial ischemia protection. Inflammation 2022 45 1 88 99 10.1007/s10753‑021‑01530‑y 34460026
    [Google Scholar]
  65. Frangogiannis N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol. 2014 11 5 255 265 10.1038/nrcardio.2014.28 24663091
    [Google Scholar]
  66. Maekawa N. Wada H. Kanda T. Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-α. J. Am. Coll. Cardiol. 2002 39 7 1229 1235 10.1016/S0735‑1097(02)01738‑2 11923051
    [Google Scholar]
  67. Mann D.L. McMurray J.J.V. Packer M. Targeted anticytokine therapy in patients with chronic heart failure: Results of the randomized etanercept worldwide evaluation (RENEWAL). Circulation 2004 109 13 1594 1602 10.1161/01.CIR.0000124490.27666.B2 15023878
    [Google Scholar]
  68. Liao W. Yu C. Wen J. Adiponectin induces interleukin‐6 production and activates STAT3 in adult mouse cardiac fibroblasts. Biol. Cell 2009 101 5 263 272 10.1042/BC20080117 18795895
    [Google Scholar]
  69. Zhang Z. Tang J. Song J. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic. Biol. Med. 2022 181 130 142 10.1016/j.freeradbiomed.2022.01.020 35122997
    [Google Scholar]
  70. Kobara M. Noda K. Kitamura M. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc. Res. 2010 87 3 424 430 10.1093/cvr/cvq078 20211866
    [Google Scholar]
  71. Walkowski B. Kleibert M. Majka M. Wojciechowska M. Insight into the role of the PI3K/Akt pathway in ischemic injury and post-infarct left ventricular remodeling in normal and diabetic heart. Cells 2022 11 9 1553 10.3390/cells11091553 35563860
    [Google Scholar]
  72. Meng H. Zhang Y. An S.T. Chen Y. Annexin A3 gene silencing promotes myocardial cell repair through activation of the PI3K/Akt signaling pathway in rats with acute myocardial infarction. J. Cell. Physiol. 2019 234 7 10535 10546 10.1002/jcp.27717 30456911
    [Google Scholar]
  73. Feng Q. Li X. Qin X. Yu C. Jin Y. Qian X. PTEN inhibitor improves vascular remodeling and cardiac function after myocardial infarction through PI3k/Akt/VEGF signaling pathway. Mol. Med. 2020 26 1 111 10.1186/s10020‑020‑00241‑8 33213359
    [Google Scholar]
  74. Zhang S. Chen Z.L. Tang Y.P. Duan J.L. Yao K.W. Efficacy and safety of Xue-Fu-Zhu-Yu decoction for patients with coronary heart disease: A systematic review and meta-analysis. Evid. Based Complement. Alternat. Med. 2021 2021 1 19 10.1155/2021/9931826 34630621
    [Google Scholar]
  75. Liu R. Molkentin J.D. Regulation of cardiac hypertrophy and remodeling through the dual-specificity MAPK phosphatases (DUSPs). J. Mol. Cell. Cardiol. 2016 101 44 49 10.1016/j.yjmcc.2016.08.018 27575022
    [Google Scholar]
  76. Krishna M. Narang H. The complexity of mitogen-activated protein kinases (MAPKs) made simple. Cell. Mol. Life Sci. 2008 65 22 3525 3544 10.1007/s00018‑008‑8170‑7 18668205
    [Google Scholar]
  77. Kyriakis J.M. Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 2001 81 2 807 869 10.1152/physrev.2001.81.2.807 11274345
    [Google Scholar]
  78. Lips D.J. Bueno O.F. Wilkins B.J. MEK1-ERK2 signaling pathway protects myocardium from ischemic injury in vivo. Circulation 2004 109 16 1938 1941 10.1161/01.CIR.0000127126.73759.23 15096454
    [Google Scholar]
  79. Maillet M. Purcell N.H. Sargent M.A. York A.J. Bueno O.F. Molkentin J.D. DUSP6 (MKP3) null mice show enhanced ERK1/2 phosphorylation at baseline and increased myocyte proliferation in the heart affecting disease susceptibility. J. Biol. Chem. 2008 283 45 31246 31255 10.1074/jbc.M806085200 18753132
    [Google Scholar]
  80. Rose B.A. Force T. Wang Y. Mitogen-activated protein kinase signaling in the heart: Angels versus demons in a heart-breaking tale. Physiol. Rev. 2010 90 4 1507 1546 10.1152/physrev.00054.2009 20959622
    [Google Scholar]
  81. Braz J.C. Bueno O.F. De Windt L.J. Molkentin J.D. PKCα regulates the hypertrophic growth of cardiomyocytes through extracellular signal–regulated kinase1/2 (ERK1/2). J. Cell Biol. 2002 156 5 905 919 10.1083/jcb.200108062 11864993
    [Google Scholar]
  82. Bueno O.F. De Windt L.J. Tymitz K.M. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 2000 19 23 6341 6350 10.1093/emboj/19.23.6341 11101507
    [Google Scholar]
  83. Hayashi M. Lee J.D. Role of the BMK1/ERK5 signaling pathway: Lessons from knockout mice. J. Mol. Med. 2004 82 12 800 808 10.1007/s00109‑004‑0602‑8 15517128
    [Google Scholar]
  84. Marber M.S. Rose B. Wang Y. The p38 mitogen-activated protein kinase pathway—A potential target for intervention in infarction, hypertrophy, and heart failure. J. Mol. Cell. Cardiol. 2011 51 4 485 490 10.1016/j.yjmcc.2010.10.021 21062627
    [Google Scholar]
  85. Arabacilar P. Marber M. The case for inhibiting p38 mitogen-activated protein kinase in heart failure. Front. Pharmacol. 2015 6 102 10.3389/fphar.2015.00102 26029107
    [Google Scholar]
  86. Yokota T. Wang Y. p38 MAP kinases in the heart. Gene 2016 575 2 369 376 10.1016/j.gene.2015.09.030 26390817
    [Google Scholar]
  87. Matsumoto-Ida M. Takimoto Y. Aoyama T. Akao M. Takeda T. Kita T. Activation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am. J. Physiol. Heart Circ. Physiol. 2006 290 2 H709 H715 10.1152/ajpheart.00186.2005 16183734
    [Google Scholar]
  88. Li X. Han J. Li L. Wang K.J. Hu S.J. Effect of farnesyltransferase inhibition on cardiac remodeling in spontaneously hypertensive rats. Int. J. Cardiol. 2013 168 4 3340 3347 10.1016/j.ijcard.2013.04.038 23664044
    [Google Scholar]
  89. Li C. Lv L. Li H. Yu D. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc. Diabetol. 2012 11 1 73 10.1186/1475‑2840‑11‑73 22713251
    [Google Scholar]
  90. Liang B. Liang Y. Li R. Zhang H. Gu N. Integrating systematic pharmacology-based strategy and experimental validation to explore the synergistic pharmacological mechanisms of Guanxin V in treating ventricular remodeling. Bioorg. Chem. 2021 115 105187 10.1016/j.bioorg.2021.105187 34303037
    [Google Scholar]
  91. Li J. Ma J. Wang K.S. Baicalein inhibits TNF-α-induced NF-κB activation and expression of NF-κB-regulated target gene products. Oncol. Rep. 2016 36 5 2771 2776 10.3892/or.2016.5108 27667548
    [Google Scholar]
  92. Kumar M. Kasala E.R. Bodduluru L.N. Dahiya V. Lahkar M. Baicalein protects isoproterenol induced myocardial ischemic injury in male Wistar rats by mitigating oxidative stress and inflammation. Inflamm. Res. 2016 65 8 613 622 10.1007/s00011‑016‑0944‑z 27071824
    [Google Scholar]
  93. Wang Z. Shi W. Wu T. A high-throughput drug screening identifies luteolin as a therapeutic candidate for pathological cardiac hypertrophy and heart failure. Front. Cardiovasc. Med. 2023 10 1130635 10.3389/fcvm.2023.1130635 36998980
    [Google Scholar]
  94. Nakayama A. Morita H. Nakao T. A food-derived flavonoid luteolin protects against angiotensin II-induced cardiac remodeling. PLoS One 2015 10 9 e0137106 10.1371/journal.pone.0137106 26327560
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128375610250608071339
Loading
/content/journals/cpd/10.2174/0113816128375610250608071339
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test