Skip to content
2000
Volume 32, Issue 7
  • ISSN: 1381-6128
  • E-ISSN: 1873-4286

Abstract

Introduction

This study aims to enhance the oral bioavailability of Nadolol (NDL), a β-blocker used in the management of hypertension, by incorporating it into a liposome-based delivery system. To improve the formulation’s stability, mucoadhesion, and permeability, chitosan coating was applied.

Methods

Liposomes were prepared the ethanol injection method using soy phosphatidylcholine and diacetyl phosphate. Chitosan coating was applied by adding chitosan solution (1% acetic acid) at different chitosan-to-lipid ratios (0.1-0.4 ). The optimal formulation was selected based on particle size, PDI, and zeta potential. Characterization included encapsulation efficiency, drug loading, enzymatic stability, drug release, and Caco-2-based cytotoxicity and permeability assays.

Results

The particle size and polydispersity index of the optimized formulations, L1-NDL, L2-NDL, L1C-NDL, and L2C-NDL, were measured as 27.02 ± 0.18 nm, 24.55 ± 0.22 nm, 160.10 ± 3.17 nm, 161.00 ± 2.30 nm, 0.39 ± 0.01, 0.37 ± 0.01, 0.19 ± 0.01, and 0.18 ± 0.02. Encapsulation efficiencies of 56.01 ± 3.70% and 43.87 ± 1.24% were recorded for L1C-NDL and L2C-NDL, respectively, while drug loading capacities were 61.47 ± 2.03% and 67.80 ± 0.74%, respectively. In an enzymatic degradation study, it was found that chitosan coating increased the stability of liposomes in the gastric media. The release was higher at both pH 1.2 and 6.8. Caco-2 assays confirmed >95% cell viability and enhanced permeability in the apical-to-basolateral direction. In the permeability study, chitosan-coated liposomal formulations demonstrated enhanced transport in the apical-to-basolateral direction, indicating improved intestinal permeability.

Conclusion

Chitosan-coated liposomes improved NDL’s stability and permeability, showing promise as an effective oral delivery system.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128401910250706133608
2025-07-16
2026-02-01
Loading full text...

Full text loading...

/deliver/fulltext/cpd/32/7/CPD-32-7-06.html?itemId=/content/journals/cpd/10.2174/0113816128401910250706133608&mimeType=html&fmt=ahah

References

  1. MiyazakiN. MisakaS. OgataH. FukushimaT. KimuraJ. Effects of itraconazole, dexamethasone and naringin on the pharmacokinetics of nadolol in rats.Drug Metab. Pharmacokinet.201328435636110.2133/dmpk.DMPK‑12‑RG‑111 23419354
    [Google Scholar]
  2. FumagalliC. MauriziN. MarchionniN. FornasariD. β-blockers: Their new life from hypertension to cancer and migraine.Pharmacol. Res.202015110458710.1016/j.phrs.2019.104587 31809852
    [Google Scholar]
  3. KalsoomS. ZamirA. RehmanA. Clinical pharmacokinetics of nadolol: A systematic review.J. Clin. Pharm. Ther.202247101506151610.1111/jcpt.13764 36040016
    [Google Scholar]
  4. PrivieroF. Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance.Biochem. Pharmacol.202320811541211541210.1016/j.bcp.2023.115412 36632959
    [Google Scholar]
  5. MillsK.T. StefanescuA. HeJ. The global epidemiology of hypertension.Nat. Rev. Nephrol.202016422323710.1038/s41581‑019‑0244‑2 32024986
    [Google Scholar]
  6. AdeyeyeE. KapilV. LoboM.D. Hypertension.Medicine202250739940710.1016/j.mpmed.2022.04.002
    [Google Scholar]
  7. O’SheaP.M. GriffinT.P. FitzgibbonM. Hypertension: The role of biochemistry in the diagnosis and management.Clin. Chim. Acta201746513114310.1016/j.cca.2016.12.014 28007614
    [Google Scholar]
  8. AmmannE.M. O’BrienE.S. MilentijevicD. Characteristics, management, and blood pressure control in patients with apparent resistant hypertension in the US.Heliyon2023921325810.1016/j.heliyon.2023.e13258 36846680
    [Google Scholar]
  9. ByrdJ.B. RamC.V.S. LermaE.V. Pharmacologic treatment of hypertension.Nephrol Secrets. LermaE.V. SparksM.A. TopfJ.M. Amsterdam, NetherlandsElsevier201947748210.1016/B978‑0‑323‑47871‑7.00078‑2
    [Google Scholar]
  10. VolkovaT.V. SimonovaO.R. VigurskayaT.A. PerlovichG.L. Thermodynamics of solubility, distribution and permeability processes exemplified by nadolol - A beta-blocker drug with antianxiety potential.J. Mol. Liq.202338512230710.1016/j.molliq.2023.122307
    [Google Scholar]
  11. KawabataY. WadaK. NakataniM. YamadaS. OnoueS. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications.Int. J. Pharm.2011420111010.1016/j.ijpharm.2011.08.032 21884771
    [Google Scholar]
  12. MozafariM.R. Liposomes: An overview of manufacturing techniques.Cell. Mol. Biol. Lett.2005104711719 16341279
    [Google Scholar]
  13. SercombeL. VeeratiT. MoheimaniF. WuS.Y. SoodA.K. HuaS. Advances and challenges of liposome assisted drug delivery.Front. Pharmacol.2015628610.3389/fphar.2015.00286 26648870
    [Google Scholar]
  14. NsairatH. AlshaerW. OdehF. EsawiE. KhaterD. Al BawabA. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics.OpenNano20231110013210.1016/j.onano.2023.100132
    [Google Scholar]
  15. ShuklaR. HandaM. VasdevN. SinghD.P. KesharwaniP. Nanomedicine in pain management.Theory Applications of Nonparenteral Nanomedicines. KesharwaniP. TaurinS. GreishK. United StatesAcademic Press202135538210.1016/B978‑0‑12‑820466‑5.00015‑6
    [Google Scholar]
  16. NsairatH. KhaterD. SayedU. OdehF. Al BawabA. AlshaerW. Liposomes: Structure, composition, types, and clinical applications.Heliyon2022850939410.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  17. QuadirS.S. SaharanV. ChoudharyD. Harish JainC.P. JoshiG. Nano-strategies as oral drug delivery platforms for treatment of cancer: Challenges and future perspectives.AAPS PharmSciTech202223515210.1208/s12249‑022‑02301‑0 35606661
    [Google Scholar]
  18. NobleG.T. StefanickJ.F. AshleyJ.D. KiziltepeT. BilgicerB. Ligand-targeted liposome design: Challenges and fundamental considerations.Trends Biotechnol.2014321324510.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  19. LiuP. ChenG. ZhangJ. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives.Molecules2022274137210.3390/molecules27041372 35209162
    [Google Scholar]
  20. LouJ. DuanH. QinQ. Advances in oral drug delivery systems: Challenges and opportunities.Pharmaceutics202315248410.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  21. BozzutoG. MolinariA. Liposomes as nanomedical devices.Int. J. Nanomedicine20151097599910.2147/IJN.S68861 25678787
    [Google Scholar]
  22. BruchG.E. FernandesL.F. BassiB.L.T. Liposomes for drug delivery in stroke.Brain Res. Bull.201915224625610.1016/j.brainresbull.2019.07.015 31323280
    [Google Scholar]
  23. LargeD.E. AbdelmessihR.G. FinkE.A. AugusteD.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application.Adv. Drug Deliv. Rev.202117611385110.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  24. WoodleyJ.F. Enzymatic barriers for GI peptide and protein delivery.Crit. Rev. Ther. Drug Carrier Syst.1994112-36195 7600588
    [Google Scholar]
  25. HeH. LuY. QiJ. ZhuQ. ChenZ. WuW. Adapting liposomes for oral drug delivery.Acta Pharm. Sin. B201991364810.1016/j.apsb.2018.06.005 30766776
    [Google Scholar]
  26. YiX. ChenY. GaoX. GaoS. XiaG. ShenX. Enhancement of digestive stability in curcumin-loaded liposomes via glycolipids: An analysis in vitro and in vivo.Food Res. Int.202520811625510.1016/j.foodres.2025.116255 40263809
    [Google Scholar]
  27. Bernkop-SchnürchA. DünnhauptS. Chitosan-based drug delivery systems.Eur. J. Pharm. Biopharm.201281346346910.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  28. Picos-CorralesL.A. Morales-BurgosA.M. Ruelas-LeyvaJ.P. Chitosan as an outstanding polysaccharide ımproving health-commodities of humans and environmental protection.Polymers202315352610.3390/polym15030526 36771826
    [Google Scholar]
  29. ZhangT. YuH. LiC. Study of the interaction between polysaccharides and liposomes based on low-field nuclear magnetic resonance.Food Biosci.20256610629110.1016/j.fbio.2025.106291
    [Google Scholar]
  30. ElkomyM.H. AliA.A. EidH.M. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review.J. Control. Release202235192394010.1016/j.jconrel.2022.10.005 36216174
    [Google Scholar]
  31. WuW. LuY. QiJ. Oral delivery of liposomes.Ther. Deliv.20156111239124110.4155/tde.15.69 26584253
    [Google Scholar]
  32. AlghareebS. EkennaI. Asare-AddoK. ConwayB.R. AdebisiA.O. Chitosan nanoparticles for nasal drug delivery.J. Drug Deliv. Sci. Technol.202510510662310.1016/j.jddst.2025.106623
    [Google Scholar]
  33. KumarA. YadavS. PramanikJ. Chitosan-based composites: Development and perspective in food preservation and biomedical applications.Polymers20231515315010.3390/polym15153150 37571044
    [Google Scholar]
  34. PatelV. PrajapatiB. PatelM. Design and characterization of chitosan-containing mucoadhesive buccal patches of propranolol hydrochloride.Acta Pharm.2007571617210.2478/v10007‑007‑0005‑9 19839407
    [Google Scholar]
  35. DasU. KapoorD.U. SinghS. PrajapatiB.G. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: A review.Z. Naturforsch. C J. Biosci.2024795-610712410.1515/znc‑2023‑0181 38721838
    [Google Scholar]
  36. AlomraniA. BadranM. HarisaG.I. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer.Saudi Pharm. J.201927560361110.1016/j.jsps.2019.02.008 31297013
    [Google Scholar]
  37. ErdemS. TürkoǧluM. Glycyl-l-histidyl-l-liysine-Cu(2) loaded liposome formulations.Marmara Pharm. J.2010214919710.12991/201014455
    [Google Scholar]
  38. HosseiniS.M. AbdoussM. MazinaniS. SoltanabadiA. KalaeeM. Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing.Compos., Part B Eng.202223110955710.1016/j.compositesb.2021.109557
    [Google Scholar]
  39. ZhouF. XuT. ZhaoY. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside.Food Hydrocoll.201883172410.1016/j.foodhyd.2018.04.040
    [Google Scholar]
  40. Nadolol.Available from: https://www.waters.com/nextgen/es/es/library/application-notes/2003/nadolol.html?srsltid=AfmBOoq3uaqHdRwkW0mfcA_x6_5v3EQmd0cdM-LhuESIx_5nFFUcjVkR 2003
  41. GradauerK. BarthelmesJ. VonachC. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats.J. Control. Release2013172387287810.1016/j.jconrel.2013.10.011 24140721
    [Google Scholar]
  42. Üstündağ OkurN. YurdasiperA. GündoğduE. HomanG.E. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate.J. Microencapsul.2016331304210.3109/02652048.2015.1094532
    [Google Scholar]
  43. NguyenT.X. HuangL. LiuL. Elamin AbdallaA.M. GauthierM. YangG. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride.J. Mater. Chem. B Mater. Biol. Med.20142417149715910.1039/C4TB00876F 32261793
    [Google Scholar]
  44. İlem-ÖzdemirD. GündoğduE. EkinciM. AşıkoğluM. Radioactive permeability studies of doxycycline hyclate from microemulsion and solution.Marmara Pharm. J.201620211612110.12991/mpj.201620065652
    [Google Scholar]
  45. ErkekoğluP. BaydarT. Güncel in vitro sitotoksisite testleri.Hacettepe Univ J Fac Pharm20214114563
    [Google Scholar]
  46. ShariareM.H. RahmanM. LubnaS.R. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model.Sci. Rep.2020101693810.1038/s41598‑020‑63894‑9 32332809
    [Google Scholar]
  47. NazlıH. MesutB. ÖzsoyY. Pharmaceutical approaches for low solubility agents and solubility of aprepitant.J. Pharm. Sci.2021463325344
    [Google Scholar]
  48. ÇobanÖ. DeğimZ. Development of Nanocochleates containing erlotinib HCl and dexketoprofen trometamol and evaluation of ın vitro characteristic properties.Turk J Pharm Sci2018151162110.4274/tjps.83803 32454635
    [Google Scholar]
  49. ÇobanÖ. DeğimZ. YılmazŞ. AltıntaşL. ArsoyT. SözmenM. Efficacy of targeted liposomes and nanocochleates containing imatinib plus dexketoprofen against fibrosarcoma.Drug Dev. Res.201980555656510.1002/ddr.21530 30901500
    [Google Scholar]
  50. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  51. ChannarongS. ChaicumpaW. SinchaipanidN. MitrevejA. Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: The improvement of Peyer’s patch targeting using a polyplex-loaded liposomes.AAPS PharmSciTech201112119220010.1208/s12249‑010‑9559‑9 21194014
    [Google Scholar]
  52. NguyenV.H. ThuyV.N. VanT.V. DaoA.H. LeeB.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration.OpenNano2022810006410.1016/j.onano.2022.100064
    [Google Scholar]
  53. RaoJ. McClementsD.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method.J. Agric. Food Chem.20115995026503510.1021/jf200094m 21410259
    [Google Scholar]
  54. LiX. TangC. SalamaM. Encapsulation efficiency and oral delivery stability of chitosan–liposome‐encapsulated immunoglobulin Y.J. Food Sci.20228741708172010.1111/1750‑3841.16116 35279842
    [Google Scholar]
  55. GrigorasA.G. Polymer-lipid hybrid systems used as carriers for insulin delivery.Nanomedicine20171382425243710.1016/j.nano.2017.08.005 28821465
    [Google Scholar]
  56. SebaalyC. TrifanA. SieniawskaE. Greige-GergesH. Chitosan-coating effect on the characteristics of liposomes: A focus on bioactive compounds and essential oils: A review.Processes20219344510.3390/pr9030445
    [Google Scholar]
  57. DasA. GhoshS. PramanikN. Chitosan biopolymer and its composites: Processing, properties and applications- A comprehensive review.Hybrid Advances2024610026510.1016/j.hybadv.2024.100265
    [Google Scholar]
  58. HanJ. MeadeJ. DevineD. SadeghpourA. RappoltM. GoycooleaF.M. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis.Heliyon202410143455410.1016/j.heliyon.2024.e34554 39149035
    [Google Scholar]
  59. AhadA. RaishM. Bin JardanY.A. Al-MohizeaA.M. Al-JenoobiF.I. Chitosan-tethered liposomes for sinapic acid delivery.J. Drug Deliv. Sci. Technol.202410110615310.1016/j.jddst.2024.106153
    [Google Scholar]
  60. LiuY. YangT. WeiS. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery.Int. J. Pharm.20185371-224525610.1016/j.ijpharm.2017.12.044 29288808
    [Google Scholar]
  61. AndraV.V.S.N.L. PammiS.V.N. BhatrajuL.V.K.P. RuddarajuL.K. A Comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents.Bionanoscience202212127429110.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  62. AlaviS. HaeriA. DadashzadehS. Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery.Carbohydr. Polym.2017157991101210.1016/j.carbpol.2016.10.063 27988018
    [Google Scholar]
  63. WróblewskaA.M. Samsonowicz-GórskiJ. KamińskaE. DrozdM. MatczukM. Optimization of a CE-ICP-MS/MS method for the investigation of liposome–cisplatin nanosystems and their interactions with transferrin.J. Anal. At. Spectrom.20223771442144910.1039/D1JA00459J
    [Google Scholar]
  64. GopiS. BalakrishnanP. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability.J. Liposome Res.202131435636410.1080/08982104.2020.1820521 32901526
    [Google Scholar]
  65. LiK. ZhongW. LiP. RenJ. JiangK. WuW. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields.Int. J. Biol. Macromol.202325212628110.1016/j.ijbiomac.2023.126281 37572815
    [Google Scholar]
  66. SivaS. JinJ.O. ChoiI. KimM. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review.Biosens. Bioelectron.202321911484510.1016/j.bios.2022.114845 36327568
    [Google Scholar]
  67. YinY.M. CuiF.D. MuC.F. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation.J. Control. Release20091402869410.1016/j.jconrel.2009.08.015 19709639
    [Google Scholar]
  68. ImmordinoM.L. DosioF. CattelL. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential.Int. J. Nanomedicine200613297315 17717971
    [Google Scholar]
  69. ChenD. XiaD. LiX. Comparative study of Pluronic® F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats.Int. J. Pharm.20134491-21910.1016/j.ijpharm.2013.04.002 23583840
    [Google Scholar]
  70. SağıroğluA.A. Chitosan-coated liposome-containing carbamazepine and coenzyme Q10: Design, optimization and evaluation.J. Liposome Res.202131438939810.1080/08982104.2020.1849280
    [Google Scholar]
  71. LeN.T.T. CaoV.D. NguyenT.N.Q. LeT.T.H. TranT.T. Hoang ThiT.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications.Int. J. Mol. Sci.20192019470610.3390/ijms20194706 31547569
    [Google Scholar]
  72. MilićJ. ČalijaB. DordevićS.M. Diversity and functionality of excipients for micro/nanosized drug carriers. microsized nanosized carriers.Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. ČalijaB. United StatesAcademic Press20179513210.1016/B978‑0‑12‑804017‑1.00004‑2
    [Google Scholar]
  73. KaddahS. KhreichN. KaddahF. CharcossetC. Greige-GergesH. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule.Food Chem. Toxicol.2018113404810.1016/j.fct.2018.01.017 29337230
    [Google Scholar]
  74. JeonH.S. SeoJ.E. KimM.S. A retinyl palmitate-loaded solid lipid nanoparticle system: Effect of surface modification with dicetyl phosphate on skin permeation in vitro and anti-wrinkle effect in vivo.Int. J. Pharm.20134521-231132010.1016/j.ijpharm.2013.05.023 23702002
    [Google Scholar]
  75. BhatU.M. KhanN.A. RazaS.N. Ciprofloxacin hydrochloride-loaded ocular silk fibroin liposomes: Formulation, characterisation, in vitro cytotoxicity, and antimicrobial activity.Heliyon202410223877710.1016/j.heliyon.2024.e38777 39619581
    [Google Scholar]
  76. CuiM. WuW. HovgaardL. LuY. ChenD. QiJ. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin.Int. J. Pharm.20154891-227728410.1016/j.ijpharm.2015.05.006 25957702
    [Google Scholar]
  77. OkurN.Ü. ÇağlarE.Ş. KaynakM.S. DirilM. ÖzcanS. KarasuluH.Y. Enhancing oral bioavailability of domperidone maleate: Formulation, in vitro permeability evaluation ın-Caco-2 cell monolayers and in situ ratıntestinal permeability studies.Curr. Drug Deliv.20242171010102310.2174/1567201820666230214091509
    [Google Scholar]
  78. XuZ. HouY. SunJ. Deoxycholic acid-chitosan coated liposomes combined with in situ colonic gel enhances renal fibrosis therapy of emodin.Phytomedicine202210115411010.1016/j.phymed.2022.154110 35487039
    [Google Scholar]
  79. DanaeiM. DehghankholdM. AtaeiS. Impact of particle size and polydispersity ındex on the clinical applications of lipidic nanocarrier systems.Pharmaceutics20181025710.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  80. QiangF. ShinH.J. LeeB.J. HanH.K. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome.Int. J. Pharm.20124301-216116610.1016/j.ijpharm.2012.04.007 22525082
    [Google Scholar]
  81. MontesC. VillaseñorM.J. RíosÁ. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges.Trends Food Sci. Technol.201990476210.1016/j.tifs.2019.06.001
    [Google Scholar]
  82. MudaligeT. QuH. Van HauteD. AnsarS.M. ParedesA. IngleT. Characterization of nanomaterials: Tools and challenges.Elsevier2019313353
    [Google Scholar]
  83. EngelhardtM.B. SugimotoT. PapastavrouG. KobayashiM. Electrophoretic mobility of nanoparticle aggregates: Independence from aggregate size.Colloids Surf. A Physicochem. Eng. Asp.202470313524410.1016/j.colsurfa.2024.135244
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128401910250706133608
Loading
/content/journals/cpd/10.2174/0113816128401910250706133608
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chitosan; hypertension; liposomes; Nadolol; nanocarrier systems; permeability
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test