Skip to content
2000
image of Analysis of Chemical Constituents of Jiaotai Pill Based on UPLC-Q-Exactive Orbitrap-HRMS Technology and Its Antidiabetic Type 2 Mechanism in Network Pharmacology

Abstract

Introduction

Jiaotai Pill (JTP) is a Traditional Chinese Medicine (TCM) prescription that has demonstrated therapeutic effects against Type 2 Diabetes Mellitus (T2DM). However, its active antidiabetic components and underlying mechanism of action remain unclear. This study aimed to identify the bioactive components in JTP and elucidate their molecular targets and therapeutic pathways in T2DM.

Methods

Chemical components of JTP were identified using ultra-high performance liquid chromatography coupled with Q-Exactive Orbitrap high-resolution mass spectrometer (UHPLC-Q-Exactive Orbitrap-HRMS) in both positive and negative ion modes. Data were processed with Compound Discoverer 3.2 (CD 3.2) data software and validated using literature sources. Network pharmacology analysis was performed multiple databases, including the Traditional Chinese Medicine Systems Pharmacology Database, Uniport, PubChem, GenCards, String, and Cytoscape, to predict potential bioactive compounds and therapeutic targets. Key interactions were validated using molecular docking and molecular dynamics simulations.

Results

A total of 104 compounds were identified in JTP. Network pharmacology analysis revealed 5 key antidiabetic components and 5 core targets. These targets are involved in biological processes including apoptosis regulation, cell proliferation, and protein phosphorylation, and are enriched in pathways such as neuroactive ligand-receptor interaction, PI3K-AKT signaling, and AGE-RAGE signaling. Molecular docking indicated strong binding affinity between dihydrochelerythrine and AKT1(-9.0 kcal/mol) and TNF-α (-6.7 kcal/mol). Molecular dynamics simulation demonstrated stable and sustained hydrogen bonding between dihydrochelerythrine and AKT1.

Discussion

Dihydrochelerythrine, as an active ingredient in JTP, may exert its antidiabetic mechanism by binding with AKT1, but it needs to be verified by subsequent animal or cell experiments.

Conclusion

Dihydrochelerythrine, a key active component of JTP, may exert antidiabetic effects in T2DM through stable interaction with AKT1, highlighting a potential therapeutic mechanism.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128402177250911093207
2025-10-28
2025-12-15
Loading full text...

Full text loading...

References

  1. Zhou Z. Fu S. Liu Y. Study of efficacy and safety of Jiaotai pill in the treatment of depression. Medicine 2020 99 18 19999 10.1097/MD.0000000000019999 32358376
    [Google Scholar]
  2. Li Z.H. Ma P.K. Huang Y.F. Jiaotai pill () alleviates insomnia through regulating monoamine and organic cation transporters in rats. Chin. J. Integr. Med. 2021 27 3 183 191 10.1007/s11655‑021‑3284‑y 33420587
    [Google Scholar]
  3. Huang W. Zou X. Lu F. Effect of jiaotai pill (交泰丸) on intestinal damage in partially sleep deprived rats. Chin. J. Integr. Med. 2017 23 12 901 907 10.1007/s11655‑017‑2969‑8 28986813
    [Google Scholar]
  4. Chen N. Guo C. Chen H. Simultaneous determination of six coptis alkaloids in urine and feces by LC–MS/MS and its application to excretion kinetics and the compatibility mechanism of Jiao‐Tai‐Wan in insomniac rats. Biomed. Chromatogr. 2018 32 8 4248 10.1002/bmc.4248 29577358
    [Google Scholar]
  5. Dong H. Wang J.H. Lu F.E. Xu L.J. Gong Y.L. Zou X. Jiaotai Pill enhances insulin signaling through phosphatidylinositol 3-kinase pathway in skeletal muscle of diabetic rats. Chin. J. Integr. Med. 2013 19 9 668 674 10.1007/s11655‑013‑1560‑1 23975131
    [Google Scholar]
  6. Zhao L. Jiang S. Lu F. Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells. Chin. J. Integr. Med. 2016 22 7 496 502 10.1007/s11655‑014‑1986‑0 25491540
    [Google Scholar]
  7. Huang W. Dong H. Coptidis rhizoma-contained traditional formulae for insomnia: A potential to prevent diabetes? Chin. J. Integr. Med. 2018 24 10 785 788 10.1007/s11655‑018‑3012‑4 30267370
    [Google Scholar]
  8. Hao Y. Huo J. Wang T. Sun G. Wang W. Chemical profiling of Coptis rootlet and screening of its bioactive compounds in inhibiting Staphylococcus aureus by UPLC-Q-TOF/MS. J. Pharm. Biomed. Anal. 2020 180 113089 10.1016/j.jpba.2019.113089 31901737
    [Google Scholar]
  9. Yi L. Liang Z.T. Peng Y. Histochemical evaluation of alkaloids in rhizome of Coptis chinensis using laser microdissection and liquid chromatography/mass spectrometry. Drug Test. Anal. 2015 7 6 519 530 10.1002/dta.1703 25209714
    [Google Scholar]
  10. Jintao X. Yufei L. Liming Y. Rapid and simultaneous analysis of five alkaloids in four parts of Coptidis Rhizoma by near-infrared spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018 188 611 618 10.1016/j.saa.2017.07.053 28780486
    [Google Scholar]
  11. Guo K. Tong C. Fu Q. Xu J. Shi S. Xiao Y. Identification of minor lignans, alkaloids, and phenylpropanoid glycosides in Magnolia officinalis by HPLC-DAD-QTOF-MS/MS. J. Pharm. Biomed. Anal. 2019 170 153 160 10.1016/j.jpba.2019.03.044 30925272
    [Google Scholar]
  12. Wang S. Sun X. An S. Sang F. Zhao Y. Yu Z. High-throughput identification of organic compounds from polygoni multiflori radix praeparata (Zhiheshouwu) by UHPLC-Q-exactive orbitrap-MS. Molecules 2021 26 13 3977 10.3390/molecules26133977 34209934
    [Google Scholar]
  13. Dai T. Sun G. The analysis of active compounds in Flos Chrysanthemi Indici by UHPLC Q exactive HF hybrid Quadrupole-Orbitrap MS and comprehensive quality assessment of its preparation. Food Funct. 2021 12 4 1769 1782 10.1039/D0FO03053H 33507197
    [Google Scholar]
  14. Vishakh R. Suchetha Kumari N. Bhandary A. Shetty S.S. Bhandary P. Tamizh Selvan G. Evaluating the role of cytokinesis-block micronucleus assay as a biomarker for oxidative stress-inducing DNA damage in type 2 diabetes mellitus patients. Beni. Suef Univ. J. Basic Appl. Sci. 2023 12 56 10.1186/s43088‑023‑00384‑7
    [Google Scholar]
  15. Luo W. Deng J. He J. Integration of molecular docking, molecular dynamics and network pharmacology to explore the multi‐target pharmacology of fenugreek against diabetes. J. Cell. Mol. Med. 2023 27 14 1959 1974 10.1111/jcmm.17787 37257051
    [Google Scholar]
  16. Guo F. Yao L. Zhang W. The therapeutic mechanism of Yuye decoction on type 2 diabetes mellitus based on network pharmacology and experimental verification. J. Ethnopharmacol. 2023 308 116222 10.1016/j.jep.2023.116222 36828194
    [Google Scholar]
  17. Liu Y. Zhang J. An C. Identification of potential mechanisms of Rk1 combination with Rg5 in the treatment of type II diabetes mellitus by integrating network pharmacology and experimental validation. Int. J. Mol. Sci. 2023 24 19 14828 10.3390/ijms241914828 37834276
    [Google Scholar]
  18. Tang Y. Su H. Wang H. The effect and mechanism of Jiao-tai-wan in the treatment of diabetes mellitus with depression based on network pharmacology and experimental analysis. Mol. Med. 2021 27 1 154 10.1186/s10020‑021‑00414‑z 34875999
    [Google Scholar]
  19. Gollapalli P. Selvan G.T. Rao A.S.J. Manjunatha H. Shetty P. Kumari N.S. Systems pharmacology and pharmacokinetics strategy to decode bioactive ingredients and molecular mechanisms from Zingiber officinale as phyto-therapeutics against neurological diseases. Curr. Drug Discov. Technol. 2023 20 1 250822207996 10.2174/1570163819666220825141356 36028974
    [Google Scholar]
  20. Ye C. Li Y. Shi J. Network pharmacology analysis revealed the mechanism and active compounds of jiao tai wan in the treatment of type 2 diabetes mellitus via SRC/PI3K/AKT signaling. J. Ethnopharmacol. 2025 337 Pt 2 118898 10.1016/j.jep.2024.118898 39374878
    [Google Scholar]
  21. Wang Y.J. Wang Y.L. Jiang X.F. Li J.E. Molecular targets and mechanisms of Jiawei Jiaotai Pill on diabetic cardiomyopathy based on network pharmacology. World J. Diabetes 2023 14 11 1659 1671 10.4239/wjd.v14.i11.1659 38077804
    [Google Scholar]
  22. He W. Liu G. Cai H. Integrated pharmacokinetics of five protoberberine-type alkaloids in normal and insomnic rats after single and multiple oral administration of Jiao-Tai-Wan. J. Ethnopharmacol. 2014 154 3 635 644 10.1016/j.jep.2014.04.040 24815220
    [Google Scholar]
  23. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  24. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357-64 10.1093/nar/gkz382 31106366
    [Google Scholar]
  25. Stelzer G Rosen N Plaschkes I The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatic 2016 54 1 30.1 33 10.1002/cpbi.5 27322403
    [Google Scholar]
  26. Szklarczyk D. Gable A.L. Lyon D. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  27. Shannon P. Markiel A. Ozier O. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  28. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  29. An J. Fan H. Han M. Peng C. Xie J. Peng F. Exploring the mechanisms of neurotoxicity caused by fuzi using network pharmacology and molecular docking. Front. Pharmacol. 2022 13 961012 10.3389/fphar.2022.961012 36110545
    [Google Scholar]
  30. Kim S. Chen J. Cheng T. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019 47 D1 D1102 D1109 10.1093/nar/gky1033 30371825
    [Google Scholar]
  31. Pinzi L. Rastelli G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci. 2019 20 18 4331 10.3390/ijms20184331 31487867
    [Google Scholar]
  32. Lin R. Zhang J. Xu R. Developments in molecular docking technologies for application of polysaccharide-based materials: A review. Crit. Rev. Food Sci. Nutr. 2024 64 24 8540 8552 10.1080/10408398.2023.2200833 37077154
    [Google Scholar]
  33. Yan B. Liao P. Zhang W. Identification of key fatty acid metabolism-related genes in Alzheimer’s disease. Mol. Neurobiol. 2025 62 7 9399 9415 10.1007/s12035‑025‑04857‑x 40108056
    [Google Scholar]
  34. Jo S. Kim T. Iyer V.G. Im W. CHARMM‐GUI: A web‐based graphical user interface for CHARMM. J. Comput. Chem. 2008 29 11 1859 1865 10.1002/jcc.20945 18351591
    [Google Scholar]
  35. Mark Pekka Nilsson Lennart Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 2001 105 43
    [Google Scholar]
  36. Liu J. Zhang Y. Hao Y. Chemical composition differentiation of Shen‐Shuai‐Ning granule between combined decoction and separated decoction using HPLC‐DAD‐ESI‐QTOF‐MS. Biomed. Chromatogr. 2017 31 9 3949 10.1002/bmc.3949 28178753
    [Google Scholar]
  37. Zhao Y. Wang M. Sun L. Jiang X. Zhao M. Zhao C. Rapid characterization of the chemical constituents of Sanhua decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry. RSC Advances 2020 10 44 26109 26119 10.1039/D0RA02264K 35519733
    [Google Scholar]
  38. Zhu L. Han J. Yuan R. Xue L. Pang W. Berberine ameliorates diabetic nephropathy by inhibiting TLR4/NF-κB pathway. Biol. Res. 2018 51 1 9 10.1186/s40659‑018‑0157‑8
    [Google Scholar]
  39. Cao G. Geng S. Luo Y. The rapid identification of chemical constituents in Fufang Xiling Jiedu capsule, a modern Chinese medicine, by ultra‐performance liquid chromatography coupled with quadrupole‐time‐of‐flight tandem mass spectrometry and data mining strategy. J. Sep. Sci. 2021 44 9 1815 1823 10.1002/jssc.202001093 33576573
    [Google Scholar]
  40. Yang Y.L. Adel Al-Mahdy D. Wu M.L. LC-MS-based identification and antioxidant evaluation of small molecules from the cinnamon oil extraction waste. Food Chem. 2022 366 130576 10.1016/j.foodchem.2021.130576 34348222
    [Google Scholar]
  41. He Y. Li Z. Wang W. Chemical profiles and simultaneous quantification of Aurantii fructus by use of HPLC-Q-TOF-MS combined with GC-MS and HPLC methods. Molecules 2018 23 9 2189 10.3390/molecules23092189 30200226
    [Google Scholar]
  42. Tong R. Peng M. Tong C. Guo K. Shi S. Online extraction–high performance liquid chromatography–diode array detector–quadrupole time-of-flight tandem mass spectrometry for rapid flavonoid profiling of Fructus aurantii immaturus. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018 1077-1078 1 6 10.1016/j.jchromb.2018.01.031 29413571
    [Google Scholar]
  43. Shang X. Huang D. Wang Y. Identification of nutritional ingredients and medicinal components of Pueraria lobata and its varieties using uplc-ms/ms-based metabolomics. Molecules 2021 26 21 6587 10.3390/molecules26216587 34770994
    [Google Scholar]
  44. Liang C. Yao Y. Ding H. Li X. Li Y. Cai T. Rapid classification and identification of chemical components of Astragali radix by UPLC‐Q‐TOF‐MS. Phytochem. Anal. 2022 33 6 943 960 10.1002/pca.3150 35726352
    [Google Scholar]
  45. Gao Y. Wu Y. Liu S. Liu Z. Song F. Liu Z. A strategy to comprehensively and quickly identify the chemical constituents in Platycodi Radix by ultra‐performance liquid chromatography coupled with traveling wave ion mobility quadrupole time‐of‐flight mass spectrometry. J. Sep. Sci. 2021 44 3 691 708 10.1002/jssc.202000913 33289296
    [Google Scholar]
  46. Zareena B. Khadim A. Jeelani S.U.Y. Hussain S. Ali A. Musharraf S.G. High-throughput detection of an alkaloidal plant metabolome in plant extracts using LC-ESI-QTOF-MS. J. Proteome Res. 2021 20 8 3826 3839 10.1021/acs.jproteome.1c00111 34308647
    [Google Scholar]
  47. Cao Z. Wang X. Zeng Z. Correction: The improvement of modified Si-Miao granule on hepatic insulin resistance and glycogen synthesis in type 2 diabetes mellitus involves the inhibition of TNF-α/JNK1/IRS-2 pathway: Network pharmacology, molecular docking, and experimental validation. Chin. Med. 2024 19 1 146 10.1186/s13020‑024‑01012‑x 39434127
    [Google Scholar]
  48. Chen L. Wang J. Ren Y. Artesunate improves glucose and lipid metabolism in db/db mice by regulating the metabolic profile and the MAPK/PI3K/Akt signalling pathway. Phytomedicine 2024 126 155382 10.1016/j.phymed.2024.155382 38382280
    [Google Scholar]
  49. Yang W. Jiang W. Liao W. An estrogen receptor α-derived peptide improves glucose homeostasis during obesity. Nat. Commun. 2024 15 1 3410 10.1038/s41467‑024‑47687‑6 38649684
    [Google Scholar]
  50. Li H. Han L. Gao X. To analyse the correlation between UAER and eGFR and the risk factors for reducing eGFR in patients with type 2 diabetes. BMC Endocr. Disord. 2024 24 1 228 10.1186/s12902‑024‑01761‑8 39468537
    [Google Scholar]
  51. Guan R. Pan L. Yu Z. Liu Z. Shi Q. Li J. Clinical study of “Jiaotai Pill” combined with head massage with 5-tone rhythm on insomnia patients of heart-kidney disharmony type. Medicine 2023 102 1 32645 10.1097/MD.0000000000032645 36607882
    [Google Scholar]
  52. Yang Y. Liu J. Ou H. Study on the mechanism of Jiaotai Pill intervention on insomnia animal model based on gut microbiome and metabolomics. Evid. Based Complement. Alternat. Med. 2023 2442505 10.1155/2023/2442505
    [Google Scholar]
  53. Chen X. Yang Z. Du L. Guan Y. Li Y. Liu C. Study on the active ingredients and mechanism of action of Jiaotai Pill in the treatment of type 2 diabetes based on network pharmacology. : A review.Medicine 2023 102 13 33317 10.1097/MD.0000000000033317 37000070
    [Google Scholar]
  54. Lin Q. Ma C. Guan H. Metabolites identification and reversible interconversion of chelerythrine and dihydrochelerythrine in vitro/in vivo in rats using ultra-performance liquid chromatography combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Pharm. Biomed. Anal. 2020 189 113462 10.1016/j.jpba.2020.113462 32659571
    [Google Scholar]
  55. Ekeuku S.O. Pang K.L. Chin K.Y. Palmatine as an agent against metabolic syndrome and its related complications: A review. Drug Des. Devel. Ther. 2020 14 4963 4974 10.2147/DDDT.S280520 33235437
    [Google Scholar]
  56. Dong S. Liang S. Cheng Z. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer. J. Exp. Clin. Cancer Res. 2022 41 1 15 10.1186/s13046‑021‑02229‑6
    [Google Scholar]
  57. Wang Q. Wang P. Qin Z. Altered glucose metabolism and cell function in keloid fibroblasts under hypoxia. Redox Biol. 2021 38 101815 10.1016/j.redox.2020.101815 33278780
    [Google Scholar]
  58. Li Y. Tang Y. Shi S. Tetrahedral framework nucleic acids ameliorate insulin resistance in type 2 diabetes mellitus via the PI3K/Akt pathway. ACS Appl. Mater. Interfaces 2021 13 34 40354 40364 10.1021/acsami.1c11468 34410099
    [Google Scholar]
  59. Taheri R. Mokhtari Y. Yousefi A.M. Bashash D. The PI3K/Akt signaling axis and type 2 diabetes mellitus (T2DM): From mechanistic insights into possible therapeutic targets. Cell Biol. Int. 2024 48 8 1049 1068 10.1002/cbin.12189 38812089
    [Google Scholar]
  60. van Loo G. Bertrand M.J.M. Death by TNF: A road to inflammation. Nat. Rev. Immunol. 2023 23 5 289 303 10.1038/s41577‑022‑00792‑3 36380021
    [Google Scholar]
  61. Warrick K.A. Vallez C.N. Meibers H.E. Pasare C. Bidirectional communication between the innate and adaptive immune systems. Annu. Rev. Immunol. 2025 43 1 489 514 10.1146/annurev‑immunol‑083122‑040624 40279312
    [Google Scholar]
  62. Pollock T.Y. Vázquez Marrero V.R. Brodsky I.E. Shin S. Shin S. TNF licenses macrophages to undergo rapid caspase-1, -11, and -8-mediated cell death that restricts Legionella pneumophila infection. PLoS Pathog. 2023 19 6 1010767 10.1371/journal.ppat.1010767 37279255
    [Google Scholar]
  63. Fujisawa S. Konnai S. Okagawa T. Effects of bovine tumor necrosis factor alpha decoy receptors on cell death and inflammatory cytokine kinetics: Potential for bovine inflammation therapy. BMC Vet. Res. 2019 15 1 68 10.1186/s12917‑019‑1813‑0 30819151
    [Google Scholar]
  64. Razliqi R.N. Ahangarpour A. Mard S.A. Khorsandi L. Gentisic acid ameliorates type 2 diabetes induced by Nicotinamide-Streptozotocin in male mice by attenuating pancreatic oxidative stress and inflammation through modulation of Nrf2 and NF-кB pathways. Life Sci. 2023 325 121770 10.1016/j.lfs.2023.121770 37192699
    [Google Scholar]
  65. Hao H.F. Liu L.M. Pan C.S. Rhynchophylline ameliorates endothelial dysfunction via Src-PI3K/Akt-eNOS cascade in the cultured intrarenal arteries of spontaneous hypertensive rats. Front. Physiol. 2017 8 928 10.3389/fphys.2017.00928 29187825
    [Google Scholar]
  66. Zhang X. Li X. Li H. Investigation of the potential mechanism of Alpinia officinarum Hance in improving type 2 diabetes mellitus based on network pharmacology and molecular docking. Evid. Based Complement. Alternat. Med. 2023 4934711 10.1155/2023/4934711
    [Google Scholar]
  67. Yang W. Jiang W. Guo S. Regulation of macronutrients in insulin resistance and glucose homeostasis during type 2 diabetes mellitus. Nutrients 2023 15 21 4671 10.3390/nu15214671 37960324
    [Google Scholar]
  68. Xiao H. Sun X. Lin Z. Gentiopicroside targets PAQR3 to activate the PI3K/AKT signaling pathway and ameliorate disordered glucose and lipid metabolism. Acta Pharm. Sin. B 2022 12 6 2887 2904 10.1016/j.apsb.2021.12.023 35755276
    [Google Scholar]
  69. Rai A.K. Jaiswal N. Maurya C.K. Fructose-induced AGEs-RAGE signaling in skeletal muscle contributes to impairment of glucose homeostasis. J. Nutr. Biochem. 2019 71 35 44 10.1016/j.jnutbio.2019.05.016 31272030
    [Google Scholar]
  70. Terasaki M. Yashima H. Mori Y. Glucose-dependent insulinotropic polypeptide inhibits AGE-induced nadph oxidase-derived oxidative stress generation and foam cell formation in macrophages partly via AMPK activation. Int. J. Mol. Sci. 2024 25 17 9724 10.3390/ijms25179724 39273671
    [Google Scholar]
  71. Wang W. Chen Z. Zheng T. Zhang M. Xanthohumol alleviates T2DM-induced liver steatosis and fibrosis by mediating the NRF2/RAGE/NF-κB signaling pathway. Future Med. Chem. 2021 13 23 2069 2081 10.4155/fmc‑2021‑0241 34551612
    [Google Scholar]
  72. Ren J. Dai J. Chen Y. Hypoglycemic activity of rice resistant-starch metabolites: A mechanistic network pharmacology and in vitro approach. Metabolites 2024 14 4 224 10.3390/metabo14040224 38668351
    [Google Scholar]
  73. Zhu H. Chen Y-m. Gong W-k. Shared and specific biological signalling pathways for diabetic retinopathy, peripheral neuropathy and nephropathy by high-throughput sequencing analysis. Diab. Vasc. Dis. Res. 2022 19 4 14791641221122918 10.1177/14791641221122918
    [Google Scholar]
  74. Ding C. Wang N. Wang Z. Integrated analysis of metabolomics and lipidomics in plasma of t2dm patients with diabetic retinopathy. Pharmaceutics 2022 14 12 2751 10.3390/pharmaceutics14122751 36559245
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128402177250911093207
Loading
/content/journals/cpd/10.2174/0113816128402177250911093207
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test