Skip to content
2000
image of Network Pharmacology Integrated Molecular Docking Analysis Identifies Potential Phytochemicals in Stachys lavandulifolia against Polycystic Ovary Syndrome

Abstract

Introduction

Polycystic ovarian syndrome (PCOS) is a hormonal condition that affects women of reproductive age. The purpose of this study was to identify the undiscovered molecular mechanisms by which treats PCOS. Although has been used to treat PCOS, its exact biological mechanism of action remains unknown.

Methods

We used a multifaceted strategy that included network pharmacology, molecular docking, and molecular dynamics simulations.

Results

Network pharmacology discovered 68 gene targets shared by bioactive chemicals and PCOS-associated genes. Subsequent KEGG and Reactome analysis identified 18 enhanced pathways, including steroid hormone production, glucose homeostasis, and insulin resistance. Key genes involved in ovarian steroidogenesis and the hypothalamic-pituitary-ovarian axis (CYP19A1, Kiss1, human androgen receptor, oestrogen receptor alpha, and HSD17B1) were chosen for molecular docking.

Discussion

Molecular docking indicated that bioactive substances Myrsen, Agnol, Alpha Pyogenin, and Gamma Morolen have high binding affinities for the identified target proteins. Notably, the CYP19A1-Myrsen complex has the highest binding affinity at -9.0 kcal/mol. Additional molecular dynamics simulations indicated that the CYP19A1-Myrsen complex had increased flexibility and mobility, indicating a stable and effective association.

Conclusion

Our findings identify potential gene pathways and interactions through which bioactive chemicals exert their therapeutic benefits in PCOS. This study establishes a solid platform for future research into as a potential PCOS therapy.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128403160250905163027
2025-09-22
2025-12-25
Loading full text...

Full text loading...

References

  1. Ke Y. Hu J. Zhu Y. Wang Y. Chen S. Liu S. Correlation between circulating adropin levels and patients with PCOS: An updated systematic review and meta-analysis. Reprod. Sci. 2022 29 12 3295 3310 10.1007/s43032‑022‑00841‑1 35015289
    [Google Scholar]
  2. Lo J.C. Feigenbaum S.L. Yang J. Pressman A.R. Selby J.V. Go A.S. Epidemiology and adverse cardiovascular risk profile of diagnosed polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006 91 4 1357 1363 10.1210/jc.2005‑2430 16434451
    [Google Scholar]
  3. Rojas J. Chávez M. Olivar L. Polycystic ovary syndrome, insulin resistance, and obesity: Navigating the pathophysiologic labyrinth. Int. J. Reprod. Med. 2014 2014 1 17 10.1155/2014/719050 25763405
    [Google Scholar]
  4. Azziz R. Carmina E. Chen Z. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016 2 1 16057 10.1038/nrdp.2016.57 27510637
    [Google Scholar]
  5. Helvaci N. Yildiz B.O. Current and emerging drug treatment strategies for polycystic ovary syndrome. Expert Opin. Pharmacother. 2023 24 1 105 120 10.1080/14656566.2022.2108702 35912829
    [Google Scholar]
  6. Zeng L.H. Rana S. Hussain L. Polycystic ovary syndrome: A disorder of reproductive age, its pathogenesis, and a discussion on the emerging role of herbal remedies. Front. Pharmacol. 2022 13 874914 10.3389/fphar.2022.874914 35924049
    [Google Scholar]
  7. Moini Jazani A. Nasimi Doost Azgomi H. Nasimi Doost Azgomi A. Nasimi Doost Azgomi R. A comprehensive review of clinical studies with herbal medicine on polycystic ovary syndrome (PCOS). Daru 2019 27 2 863 877 10.1007/s40199‑019‑00312‑0 31741280
    [Google Scholar]
  8. Nampoothiri L. Maharjan R. Nagar P.S. Effect of Aloe barbadensis Mill. formulation on Letrozole induced polycystic ovarian syndrome rat model. J. Ayurveda Integr. Med. 2010 1 4 273 279 10.4103/0975‑9476.74090 21731374
    [Google Scholar]
  9. Qin B. Nagasaki M. Ren M. Bajotto G. Oshida Y. Sato Y. Cinnamon extract (traditional herb) potentiates in vivo insulin-regulated glucose utilization via enhancing insulin signaling in rats. Diabetes Res. Clin. Pract. 2003 62 3 139 148 10.1016/S0168‑8227(03)00173‑6 14625128
    [Google Scholar]
  10. Yang H. Kim H.J. Pyun B.J. Lee H.W. Licorice ethanol extract improves symptoms of polycytic ovary syndrome in Letrozole-induced female rats. Integr. Med. Res. 2018 7 3 264 270 10.1016/j.imr.2018.05.003 30271715
    [Google Scholar]
  11. Nowak D.A. Snyder D.C. Brown A.J. Demark-Wahnefried W. The effect of flaxseed supplementation on hormonal levels associated with polycystic ovarian syndrome: A case study. Curr. Top. Nutraceutical Res. 2007 5 4 177 181 [PMID: 19789727
    [Google Scholar]
  12. Swaroop A. Jaipuriar A.S. Gupta S.K. Efficacy of a novel fenugreek seed extract (Trigonella foenum-graecum, FurocystTM) in polycystic ovary syndrome (PCOS). Int. J. Med. Sci. 2015 12 10 825 831 10.7150/ijms.13024 26516311
    [Google Scholar]
  13. Manouchehri A. Abbaszadeh S. Ahmadi M. Nejad F.K. Bahmani M. Dastyar N. Polycystic ovaries and herbal remedies: A systematic review. JBRA Assist. Reprod. 2023 27 1 85 91 [PMID: 35916457
    [Google Scholar]
  14. Fotis C. Antoranz A. Hatziavramidis D. Sakellaropoulos T. Alexopoulos L.G. Network-based technologies for early drug discovery. Drug Discov. Today 2018 23 3 626 635 10.1016/j.drudis.2017.12.001 29294361
    [Google Scholar]
  15. Zhang M. Yang J. Zhao X. Zhao Y. Zhu S. Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy. Sci. Rep. 2021 11 1 7382 10.1038/s41598‑021‑86914‑8 33795817
    [Google Scholar]
  16. Zhang G. Li Q. Chen Q. Su S. Network pharmacology: A new approach for chinese herbal medicine research. Evid. Based Complement. Alternat. Med. 2013 2013 1 9 10.1155/2013/621423 23762149
    [Google Scholar]
  17. Tian S. Wang J. Li Y. Li D. Xu L. Hou T. The application of in silico drug-likeness predictions in pharmaceutical research. Adv. Drug Deliv. Rev. 2015 86 2 10 10.1016/j.addr.2015.01.009 25666163
    [Google Scholar]
  18. Xu X. Zhang W. Huang C. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci. 2012 13 6 6964 6982 10.3390/ijms13066964 22837674
    [Google Scholar]
  19. Kim S. Chen J. Cheng T. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019 47 D1 D1102 D1109 10.1093/nar/gky1033 30371825
    [Google Scholar]
  20. Szklarczyk D. Morris J.H. Cook H. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res. 2016 ••• gkw937 [PMID: 27924014
    [Google Scholar]
  21. Kanehisa M. Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 28 1 27 30 10.1093/nar/28.1.27 10592173
    [Google Scholar]
  22. Schrodinger L. The PyMOL molecular graphics system. Version 2015 1 8
    [Google Scholar]
  23. Trott O. Olson A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  24. Pawar S.S. Rohane S.H. Review on discovery studio: An important tool for molecular docking. Asian J. Res. Chem 2021 14 1 86 88 10.5958/0974‑4150.2021.00014.6
    [Google Scholar]
  25. Cheng F. Li W. Zhou Y. AdmetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties. J. Chem. Inf. Model. 2012 52 11 3099 3105
    [Google Scholar]
  26. Kurcinski M. Oleniecki T. Ciemny M.P. Kuriata A. Kolinski A. Kmiecik S. CABS-flex standalone: A simulation environment for fast modeling of protein flexibility. Bioinformatics 2019 35 4 694 695 10.1093/bioinformatics/bty685 30101282
    [Google Scholar]
  27. Yao X.Q. Skjærven L. Grant B.J. Rapid characterization of allosteric networks with ensemble normal mode analysis. J. Phys. Chem. B 2016 120 33 8276 8288 10.1021/acs.jpcb.6b01991 27056373
    [Google Scholar]
  28. Kumar C.V. Swetha R.G. Anbarasu A. Ramaiah S. Computational analysis reveals the association of threonine 118 methionine mutation in PMP22 resulting in CMT‐1A. Adv. Bioinforma. 2014 2014 1 10 10.1155/2014/502618 25400662
    [Google Scholar]
  29. Lakshmanan A. Balasubramanian B. Maluventhen V. Extraction and characterization of fucoidan derived from sargassum ilicifolium and its biomedical potential with in silico molecular docking. Appl. Sci. 2022 12 24 13010 10.3390/app122413010
    [Google Scholar]
  30. Ghosh P. Bhakta S. Bhattacharya M. A novel multi-epitopic peptide vaccine candidate against Helicobacter pylori: In-silico identification, design, cloning and validation through molecular dynamics. Int. J. Pept. Res. Ther. 2021 27 2 1149 1166 10.1007/s10989‑020‑10157‑w 33495694
    [Google Scholar]
  31. Bharathi Priya L. Huang C.Y. Hu R.M. Balasubramanian B. Baskaran R. An updated review on pharmacological properties of neferine—A bisbenzylisoquinoline alkaloid from Nelumbo nucifera. J. Food Biochem. 2021 45 12 13986 10.1111/jfbc.13986 34779018
    [Google Scholar]
  32. Armanini D. Mattarello M.J. Fiore C. Licorice reduces serum testosterone in healthy women. Steroids 2004 69 11-12 763 766 10.1016/j.steroids.2004.09.005 15579328
    [Google Scholar]
  33. Arentz S. Abbott J.A. Smith C.A. Bensoussan A. Herbal medicine for the management of polycystic ovary syndrome (PCOS) and associated oligo/amenorrhoea and hyperandrogenism; a review of the laboratory evidence for effects with corroborative clinical findings. BMC Complement. Altern. Med. 2014 14 1 511 10.1186/1472‑6882‑14‑511 25524718
    [Google Scholar]
  34. Qin B. Nagasaki M. Ren M. Bajotto G. Oshida Y. Sato Y. Cinnamon extract prevents the insulin resistance induced by a high-fructose diet. Horm. Metab. Res. 2004 36 2 119 125 10.1055/s‑2004‑814223 15002064
    [Google Scholar]
  35. Johnson B.S. Krishna M.B. Padmanabhan R.A. Pillai S.M. Jayakrishnan K. Laloraya M. Derailed peripheral circadian genes in polycystic ovary syndrome patients alters peripheral conversion of androgens synthesis. Hum. Reprod. 2022 37 8 1835 1855 10.1093/humrep/deac139 35728080
    [Google Scholar]
  36. Shaaban Z. Khoradmehr A. Jafarzadeh Shirazi M.R. Tamadon A. Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome. Iran. J. Basic Med. Sci. 2019 22 1 3 16 [PMID: 30944702
    [Google Scholar]
  37. Armanini D. Boscaro M. Bordin L. Sabbadin C. Controversies in the pathogenesis, diagnosis and treatment of PCOS: Focus on insulin resistance, inflammation, and hyperandrogenism. Int. J. Mol. Sci. 2022 23 8 4110 10.3390/ijms23084110 35456928
    [Google Scholar]
  38. Baskaran R Chen Y-J Chang C-F Potato protein hydrolysate (PPH902) exerts anti-lipogenesis and lipolysis-promoting effect by inhibiting adipogenesis in 3T3-L1 adipocytes 3 Biotech 2025 15 4 83 10.1007/s13205‑025‑04238‑0
    [Google Scholar]
  39. McAllister J.M. Legro R.S. Modi B.P. Strauss J.F. Functional genomics of PCOS: From GWAS to molecular mechanisms. Trends Endocrinol. Metab. 2015 26 3 118 124 10.1016/j.tem.2014.12.004 25600292
    [Google Scholar]
  40. Rosenfield R.L. Ehrmann D.A. The pathogenesis of polycystic ovary syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 2016 37 5 467 520 10.1210/er.2015‑1104 27459230
    [Google Scholar]
  41. Azhary J.M.K. Harada M. Kunitomi C. Androgens increase accumulation of advanced glycation end products in granulosa cells by activating ER stress in PCOS. Endocrinology 2020 161 2 bqaa015 10.1210/endocr/bqaa015 32020188
    [Google Scholar]
  42. Lin P.H. Chang C.C. Wu K.H. Dietary glycotoxins, advanced glycation end products, inhibit cell proliferation and progesterone secretion in ovarian granulosa cells and mimic PCOS-like symptoms. Biomolecules 2019 9 8 327 10.3390/biom9080327 31370285
    [Google Scholar]
  43. Merhi Z. Buyuk E. Cipolla M. Advanced glycation end products alter steroidogenic gene expression by granulosa cells: An effect partially reversible by vitamin D. Mol. Hum. Reprod. 2018 24 6 318 326 10.1093/molehr/gay014
    [Google Scholar]
  44. Catteau-Jonard S. Jamin S.P. Leclerc A. Gonzalès J. Dewailly D. di Clemente N. Anti-mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2008 93 11 4456 4461 10.1210/jc.2008‑1231 18697861
    [Google Scholar]
  45. Xu X.L. Deng S.L. Lian Z.X. Yu K. Estrogen receptors in polycystic ovary syndrome. Cells 2021 10 2 459 10.3390/cells10020459 33669960
    [Google Scholar]
  46. Coutinho E.A. Kauffman A.S. The role of the brain in the pathogenesis and physiology of polycystic ovary syndrome (PCOS). Med. Sci. 2019 7 8 84 10.3390/medsci7080084 31382541
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128403160250905163027
Loading
/content/journals/cpd/10.2174/0113816128403160250905163027
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test