Skip to content
2000
image of Development of Chitosan-Coated Liposomes for Oral Delivery of Nadolol: Preparation, Characterization, and in vitro Permeability Studies

Abstract

Introduction

This study aims to enhance the oral bioavailability of Nadolol (NDL), a β-blocker used in the management of hypertension, by incorporating it into a liposome-based delivery system. To improve the formulation’s stability, mucoadhesion, and permeability, chitosan coating was applied.

Methods

Liposomes were prepared the ethanol injection method using soy phosphatidylcholine and diacetyl phosphate. Chitosan coating was applied by adding chitosan solution (1% v/v acetic acid) at different chitosan-to-lipid ratios (0.1-0.4 w/w). The optimal formulation was selected based on particle size, PDI, and zeta potential. Characterization included encapsulation efficiency, drug loading, enzymatic stability, drug release, and Caco-2-based cytotoxicity and permeability assays.

Results

The particle size and polydispersity index of the optimized formulations, L1-NDL, L2-NDL, L1C-NDL, and L2C-NDL, were measured as 27.02 ± 0.18 nm, 24.55 ± 0.22 nm, 160.10 ± 3.17 nm, 161.00 ± 2.30 nm, 0.39 ± 0.01, 0.37 ± 0.01, 0.19 ± 0.01, and 0.18 ± 0.02. Encapsulation efficiencies of 56.01 ± 3.70% and 43.87 ± 1.24% were recorded for L1C-NDL and L2C-NDL, respectively, while drug loading capacities were 61.47 ± 2.03% and 67.80 ± 0.74%, respectively. In an enzymatic degradation study, it was found that chitosan coating increased the stability of liposomes in the gastric media. The release was higher at both pH 1.2 and 6.8. Caco-2 assays confirmed >95% cell viability and enhanced permeability in the apical-to-basolateral direction. In the permeability study, chitosan-coated liposomal formulations demonstrated enhanced transport in the apical-to-basolateral direction, indicating improved intestinal permeability.

Conclusion

Chitosan-coated liposomes improved NDL’s stability and permeability, showing promise as an effective oral delivery system.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128401910250706133608
2025-07-16
2025-11-05
Loading full text...

Full text loading...

/deliver/fulltext/cpd/10.2174/0113816128401910250706133608/BMS-CPD-2025-417.html?itemId=/content/journals/cpd/10.2174/0113816128401910250706133608&mimeType=html&fmt=ahah

References

  1. Miyazaki N. Misaka S. Ogata H. Fukushima T. Kimura J. Effects of itraconazole, dexamethasone and naringin on the pharmacokinetics of nadolol in rats. Drug Metab. Pharmacokinet. 2013 28 4 356 361 10.2133/dmpk.DMPK‑12‑RG‑111 23419354
    [Google Scholar]
  2. Fumagalli C. Maurizi N. Marchionni N. Fornasari D. β-blockers: Their new life from hypertension to cancer and migraine. Pharmacol. Res. 2020 151 104587 10.1016/j.phrs.2019.104587 31809852
    [Google Scholar]
  3. Kalsoom S. Zamir A. Rehman A. Clinical pharmacokinetics of nadolol: A systematic review. J. Clin. Pharm. Ther. 2022 47 10 1506 1516 10.1111/jcpt.13764 36040016
    [Google Scholar]
  4. Priviero F. Epigenetic modifications and fetal programming: Molecular mechanisms to control hypertension inheritance. Biochem. Pharmacol. 2023 208 115412 115412 10.1016/j.bcp.2023.115412 36632959
    [Google Scholar]
  5. Mills K.T. Stefanescu A. He J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020 16 4 223 237 10.1038/s41581‑019‑0244‑2 32024986
    [Google Scholar]
  6. Adeyeye E. Kapil V. Lobo M.D. Hypertension. Medicine 2022 50 7 399 407 10.1016/j.mpmed.2022.04.002
    [Google Scholar]
  7. O’Shea P.M. Griffin T.P. Fitzgibbon M. Hypertension: The role of biochemistry in the diagnosis and management. Clin. Chim. Acta 2017 465 131 143 10.1016/j.cca.2016.12.014 28007614
    [Google Scholar]
  8. Ammann E.M. O’Brien E.S. Milentijevic D. Characteristics, management, and blood pressure control in patients with apparent resistant hypertension in the US. Heliyon 2023 9 2 13258 10.1016/j.heliyon.2023.e13258 36846680
    [Google Scholar]
  9. Byrd J.B. Ram C.V.S. Lerma E.V. Pharmacologic treatment of hypertension. In: Lerma EV, Sparks MA, Topf JM, Eds. Nephrol Secrets. Amsterdam, Netherlands Elsevier 2019 477 482 10.1016/B978‑0‑323‑47871‑7.00078‑2
    [Google Scholar]
  10. Volkova T.V. Simonova O.R. Vigurskaya T.A. Perlovich G.L. Thermodynamics of solubility, distribution and permeability processes exemplified by nadolol - A beta-blocker drug with antianxiety potential. J. Mol. Liq. 2023 385 122307 10.1016/j.molliq.2023.122307
    [Google Scholar]
  11. Kawabata Y. Wada K. Nakatani M. Yamada S. Onoue S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011 420 1 1 10 10.1016/j.ijpharm.2011.08.032 21884771
    [Google Scholar]
  12. Mozafari M.R. Liposomes: An overview of manufacturing techniques. Cell. Mol. Biol. Lett. 2005 10 4 711 719 16341279
    [Google Scholar]
  13. Sercombe L. Veerati T. Moheimani F. Wu S.Y. Sood A.K. Hua S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 2015 6 286 10.3389/fphar.2015.00286 26648870
    [Google Scholar]
  14. Nsairat H. Alshaer W. Odeh F. Esawi E. Khater D. Al Bawab A. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano 2023 11 100132 10.1016/j.onano.2023.100132
    [Google Scholar]
  15. Shukla R. Handa M. Vasdev N. Singh D.P. Kesharwani P. Nanomedicine in pain management. In: Kesharwani P, Taurin S, Greish K, Eds. Theory Applications of Nonparenteral Nanomedicines. Kesharwani P. Taurin S. Greish K. United States Academic Press 2021 355 382 10.1016/B978‑0‑12‑820466‑5.00015‑6
    [Google Scholar]
  16. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  17. Quadir S.S. Saharan V. Choudhary D. Harish, Jain CP, Joshi G. Nano-strategies as oral drug delivery platforms for treatment of cancer: Challenges and future perspectives. AAPS PharmSciTech 2022 23 5 152 10.1208/s12249‑022‑02301‑0 35606661
    [Google Scholar]
  18. Noble G.T. Stefanick J.F. Ashley J.D. Kiziltepe T. Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014 32 1 32 45 10.1016/j.tibtech.2013.09.007 24210498
    [Google Scholar]
  19. Liu P. Chen G. Zhang J. A Review of liposomes as a drug delivery system: Current status of approved products, regulatory environments, and future perspectives. Molecules 2022 27 4 1372 10.3390/molecules27041372 35209162
    [Google Scholar]
  20. Lou J. Duan H. Qin Q. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics 2023 15 2 484 10.3390/pharmaceutics15020484 36839807
    [Google Scholar]
  21. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomedicine 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  22. Bruch G.E. Fernandes L.F. Bassi B.L.T. Liposomes for drug delivery in stroke. Brain Res. Bull. 2019 152 246 256 10.1016/j.brainresbull.2019.07.015 31323280
    [Google Scholar]
  23. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  24. Woodley J.F. Enzymatic barriers for GI peptide and protein delivery. Crit. Rev. Ther. Drug Carrier Syst. 1994 11 2-3 61 95 7600588
    [Google Scholar]
  25. He H. Lu Y. Qi J. Zhu Q. Chen Z. Wu W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019 9 1 36 48 10.1016/j.apsb.2018.06.005 30766776
    [Google Scholar]
  26. Yi X. Chen Y. Gao X. Gao S. Xia G. Shen X. Enhancement of digestive stability in curcumin-loaded liposomes via glycolipids: An analysis in vitro and in vivo. Food Res. Int. 2025 208 116255 10.1016/j.foodres.2025.116255 40263809
    [Google Scholar]
  27. Bernkop-Schnürch A. Dünnhaupt S. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 2012 81 3 463 469 10.1016/j.ejpb.2012.04.007 22561955
    [Google Scholar]
  28. Picos-Corrales L.A. Morales-Burgos A.M. Ruelas-Leyva J.P. Chitosan as an outstanding polysaccharide ımproving health-commodities of humans and environmental protection. Polymers 2023 15 3 526 10.3390/polym15030526 36771826
    [Google Scholar]
  29. Zhang T. Yu H. Li C. Study of the interaction between polysaccharides and liposomes based on low-field nuclear magnetic resonance. Food Biosci. 2025 66 106291 10.1016/j.fbio.2025.106291
    [Google Scholar]
  30. Elkomy M.H. Ali A.A. Eid H.M. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J. Control. Release 2022 351 923 940 10.1016/j.jconrel.2022.10.005 36216174
    [Google Scholar]
  31. Wu W. Lu Y. Qi J. Oral delivery of liposomes. Ther. Deliv. 2015 6 11 1239 1241 10.4155/tde.15.69 26584253
    [Google Scholar]
  32. Alghareeb S. Ekenna I. Asare-Addo K. Conway B.R. Adebisi A.O. Chitosan nanoparticles for nasal drug delivery. J. Drug Deliv. Sci. Technol. 2025 105 106623 10.1016/j.jddst.2025.106623
    [Google Scholar]
  33. Kumar A. Yadav S. Pramanik J. Chitosan-based composites: Development and perspective in food preservation and biomedical applications. Polymers 2023 15 15 3150 10.3390/polym15153150 37571044
    [Google Scholar]
  34. Patel V. Prajapati B. Patel M. Design and characterization of chitosan-containing mucoadhesive buccal patches of propranolol hydrochloride. Acta Pharm. 2007 57 1 61 72 10.2478/v10007‑007‑0005‑9 19839407
    [Google Scholar]
  35. Das U. Kapoor D.U. Singh S. Prajapati B.G. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: A review. Z. Naturforsch. C J. Biosci. 2024 79 5-6 107 124 10.1515/znc‑2023‑0181 38721838
    [Google Scholar]
  36. Alomrani A. Badran M. Harisa G.I. The use of chitosan-coated flexible liposomes as a remarkable carrier to enhance the antitumor efficacy of 5-fluorouracil against colorectal cancer. Saudi Pharm. J. 2019 27 5 603 611 10.1016/j.jsps.2019.02.008 31297013
    [Google Scholar]
  37. Erdem S. Türkoǧlu M. Glycyl-l-histidyl-l-liysine-Cu(2) loaded liposome formulations. Marmara Pharm. J. 2010 2 14 91 97 10.12991/201014455
    [Google Scholar]
  38. Hosseini S.M. Abdouss M. Mazinani S. Soltanabadi A. Kalaee M. Modified nanofiber containing chitosan and graphene oxide-magnetite nanoparticles as effective materials for smart wound dressing. Compos., Part B Eng. 2022 231 109557 10.1016/j.compositesb.2021.109557
    [Google Scholar]
  39. Zhou F. Xu T. Zhao Y. Chitosan-coated liposomes as delivery systems for improving the stability and oral bioavailability of acteoside. Food Hydrocoll. 2018 83 17 24 10.1016/j.foodhyd.2018.04.040
    [Google Scholar]
  40. Nadolol 2003 Available from: https://www.waters.com/nextgen/es/es/library/application-notes/2003/nadolol.html?srsltid=AfmBOoq3uaqHdRwkW0mfcA_x6_5v3EQmd0cdM-LhuESIx_5nFFUcjVkR
  41. Gradauer K. Barthelmes J. Vonach C. Liposomes coated with thiolated chitosan enhance oral peptide delivery to rats. J. Control. Release 2013 172 3 872 878 10.1016/j.jconrel.2013.10.011 24140721
    [Google Scholar]
  42. Üstündağ Okur N. Yurdasiper A. Gündoğdu E. Homan G.E. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: Polyethylene glycol versus chitosan oligosaccharide lactate. J. Microencapsul. 2016 33 1 30 42 10.3109/02652048.2015.1094532
    [Google Scholar]
  43. Nguyen T.X. Huang L. Liu L. Elamin Abdalla A.M. Gauthier M. Yang G. Chitosan-coated nano-liposomes for the oral delivery of berberine hydrochloride. J. Mater. Chem. B Mater. Biol. Med. 2014 2 41 7149 7159 10.1039/C4TB00876F 32261793
    [Google Scholar]
  44. İlem-Özdemir D. Gündoğdu E. Ekinci M. Aşıkoğlu M. Radioactive permeability studies of doxycycline hyclate from microemulsion and solution. Marmara Pharm. J. 2016 20 2 116 121 10.12991/mpj.201620065652
    [Google Scholar]
  45. Erkekoğlu P. Baydar T. Güncel in vitro sitotoksisite testleri. Hacettepe Univ J Fac Pharm 2021 41 1 45 63
    [Google Scholar]
  46. Shariare M.H. Rahman M. Lubna S.R. Liposomal drug delivery of Aphanamixis polystachya leaf extracts and its neurobehavioral activity in mice model. Sci. Rep. 2020 10 1 6938 10.1038/s41598‑020‑63894‑9 32332809
    [Google Scholar]
  47. Nazlı H. Mesut B. Özsoy Y. Pharmaceutical approaches for low solubility agents and solubility of aprepitant. J. Pharm. Sci. 2021 46 3 325 344
    [Google Scholar]
  48. Çoban Ö. Değim Z. Development of Nanocochleates containing erlotinib HCl and dexketoprofen trometamol and evaluation of ın vitro characteristic properties. Turk J Pharm Sci 2018 15 1 16 21 10.4274/tjps.83803 32454635
    [Google Scholar]
  49. Çoban Ö. Değim Z. Yılmaz Ş. Altıntaş L. Arsoy T. Sözmen M. Efficacy of targeted liposomes and nanocochleates containing imatinib plus dexketoprofen against fibrosarcoma. Drug Dev. Res. 2019 80 5 556 565 10.1002/ddr.21530 30901500
    [Google Scholar]
  50. Guimarães D. Cavaco-Paulo A. Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm. 2021 601 120571 10.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  51. Channarong S. Chaicumpa W. Sinchaipanid N. Mitrevej A. Development and evaluation of chitosan-coated liposomes for oral DNA vaccine: The improvement of Peyer’s patch targeting using a polyplex-loaded liposomes. AAPS PharmSciTech 2011 12 1 192 200 10.1208/s12249‑010‑9559‑9 21194014
    [Google Scholar]
  52. Nguyen V.H. Thuy V.N. Van T.V. Dao A.H. Lee B.J. Nanostructured lipid carriers and their potential applications for versatile drug delivery via oral administration. OpenNano 2022 8 100064 10.1016/j.onano.2022.100064
    [Google Scholar]
  53. Rao J. McClements D.J. Formation of flavor oil microemulsions, nanoemulsions and emulsions: Influence of composition and preparation method. J. Agric. Food Chem. 2011 59 9 5026 5035 10.1021/jf200094m 21410259
    [Google Scholar]
  54. Li X. Tang C. Salama M. Encapsulation efficiency and oral delivery stability of chitosan–liposome‐encapsulated immunoglobulin Y. J. Food Sci. 2022 87 4 1708 1720 10.1111/1750‑3841.16116 35279842
    [Google Scholar]
  55. Grigoras A.G. Polymer-lipid hybrid systems used as carriers for insulin delivery. Nanomedicine 2017 13 8 2425 2437 10.1016/j.nano.2017.08.005 28821465
    [Google Scholar]
  56. Sebaaly C. Trifan A. Sieniawska E. Greige-Gerges H. Chitosan-coating effect on the characteristics of liposomes: A focus on bioactive compounds and essential oils: A review. Processes 2021 9 3 445 10.3390/pr9030445
    [Google Scholar]
  57. Das A. Ghosh S. Pramanik N. Chitosan biopolymer and its composites: Processing, properties and applications- A comprehensive review. Hybrid Advances 2024 6 100265 10.1016/j.hybadv.2024.100265
    [Google Scholar]
  58. Han J. Meade J. Devine D. Sadeghpour A. Rappolt M. Goycoolea F.M. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis. Heliyon 2024 10 14 34554 10.1016/j.heliyon.2024.e34554 39149035
    [Google Scholar]
  59. Ahad A. Raish M. Bin Jardan Y.A. Al-Mohizea A.M. Al-Jenoobi F.I. Chitosan-tethered liposomes for sinapic acid delivery. J. Drug Deliv. Sci. Technol. 2024 101 106153 10.1016/j.jddst.2024.106153
    [Google Scholar]
  60. Liu Y. Yang T. Wei S. Mucus adhesion- and penetration-enhanced liposomes for paclitaxel oral delivery. Int. J. Pharm. 2018 537 1-2 245 256 10.1016/j.ijpharm.2017.12.044 29288808
    [Google Scholar]
  61. Andra V.V.S.N.L. Pammi S.V.N. Bhatraju L.V.K.P. Ruddaraju L.K. A Comprehensive review on novel liposomal methodologies, commercial formulations, clinical trials and patents. Bionanoscience 2022 12 1 274 291 10.1007/s12668‑022‑00941‑x 35096502
    [Google Scholar]
  62. Alavi S. Haeri A. Dadashzadeh S. Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydr. Polym. 2017 157 991 1012 10.1016/j.carbpol.2016.10.063 27988018
    [Google Scholar]
  63. Wróblewska A.M. Samsonowicz-Górski J. Kamińska E. Drozd M. Matczuk M. Optimization of a CE-ICP-MS/MS method for the investigation of liposome–cisplatin nanosystems and their interactions with transferrin. J. Anal. At. Spectrom. 2022 37 7 1442 1449 10.1039/D1JA00459J
    [Google Scholar]
  64. Gopi S. Balakrishnan P. Evaluation and clinical comparison studies on liposomal and non-liposomal ascorbic acid (vitamin C) and their enhanced bioavailability. J. Liposome Res. 2021 31 4 356 364 10.1080/08982104.2020.1820521 32901526
    [Google Scholar]
  65. Li K. Zhong W. Li P. Ren J. Jiang K. Wu W. Antibacterial mechanism of lignin and lignin-based antimicrobial materials in different fields. Int. J. Biol. Macromol. 2023 252 126281 10.1016/j.ijbiomac.2023.126281 37572815
    [Google Scholar]
  66. Siva S. Jin J.O. Choi I. Kim M. Nanoliposome based biosensors for probing mycotoxins and their applications for food: A review. Biosens. Bioelectron. 2023 219 114845 10.1016/j.bios.2022.114845 36327568
    [Google Scholar]
  67. Yin Y.M. Cui F.D. Mu C.F. Docetaxel microemulsion for enhanced oral bioavailability: Preparation and in vitro and in vivo evaluation. J. Control. Release 2009 140 2 86 94 10.1016/j.jconrel.2009.08.015 19709639
    [Google Scholar]
  68. Immordino M.L. Dosio F. Cattel L. Stealth liposomes: Review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 2006 1 3 297 315 17717971
    [Google Scholar]
  69. Chen D. Xia D. Li X. Comparative study of Pluronic® F127-modified liposomes and chitosan-modified liposomes for mucus penetration and oral absorption of cyclosporine A in rats. Int. J. Pharm. 2013 449 1-2 1 9 10.1016/j.ijpharm.2013.04.002 23583840
    [Google Scholar]
  70. Sağıroğlu A.A. Chitosan-coated liposome-containing carbamazepine and coenzyme Q10: Design, optimization and evaluation. J. Liposome Res. 2021 31 4 389 398 10.1080/08982104.2020.1849280
    [Google Scholar]
  71. Le N.T.T. Cao V.D. Nguyen T.N.Q. Le T.T.H. Tran T.T. Hoang Thi T.T. Soy lecithin-derived liposomal delivery systems: Surface modification and current applications. Int. J. Mol. Sci. 2019 20 19 4706 10.3390/ijms20194706 31547569
    [Google Scholar]
  72. Milić J. Čalija B. Dordević S.M. Diversity and functionality of excipients for micro/nanosized drug carriers. microsized nanosized carriers. In: Čalija B, Ed. Microsized and Nanosized Carriers for Nonsteroidal Anti-Inflammatory Drugs. Čalija B. United States Academic Press 2017 95 132 10.1016/B978‑0‑12‑804017‑1.00004‑2
    [Google Scholar]
  73. Kaddah S. Khreich N. Kaddah F. Charcosset C. Greige-Gerges H. Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food Chem. Toxicol. 2018 113 40 48 10.1016/j.fct.2018.01.017 29337230
    [Google Scholar]
  74. Jeon H.S. Seo J.E. Kim M.S. A retinyl palmitate-loaded solid lipid nanoparticle system: Effect of surface modification with dicetyl phosphate on skin permeation in vitro and anti-wrinkle effect in vivo. Int. J. Pharm. 2013 452 1-2 311 320 10.1016/j.ijpharm.2013.05.023 23702002
    [Google Scholar]
  75. Bhat U.M. Khan N.A. Raza S.N. Ciprofloxacin hydrochloride-loaded ocular silk fibroin liposomes: Formulation, characterisation, in vitro cytotoxicity, and antimicrobial activity. Heliyon 2024 10 22 38777 10.1016/j.heliyon.2024.e38777 39619581
    [Google Scholar]
  76. Cui M. Wu W. Hovgaard L. Lu Y. Chen D. Qi J. Liposomes containing cholesterol analogues of botanical origin as drug delivery systems to enhance the oral absorption of insulin. Int. J. Pharm. 2015 489 1-2 277 284 10.1016/j.ijpharm.2015.05.006 25957702
    [Google Scholar]
  77. Okur N.Ü. Çağlar E.Ş. Kaynak M.S. Diril M. Özcan S. Karasulu H.Y. Enhancing oral bioavailability of domperidone maleate: Formulation, in vitro permeability evaluation ın-Caco-2 cell monolayers and in situ ratıntestinal permeability studies. Curr. Drug Deliv. 2024 21 7 1010 1023 10.2174/1567201820666230214091509
    [Google Scholar]
  78. Xu Z. Hou Y. Sun J. Deoxycholic acid-chitosan coated liposomes combined with in situ colonic gel enhances renal fibrosis therapy of emodin. Phytomedicine 2022 101 154110 10.1016/j.phymed.2022.154110 35487039
    [Google Scholar]
  79. Danaei M. Dehghankhold M. Ataei S. Impact of particle size and polydispersity ındex on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  80. Qiang F. Shin H.J. Lee B.J. Han H.K. Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. Int. J. Pharm. 2012 430 1-2 161 166 10.1016/j.ijpharm.2012.04.007 22525082
    [Google Scholar]
  81. Montes C. Villaseñor M.J. Ríos Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci. Technol. 2019 90 47 62 10.1016/j.tifs.2019.06.001
    [Google Scholar]
  82. Mudalige T. Qu H. Van Haute D. Ansar S.M. Paredes A. Ingle T. Characterization of nanomaterials: Tools and challenges. Elsevier 2019 313 353
    [Google Scholar]
  83. Engelhardt M.B. Sugimoto T. Papastavrou G. Kobayashi M. Electrophoretic mobility of nanoparticle aggregates: Independence from aggregate size. Colloids Surf. A Physicochem. Eng. Asp. 2024 703 135244 10.1016/j.colsurfa.2024.135244
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128401910250706133608
Loading
/content/journals/cpd/10.2174/0113816128401910250706133608
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: hypertension ; Nadolol ; chitosan ; permeability ; liposomes ; nanocarrier systems
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test