Skip to content
2000
image of Development of an Advanced Drug Delivery System for Protein- and Peptide-Based Therapeutics

Abstract

Advancements in biotechnology have played a key role in driving the development of protein- and peptide-based therapeutics. Drug delivery systems (DDSs) designed for proteins and peptides are carefully crafted to improve drug stability, enhance bioavailability, and reduce toxic side effects by ensuring precise delivery to targeted areas. However, despite their promising therapeutic potential, protein- and peptide-based drugs face substantial challenges due to their distinct physicochemical properties and biological barriers. Ongoing developments in protein- and peptide-based DDSs present valuable solutions to address these challenges, ultimately improving drug stability, delivery accuracy, and therapeutic efficacy. Researchers are actively working on creating innovative carrier technologies to further enhance the effectiveness and precision of these therapeutics. This review examines the wide-ranging applications of protein- and peptide-based therapeutics, explores advanced drug delivery techniques, and highlights various administration routes aimed at overcoming existing obstacles. In conclusion, this review offers a comprehensive understanding of protein- and peptide-based therapeutics as a viable alternative to conventional drug delivery systems, harnessing the power of cutting-edge biotechnological advancements.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128394343250910234044
2025-09-24
2025-12-22
Loading full text...

Full text loading...

References

  1. Cooper B.M. Iegre J. O’ Donovan D.H. Ölwegård Halvarsson M. Spring D.R. Peptides as a platform for targeted therapeutics for cancer: Peptide–drug conjugates (PDCs). Chem. Soc. Rev. 2021 50 3 1480 1494 10.1039/D0CS00556H 33346298
    [Google Scholar]
  2. Malavolta L. Cabral F.R. Peptides: Important tools for the treatment of central nervous system disorders. Neuropeptides 2011 45 5 309 316 10.1016/j.npep.2011.03.001 21477861
    [Google Scholar]
  3. Zhu Y.S. Tang K. Lv J. Peptide–drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol. Sci. 2021 42 10 857 869 10.1016/j.tips.2021.07.001 34334251
    [Google Scholar]
  4. Bruno B.J. Miller G.D. Lim C.S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 2013 4 11 1443 1467 10.4155/tde.13.104 24228993
    [Google Scholar]
  5. Yang S.B. Banik N. Han B. Lee D.N. Park J. Peptide-based bioconjugates and therapeutics for targeted anticancer therapy. Pharmaceutics 2022 14 7 1378 10.3390/pharmaceutics14071378 35890274
    [Google Scholar]
  6. Ogay V. Mun E.A. Kudaibergen G. Progress and prospects of polymer-based drug delivery systems for bone tissue regeneration. Polymers 2020 12 12 2881 10.3390/polym12122881 33271770
    [Google Scholar]
  7. Yoo J. Park C. Yi G. Lee D. Koo H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 2019 11 5 640 10.3390/cancers11050640 31072061
    [Google Scholar]
  8. Ruseska I. Zimmer A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol. 2020 11 101 123 10.3762/bjnano.11.10 31976201
    [Google Scholar]
  9. Khodadadi Yazdi M. Taghizadeh A. Taghizadeh M. Agarose-based biomaterials for advanced drug delivery. J. Control. Release 2020 326 523 543 10.1016/j.jconrel.2020.07.028 32702391
    [Google Scholar]
  10. Zhou J. Zhang H. Fareed M.S. An injectable peptide hydrogel constructed of natural antimicrobial peptide J-1 and ADP shows anti-infection, hemostasis, and antiadhesion efficacy. ACS Nano 2022 16 5 7636 7650 10.1021/acsnano.1c11206 35533290
    [Google Scholar]
  11. Gleeson J.P. Fein K.C. Whitehead K.A. Oral delivery of peptide therapeutics in infants: Challenges and opportunities. Adv. Drug Deliv. Rev. 2021 173 112 124 10.1016/j.addr.2021.03.011 33774115
    [Google Scholar]
  12. Podust V.N. Balan S. Sim B.C. Extension of in vivo half-life of biologically active molecules by XTEN protein polymers. J. Control. Release 2016 240 52 66 10.1016/j.jconrel.2015.10.038 26497931
    [Google Scholar]
  13. Guo S. Wang J. Wang Q. Wang J. Qin S. Li W. Advances in peptide-based drug delivery systems. Heliyon 2024 10 4 26009 10.1016/j.heliyon.2024.e26009 38404797
    [Google Scholar]
  14. Pal N.P. Bodhankar M.M. Khan A. Niosome: A nano-carrier for peptide and protein drug delivery. Int. J. Pharm. Sci. Rev. Res. 2023 81 1 10.47583/ijpsrr.2023.v81i01.004
    [Google Scholar]
  15. Wang L. Wang N. Zhang W. Therapeutic peptides: Current applications and future directions. Signal Transduct. Target. Ther. 2022 7 1 48 10.1038/s41392‑022‑00904‑4 35165272
    [Google Scholar]
  16. Xiao W. Jiang W. Chen Z. Advance in peptide-based drug development: Delivery platforms, therapeutics and vaccines. Signal Transduct. Target. Ther. 2025 10 1 74 10.1038/s41392‑024‑02107‑5 40038239
    [Google Scholar]
  17. Vrbnjak K. Sewduth R.N. Recent Advances in peptide Drug discovery: Novel strategies and targeted protein degradation. Pharmaceutics 2024 16 11 1486 10.3390/pharmaceutics16111486 39598608
    [Google Scholar]
  18. Kothari M. Wanjari A. Acharya S. A comprehensive review of monoclonal antibodies in modern medicine: Tracing the evolution of a revolutionary therapeutic approach. Cureus 2024 16 6 61983 10.7759/cureus.61983 38983999
    [Google Scholar]
  19. Alfaris N. Waldrop S. Johnson V. Boaventura B. Kendrick K. Stanford F.C. GLP-1 single, dual, and triple receptor agonists for treating type 2 diabetes and obesity: A narrative review. EClinicalMedicine 2024 75 102782 10.1016/j.eclinm.2024.102782 39281096
    [Google Scholar]
  20. Swinnen S.G. Hoekstra J.B. DeVries J.H. Insulin therapy for type 2 diabetes. Diabetes Care 2009 32 Suppl 2 S253 S259 10.2337/dc09‑S318 19875560
    [Google Scholar]
  21. Srinivasan A. Wong F.K. Karponis D. Calcitonin: A useful old friend. J. Musculoskelet. Neuronal Interact. 2020 20 4 600 609 33265089
    [Google Scholar]
  22. Usmani S.S. Bedi G. Samuel J.S. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One 2017 12 7 0181748 10.1371/journal.pone.0181748 28759605
    [Google Scholar]
  23. Paccagnella M. Abbona A. Denaro N. Merlano M. Garrone O. Antibody-Dependent Cell-Mediated Cytotoxicity (ADCC) in Cancer. Handbook of Cancer and Immunology. Rezaei N. Cham Springer International Publishing 2022 1 21
    [Google Scholar]
  24. Thell K. Hellinger R. Schabbauer G. Gruber C.W. Immunosuppressive peptides and their therapeutic applications. Drug Discov. Today 2014 19 5 645 653 10.1016/j.drudis.2013.12.002 24333193
    [Google Scholar]
  25. Fuentes-Antrás J. Antibody-drug conjugates: In search of partners of choice. Trends Cancer 2023 9 4 339 354 10.1016/j.trecan.2023.01.003 36746689
    [Google Scholar]
  26. Peters C. Brown S. Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015 35 4 00225 10.1042/BSR20150089 26182432
    [Google Scholar]
  27. Abelman R.O. Wu B. Spring L.M. Ellisen L.W. Bardia A. Mechanisms of Resistance to Antibody–Drug Conjugates. Cancers 2023 15 4 1278 8 10.3390/cancers15041278 36831621
    [Google Scholar]
  28. Zheng Z. Zong Y. Ma Y. Glucagon-like peptide-1 receptor: Mechanisms and advances in therapy. Signal Transduct. Target. Ther. 2024 9 1 234 10.1038/s41392‑024‑01931‑z 39289339
    [Google Scholar]
  29. Abdi H. Human insulin versus insulin analogues: A true companion forgotten. Int. J. Endocrinol. Metab. 2019 17 4 97054 10.5812/ijem.97054 31903095
    [Google Scholar]
  30. Umpierrez G.E. Jones S. Smiley D. Insulin analogs versus human insulin in the treatment of patients with diabetic ketoacidosis: A randomized controlled trial. Diabetes Care 2009 32 7 1164 1169 10.2337/dc09‑0169 19366972
    [Google Scholar]
  31. Martinovich V.P. Baradzina K.U. Peptide hormones in medicine: A 100-year history. Russ. J. Bioorganic Chem. 2022 48 2 221 232 10.1134/S1068162022020157
    [Google Scholar]
  32. Hazare C. Bhagwat P. Singh S. Pillai S. Diverse origins of fibrinolytic enzymes: A comprehensive review. Heliyon 2024 10 5 26668 10.1016/j.heliyon.2024.e26668 38434287
    [Google Scholar]
  33. Barzkar N. Jahromi S.T. Vianello F. Marine microbial fibrinolytic enzymes: An overview of source, production, biochemical properties and thrombolytic activity. Mar. Drugs 2022 20 1 46 10.3390/md20010046 35049901
    [Google Scholar]
  34. Singh R. Gautam P. Sharma C. Osmolovskiy A. Fibrin and fibrinolytic enzyme cascade in thrombosis: Unravelling the role. Life 2023 13 11 2196 10.3390/life13112196 38004336
    [Google Scholar]
  35. Gori A. Lodigiani G. Colombarolli S.G. Bergamaschi G. Vitali A. Cell penetrating peptides: Classification, mechanisms, methods of study, and applications. ChemMedChem 2023 18 17 202300236 10.1002/cmdc.202300236 37389978
    [Google Scholar]
  36. Kardani K. Milani A. H Shabani S, Bolhassani A. Cell penetrating peptides: The potent multi-cargo intracellular carriers. Expert Opin. Drug Deliv. 2019 16 11 1227 1258 10.1080/17425247.2019.1676720 31583914
    [Google Scholar]
  37. Borrelli A. Tornesello A. Tornesello M. Buonaguro F. Cell penetrating peptides as molecular carriers for anti-cancer agents. Molecules 2018 23 2 295 10.3390/molecules23020295 29385037
    [Google Scholar]
  38. Nikam V.K. Suryawanshi S. Khapare J. Protein and peptide drug delivery system: A brief review. Asian J. Pharm. Pharmacol. 2022 8 3 66 73 10.31024/ajpp.2022.8.3.1
    [Google Scholar]
  39. Bottens R.A. Yamada T. Cell-penetrating peptides (CPPs) as therapeutic and diagnostic agents for cancer. Cancers 2022 14 22 5546 10.3390/cancers14225546 36428639
    [Google Scholar]
  40. de Jong H. Bonger K.M. Löwik D.W.P.M. Activatable cell-penetrating peptides: 15 years of research. RSC Chem Biol 2020 1 4 192 203 10.1039/D0CB00114G 34458758
    [Google Scholar]
  41. Wu H. Zhuang Q. Xu J. Cell-penetrating peptide enhanced antigen presentation for cancer immunotherapy. Bioconjug. Chem. 2019 30 8 2115 2126 10.1021/acs.bioconjchem.9b00245 31339694
    [Google Scholar]
  42. Nakase I. Noguchi K. Aoki A. Takatani-Nakase T. Fujii I. Futaki S. Arginine-rich cell-penetrating peptide-modified extracellular vesicles for active macropinocytosis induction and efficient intracellular delivery. Sci. Rep. 2017 7 1 1991 10.1038/s41598‑017‑02014‑6 28512335
    [Google Scholar]
  43. Kalmouni M. Al-Hosani S. Magzoub M. Cancer targeting peptides. Cell. Mol. Life Sci. 2019 76 11 2171 2183 30877335
    [Google Scholar]
  44. Mousavizadeh A. Jabbari A. Akrami M. Bardania H. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: A systematic review. Colloids Surf. B Biointerfaces 2017 158 507 517 10.1016/j.colsurfb.2017.07.012 28738290
    [Google Scholar]
  45. Todaro B. Ottalagana E. Luin S. Santi M. Targeting peptides: The new generation of targeted drug delivery systems. Pharmaceutics 2023 15 6 1648 10.3390/pharmaceutics15061648 37376097
    [Google Scholar]
  46. Liu M. Fang X. Yang Y. Wang C. Peptide-enabled targeted delivery systems for therapeutic applications. Front. Bioeng. Biotechnol. 2021 9 701504 10.3389/fbioe.2021.701504 34277592
    [Google Scholar]
  47. Battistini L. Bugatti K. Sartori A. Curti C. Zanardi F. RGD peptide-drug conjugates as effective dual targeting platforms: Recent advances. Eur. J. Org. Chem. 2021 2021 17
    [Google Scholar]
  48. Wu C. Liu J. Tang X. Zhai Z. Xu K. Zhong W. An enzyme-assisted self-delivery system of lonidamine–peptide conjugates for selectively killing cancer cells. Chem. Commun. 2019 55 98 14852 14855 10.1039/C9CC06204A 31769450
    [Google Scholar]
  49. Cao Z. Li W. Liu R. pH- and enzyme-triggered drug release as an important process in the design of anti-tumor drug delivery systems. Biomed. Pharmacother. 2019 118 109340 10.1016/j.biopha.2019.109340 31545284
    [Google Scholar]
  50. Guo R-C. Zhang X. Fan P.S. In vivo self-assembly induced cell membrane phase separation for improved peptide drug internalization. Angew. Chem. Int. Ed. Engl. 2021 60 47 25128 25134 10.1002/anie.202111839 34549872
    [Google Scholar]
  51. Nguyen C.T.H. Webb R.I. Lambert L.K. Bifunctional succinylated -polylysine-coated mesoporous silica nanoparticles for pH-responsive and intracellular drug delivery targeting the colon. ACS Appl. Mater. Interfaces 2017 9 11 9470 9483 10.1021/acsami.7b00411 28252278
    [Google Scholar]
  52. Huo Q. Zhu J. Niu Y. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int. J. Nanomedicine 2017 12 8631 8647 10.2147/IJN.S144452 29270012
    [Google Scholar]
  53. Zhang X. Yin T. Wang S. Dual stimuli-responsive peptide-based palladium nano-lychee spheres for synergistic antitumor therapy. ACS Biomater. Sci. Eng. 2019 5 9 4474 4484 10.1021/acsbiomaterials.9b01161 33438413
    [Google Scholar]
  54. Shi X. Chen D. Liu G. Application of elastin-like polypeptide in tumor therapy. Cancers 2022 14 15 3683 10.3390/cancers14153683 35954346
    [Google Scholar]
  55. Milligan J.J. Saha S. Jenkins I.C. Chilkoti A. Genetically encoded elastin-like polypeptide nanoparticles for drug delivery. Curr. Opin. Biotechnol. 2022 74 146 153 10.1016/j.copbio.2021.11.006 34920210
    [Google Scholar]
  56. Dragojevic S. Ryu J.S. Hall M.E. Raucher D. Targeted drug delivery biopolymers effectively inhibit breast tumor growth and prevent doxorubicin-induced cardiotoxicity. Molecules 2022 27 11 3371 10.3390/molecules27113371 35684309
    [Google Scholar]
  57. Ye H. Zhou Y. Liu X. Recent advances on reactive oxygen species-responsive delivery and diagnosis system. Biomacromolecules 2019 20 7 2441 2463 10.1021/acs.biomac.9b00628 31117357
    [Google Scholar]
  58. Xu Q. Chu C.C. Development of ROS -responsive amino acid-based poly(ester amide) nanoparticle for anticancer drug delivery. J. Biomed. Mater. Res. A 2021 109 4 524 537 10.1002/jbm.a.37035 32529749
    [Google Scholar]
  59. Song Y. Ding Y. Dong C.M. Stimuli-responsive polypeptide nanoassemblies: Recent progress and applications in cancer nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 2 1742 10.1002/wnan.1742 34310063
    [Google Scholar]
  60. Li Q. Fu D. Zhang J. Dual stimuli-responsive polypeptide-calcium phosphate hybrid nanoparticles for co-delivery of multiple drugs in cancer therapy. Colloids Surf. B Biointerfaces 2021 200 111586 10.1016/j.colsurfb.2021.111586 33529927
    [Google Scholar]
  61. Xue S. Gu X. Zhang J. Sun H. Deng C. Zhong Z. Construction of small-sized, robust, and reduction-responsive polypeptide micelles for high loading and targeted delivery of chemotherapeutics. Biomacromolecules 2018 19 8 3586 3593 10.1021/acs.biomac.8b00835 30025206
    [Google Scholar]
  62. Malta R. Marques A.C. Costa P.C. Amaral M.H. Stimuli-responsive hydrogels for protein delivery. Gels 2023 9 10 802 2 10.3390/gels9100802 37888375
    [Google Scholar]
  63. Katyal P. Mahmoudinobar F. Montclare J.K. Recent trends in peptide and protein-based hydrogels. Curr. Opin. Struct. Biol. 2020 63 97 105 10.1016/j.sbi.2020.04.007 32512499
    [Google Scholar]
  64. Das S. Das D. Rational design of peptide-based smart hydrogels for therapeutic applications. Front Chem. 2021 9 770102 10.3389/fchem.2021.770102 34869218
    [Google Scholar]
  65. Mahlumba P. Choonara Y. Kumar P. Du Toit L. Pillay V. Stimuli-responsive polymeric systems for controlled protein and peptide delivery: Future implications for ocular delivery. Molecules 2016 21 8 1002 10.3390/molecules21081002 27483234
    [Google Scholar]
  66. Chai Y. Long Y. Dong X. Improved functional recovery of rat transected spinal cord by peptide-grafted PNIPAM based hydrogel. Colloids Surf. B Biointerfaces 2022 210 112220 10.1016/j.colsurfb.2021.112220 34840029
    [Google Scholar]
  67. Zhang Z. Chai Y. Zhao H. Crosstalk between PC12 cells and endothelial cells in an artificial neurovascular niche constructed by a dual-functionalized self-assembling peptide nanofiber hydrogel. Nano Res. 2022 15 2 1433 1445 10.1007/s12274‑021‑3684‑5
    [Google Scholar]
  68. Zheng Z. Guo Z. Zhong F. A dual crosslinked hydrogel-mediated integrated peptides and BMSC therapy for myocardial regeneration. J. Control. Release 2022 347 127 142 10.1016/j.jconrel.2022.04.010 35460706
    [Google Scholar]
  69. Dufour A. Lafont J.E. Buffier M. Repair of full-thickness articular cartilage defects using IEIK13 self-assembling peptide hydrogel in a non-human primate model. Sci. Rep. 2021 11 1 4560 10.1038/s41598‑021‑83208‑x 33633122
    [Google Scholar]
  70. Halperin-Sternfeld M, Pokhojaev A, Ghosh M, Rachmiel D, Kannan R, Grinberg I. Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration. J. Clin. Periodontol. 2023 50 2 200 219 10.1111/jcpe.13725 36110056
    [Google Scholar]
  71. Koh K. Wang J.K. Chen J.X.Y. Squid suckerin-spider silk fusion protein hydrogel for delivery of mesenchymal stem cell secretome to chronic wounds. Adv. Healthc. Mater. 2023 12 1 2201900 10.1002/adhm.202201900 36177679
    [Google Scholar]
  72. Lee K.Z. Jeon J. Jiang B. Subramani S.V. Li J. Zhang F. Protein-Based hydrogels and their biomedical applications. Molecules 2023 28 13 4988 10.3390/molecules28134988 37446650
    [Google Scholar]
  73. Cao S. Xu S. Wang H. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech 2019 20 5 190 10.1208/s12249‑019‑1325‑z 31111296
    [Google Scholar]
  74. Yu M. Wu J. Shi J. Farokhzad O.C. Nanotechnology for protein delivery: Overview and perspectives. J. Control. Release 2016 240 24 37 10.1016/j.jconrel.2015.10.012 26458789
    [Google Scholar]
  75. Yusuf A. Almotairy A.R.Z. Henidi H. Alshehri O.Y. Aldughaim M.S. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  76. Yetisgin A.A. Cetinel S. Zuvin M. Kosar A. Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020 25 9 2193 10.3390/molecules25092193 32397080
    [Google Scholar]
  77. Enyedi KN Tóth S, Szakács G, Mező G. NGR-peptide−drug conjugates with dual targeting properties. PLoS One 2017 12 6 0178632 10.1371/journal.pone.0178632 28575020
    [Google Scholar]
  78. Joshi K. Chandra A. Jain K. Talegaonkar S. Nanocrystalization: An emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm. Nanotechnol. 2019 7 4 259 278 10.2174/2211738507666190405182524 30961518
    [Google Scholar]
  79. Patel A. Patel K. Patel V. Rajput M.S. Patel R. Rajput A. Nanocrystals: An emerging paradigm for cancer therapeutics. Future J Pharm Sci 2024 10 1 4 10.1186/s43094‑024‑00579‑4
    [Google Scholar]
  80. Thundimadathil J. Chapter 14: Formulations of microspheres and nanoparticles for peptide delivery. In: RSC drug discovery/RSC drug discovery series. The Royal Society of Chemistry 2019 503 530
    [Google Scholar]
  81. Kobatake E. Ikeda Y. Mie M. Construction of protein nanoparticles for targeted delivery of drugs to cancer cells. Mater Adv 2022 3 15 6262 6269 10.1039/D2MA00419D
    [Google Scholar]
  82. Spicer C.D. Jumeaux C. Gupta B. Stevens M.M. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem. Soc. Rev. 2018 47 10 3574 3620 10.1039/C7CS00877E 29479622
    [Google Scholar]
  83. Singh I. Morris A. Performance of transdermal therapeutic systems: Effects of biological factors. Int. J. Pharm. Investig. 2011 1 1 4 9 10.4103/2230‑973X.76721 23071913
    [Google Scholar]
  84. Srinivas L. Manikanta V. Jaswitha M. Protein and peptide drug delivery-A brief review. Res J Pharm Technol 2019 12 3 1369 10.5958/0974‑360X.2019.00230.0
    [Google Scholar]
  85. Jeong W.Y. Kwon M. Choi H.E. Kim K.S. Recent advances in transdermal drug delivery systems: A review. Biomater. Res. 2021 25 1 24 10.1186/s40824‑021‑00226‑6 34321111
    [Google Scholar]
  86. Parhi R. Mandru A. Enhancement of skin permeability with thermal ablation techniques: Concept to commercial products. Drug Deliv. Transl. Res. 2021 11 3 817 841 10.1007/s13346‑020‑00823‑3 32696221
    [Google Scholar]
  87. Karthikeyan E. Sivaneswari S. Advancements in Transdermal Drug Delivery Systems: Enhancing Medicine with Pain-Free and Controlled Drug Release. Intelligent Pharmacy 2024 10.1016/j.ipha.2024.09.008
    [Google Scholar]
  88. Rao R. Mahant S. Chhabra L. Nanda S. Transdermal innovations in diabetes management. Curr. Diabetes Rev. 2015 10 6 343 359 10.2174/1573399810666141124110836 25418713
    [Google Scholar]
  89. Swain S. Beg S. Singh A. Patro ChN. Rao M.E. Advanced techniques for penetration enhancement in transdermal drug delivery system. Curr. Drug Deliv. 2011 8 4 456 473 10.2174/156720111795767979 21453254
    [Google Scholar]
  90. Kalia Y. Bachhav Y. Bragagna T. Bohler CPLEASE® (Painless Laser Epidermal System). A new laser microporation technology. Drug Deliv Technol 2008 8 26 31
    [Google Scholar]
  91. Williams A. Controlled drug delivery into and through skin. In: fundamentals of Drug Delivery. 2021 507 34 10.1002/9781119769644.ch20
    [Google Scholar]
  92. Prausnitz M.R. Langer R. Transdermal drug delivery. Nat. Biotechnol. 2008 26 11 1261 1268 10.1038/nbt.1504 18997767
    [Google Scholar]
  93. Ono N. Iibuchi T. Todo H. Itakura S. Adachi H. Sugibayashi K. Enhancement of skin permeation of fluorescein isothiocyanate-dextran 4 kDa (FD4) and insulin by thermalporation. Eur. J. Pharm. Sci. 2022 170 106096 10.1016/j.ejps.2021.106096 34929301
    [Google Scholar]
  94. Aldawood F.K. Andar A. Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers 2021 13 16 2815 10.3390/polym13162815 34451353
    [Google Scholar]
  95. Nazary Abrbekoh F. Salimi L. Saghati S. Application of microneedle patches for drug delivery; doorstep to novel therapies. J. Tissue Eng. 2022 13 20417314221085390 10.1177/20417314221085390 35516591
    [Google Scholar]
  96. Donnelly R.F. Singh T.R.R. Woolfson A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv. 2010 17 4 187 207 10.3109/10717541003667798 20297904
    [Google Scholar]
  97. Peng T. Chen Y. Hu W. Microneedles for enhanced topical treatment of skin disorders: Applications, challenges, and prospects. Engineering 2023 30 170 189 10.1016/j.eng.2023.05.009
    [Google Scholar]
  98. Arora M. Laskar T.T. Microneedles: Recent advances and development in the field of transdermal drug delivery technology. J. Drug Deliv. Ther. 2023 13 3 155 163 10.22270/jddt.v13i3.5967
    [Google Scholar]
  99. Liu T. Chen M. Fu J. Recent advances in microneedles-mediated transdermal delivery of protein and peptide drugs. Acta Pharm. Sin. B 2021 11 8 2326 2343 10.1016/j.apsb.2021.03.003 34522590
    [Google Scholar]
  100. Littauer E.Q. Mills L.K. Brock N. Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J. Control. Release 2018 276 1 16 10.1016/j.jconrel.2018.02.033 29496540
    [Google Scholar]
  101. Edens C. Collins M.L. Goodson J.L. Rota P.A. Prausnitz M.R. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015 33 37 4712 4718 10.1016/j.vaccine.2015.02.074 25770786
    [Google Scholar]
  102. Lanza J.S. Vucen S. Flynn O. A TLR9-adjuvanted vaccine formulated into dissolvable microneedle patches or cationic liposomes protects against leishmaniasis after skin or subcutaneous immunization. Int. J. Pharm. 2020 586 119390 10.1016/j.ijpharm.2020.119390 32540349
    [Google Scholar]
  103. Wu F. Yang S. Yuan W. Jin T. Challenges and strategies in developing microneedle patches for transdermal delivery of protein and peptide therapeutics. Curr. Pharm. Biotechnol. 2012 13 7 1292 1298 10.2174/138920112800624319 22201589
    [Google Scholar]
  104. Abbasi M. Heath B. Iontophoresis and electroporation-assisted microneedles: Advancements and therapeutic potentials in transdermal drug delivery. Drug Deliv. Transl. Res. 2024 10.1007/s13346‑024‑01722‑7 39433696
    [Google Scholar]
  105. Shi J. Ma Y. Zhu J. A review on electroporation-based intracellular delivery. Molecules 2018 23 11 3044 10.3390/molecules23113044 30469344
    [Google Scholar]
  106. Charoo N.A. Rahman Z. Repka M.A. Murthy S.N. Electroporation: An avenue for transdermal drug delivery. Curr. Drug Deliv. 2010 7 2 125 136 10.2174/156720110791011765 20158490
    [Google Scholar]
  107. Herwadkar A. Banga A.K. Peptide and protein transdermal drug delivery. Drug Discov. Today. Technol. 2012 9 2 e147 e154 10.1016/j.ddtec.2011.11.007 24064275
    [Google Scholar]
  108. Sardesai N.Y. Weiner D.B. Electroporation delivery of DNA vaccines: Prospects for success. Curr. Opin. Immunol. 2011 23 3 421 429 10.1016/j.coi.2011.03.008 21530212
    [Google Scholar]
  109. Roos A.K. Moreno S. Leder C. Pavlenko M. King A. Pisa P. Enhancement of cellular immune response to a prostate cancer DNA vaccine by intradermal electroporation. Mol. Ther. 2006 13 2 320 327 10.1016/j.ymthe.2005.08.005 16185933
    [Google Scholar]
  110. Woodall C.A. Electroporation of E. coli. Methods Mol. Biol. 2003 235 55 69 12904645
    [Google Scholar]
  111. Young J.L. Dean D.A. Electroporation-mediated gene delivery. Adv. Genet. 2015 89 49 88 10.1016/bs.adgen.2014.10.003 25620008
    [Google Scholar]
  112. Tjelle T.E. Corthay A. Lunde E. Monoclonal antibodies produced by muscle after plasmid injection and electroporation. Mol. Ther. 2004 9 3 328 336 10.1016/j.ymthe.2003.12.007 15006599
    [Google Scholar]
  113. Kang T.H. Monie A. Wu L.S.F. Pang X. Hung C.F. Wu T.C. Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine 2011 29 5 1082 1089 10.1016/j.vaccine.2010.11.063 21130752
    [Google Scholar]
  114. Cha E. Daud A. Plasmid IL-12 electroporation in melanoma. Hum. Vaccin. Immunother. 2012 8 11 1734 1738 10.4161/hv.22573 23151447
    [Google Scholar]
  115. Touitou E. Illum L. Nasal drug delivery. Drug Deliv. Transl. Res. 2013 3 1 1 3 10.1007/s13346‑012‑0111‑1 25787862
    [Google Scholar]
  116. Wei S. Zhai Z. Kong X. The review of nasal drug delivery system: The strategies to enhance the efficiency of intranasal drug delivery by improving drug absorption. Int. J. Pharm. 2025 676 125584 10.1016/j.ijpharm.2025.125584 40216038
    [Google Scholar]
  117. Lochhead J.J. Thorne R.G. Intranasal delivery of biologics to the central nervous system. Adv. Drug Deliv. Rev. 2012 64 7 614 628 10.1016/j.addr.2011.11.002 22119441
    [Google Scholar]
  118. Meredith M.E. Salameh T.S. Banks W.A. Intranasal delivery of proteins and peptides in the treatment of neurodegenerative diseases. AAPS J. 2015 17 4 780 787 10.1208/s12248‑015‑9719‑7 25801717
    [Google Scholar]
  119. Rohrer J. Lupo N. Bernkop-Schnürch A. Advanced formulations for intranasal delivery of biologics. Int. J. Pharm. 2018 553 1-2 8 20 10.1016/j.ijpharm.2018.10.029 30316796
    [Google Scholar]
  120. Craft S. Baker L.D. Montine T.J. Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: A pilot clinical trial. Arch. Neurol. 2012 69 1 29 38 10.1001/archneurol.2011.233 21911655
    [Google Scholar]
  121. Kullmann S. Heni M. Veit R. Selective insulin resistance in homeostatic and cognitive control brain areas in overweight and obese adults. Diabetes Care 2015 38 6 1044 1050 10.2337/dc14‑2319 25795413
    [Google Scholar]
  122. Guastella A.J. Einfeld S.L. Gray K.M. Intranasal oxytocin improves emotion recognition for youth with autism spectrum disorders. Biol. Psychiatry 2010 67 7 692 694 10.1016/j.biopsych.2009.09.020 19897177
    [Google Scholar]
  123. Russell J. Maguire S. Hunt G.E. Intranasal oxytocin in the treatment of anorexia nervosa: Randomized controlled trial during re-feeding. Psychoneuroendocrinology 2018 87 83 92 10.1016/j.psyneuen.2017.10.014 29049935
    [Google Scholar]
  124. Tabak B.A. Teed A.R. Castle E. Null results of oxytocin and vasopressin administration across a range of social cognitive and behavioral paradigms: Evidence from a randomized controlled trial. Psychoneuroendocrinology 2019 107 124 132 10.1016/j.psyneuen.2019.04.019 31128568
    [Google Scholar]
  125. Price D. Burris D. Cloutier A. Thompson C.B. Rilling J.K. Thompson R.R. Dose-dependent and lasting influences of intranasal vasopressin on face processing in men. Front. Endocrinol. 2017 8 220 10.3389/fendo.2017.00220 29018407
    [Google Scholar]
  126. Palde C. Barot T. Chakraborthy Gs, Patel Ld. Peptide delivery via nasal route: Exploring recent developments and approaches. Int J App Pharm 2024 16 4 46 56
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128394343250910234044
Loading
/content/journals/cpd/10.2174/0113816128394343250910234044
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test