Skip to content
2000
image of Sorafenib Resistance in Hepatocellular Carcinoma: Emerging Molecular Insights from Long Non-Coding RNAs

Abstract

Background

Sorafenib is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC), but its clinical efficacy is often compromised by the acquisition of drug resistance. Various cancers, including HCC, are affected by long non-coding RNA (lncRNA), but the mechanisms underlying HCC sorafenib resistance have not been extensively studied. This article aims to summarize the recently reported pathways associated with sorafenib resistance and discusses potential applications for the treatment of HCC.

Methods

Relevant studies on the resistance of HCC to anti-tumor drugs were retrieved from PubMed. Given the compelling evidence that sorafenib is an effective treatment for advanced HCC, we analyzed the research papers on lncRNA and sorafenib resistance in HCC in the PubMed system in the past decade and found that lncRNA may be involved in sorafenib resistance in HCC through multiple pathways.

Results

lncRNA is widely involved in the resistance mechanism of HCC to sorafenib. Recent studies have revealed that numerous lncRNAs, such as NEAT1, affect the sensitivity of HCC to sorafenib through various mechanisms, including autophagy and AKT signaling pathways.

Conclusion

lncRNAs play a pivotal role in modulating HCC resistance to sorafenib. And lncRNA is expected to become a new solution to the resistance of sorafenib and other targeted drugs.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128371240250619102820
2025-07-08
2025-09-10
Loading full text...

Full text loading...

References

  1. Vogel A. Meyer T. Sapisochin G. Salem R. Saborowski A. Hepatocellular carcinoma. Lancet 2022 400 10360 1345 1362 10.1016/S0140‑6736(22)01200‑4 36084663
    [Google Scholar]
  2. Yau T. Park J.W. Finn R.S. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022 23 1 77 90 10.1016/S1470‑2045(21)00604‑5 34914889
    [Google Scholar]
  3. Hao S.H. Ma X.D. Xu L. Dual specific phosphatase 4 suppresses ferroptosis and enhances sorafenib resistance in hepatocellular carcinoma. Drug Resist. Updat. 2024 73 101052 10.1016/j.drup.2024.101052
    [Google Scholar]
  4. Li Y. Yang W. Zheng Y. Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J. Exp. Clin. Cancer Res. 2023 42 1 6 10.1186/s13046‑022‑02567‑z 36604718
    [Google Scholar]
  5. Wang S. You X. Liu X. SMYD3 induces sorafenib resistance by activating SMAD2/3-mediated epithelial-mesenchymal transition in hepatocellular carcinoma. iScience 2023 26 7 106994 10.1016/j.isci.2023.106994 37534166
    [Google Scholar]
  6. Wang Y. Wang M. Chen J. The gut microbiota reprograms intestinal lipid metabolism through long noncoding RNA Snhg9. Science 2023 381 6660 851 857 10.1126/science.ade0522 37616368
    [Google Scholar]
  7. Yuan K. Lan J. Xu L. Long noncoding RNA TLNC1 promotes the growth and metastasis of liver cancer via inhibition of p53 signaling. Mol. Cancer 2022 21 1 105 10.1186/s12943‑022‑01578‑w 35477447
    [Google Scholar]
  8. Wang F. Hu Y. Wang H. LncRNA FTO-IT1 promotes glycolysis and progression of hepatocellular carcinoma through modulating FTO-mediated N6-methyladenosine modification on GLUT1 and PKM2. J. Exp. Clin. Cancer Res. 2023 42 1 267 10.1186/s13046‑023‑02847‑2 37840133
    [Google Scholar]
  9. Chen D. Wang J. Li Y. LncRNA NEAT1 suppresses cellular senescence in hepatocellular carcinoma via KIF11‐dependent repression of CDKN2A. Clin. Transl. Med. 2023 13 9 e1418 10.1002/ctm2.1418 37752791
    [Google Scholar]
  10. Youssef K.K. Nieto M.A. Epithelial–mesenchymal transition in tissue repair and degeneration. Nat. Rev. Mol. Cell Biol. 2024 25 9 720 739 10.1038/s41580‑024‑00733‑z 38684869
    [Google Scholar]
  11. Jian H.Y. Zhang J.T. Liu Z. Zhang Z. Zeng P.H. Amentoflavone reverses epithelial‐mesenchymal transition in hepatocellular carcinoma cells by targeting p53 signalling pathway axis. J. Cell. Mol. Med. 2024 28 11 e18442 10.1111/jcmm.18442 38842135
    [Google Scholar]
  12. Li F. Wang J. Yan Y. Bai C. Guo J. CD147 promotes breast cancer migration and invasion by inducing epithelial-mesenchymal transition via the MAPK/ERK signaling pathway. BMC Cancer 2023 23 1 1214 10.1186/s12885‑023‑11724‑2 38066486
    [Google Scholar]
  13. Liu Y. Han T. Wu J. SPOCK1, as a potential prognostic and therapeutic biomarker for lung adenocarcinoma, is associated with epithelial-mesenchymal transition and immune evasion. J. Transl. Med. 2023 21 1 909 10.1186/s12967‑023‑04616‑3 38087364
    [Google Scholar]
  14. Chen B.W. Zhou Y. Wei T. lncRNA‐POIR promotes epithelial-mesenchymal transition and suppresses sorafenib sensitivity simultaneously in hepatocellular carcinoma by sponging miR‐182‐5p. J. Cell. Biochem. 2021 122 1 130 142 10.1002/jcb.29844 32951268
    [Google Scholar]
  15. Zhang P.F. Wang F. Wu J. LncRNA SNHG3 induces EMT and sorafenib resistance by modulating the miR‐128/CD151 pathway in hepatocellular carcinoma. J. Cell. Physiol. 2019 234 3 2788 2794 10.1002/jcp.27095 30132868
    [Google Scholar]
  16. Lin W.H. Chang Y.W. Hong M.X. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT-MET switch and cancer metastasis. Oncogene 2021 40 4 791 805 10.1038/s41388‑020‑01566‑8 33262462
    [Google Scholar]
  17. Zhang Y. Song D. Peng Z. LINC00891 regulated by miR-128-3p/GATA2 axis impedes lung cancer cell proliferation, invasion and EMT by inhibiting RhoA pathway. Acta Biochim. Biophys. Sin. 2022 54 3 378 387 10.3724/abbs.2022005 35538035
    [Google Scholar]
  18. Sun J. Zheng X. Wang B. LncRNA LIMT (LINC01089) contributes to sorafenib chemoresistance via regulation of miR-665 and epithelial to mesenchymal transition in hepatocellular carcinoma cells. Acta Biochim. Biophys. Sin. 2022 54 2 261 270 10.3724/abbs.2021019 35130616
    [Google Scholar]
  19. Sas-Chen A. Aure M.R. Leibovich L. LIMT is a novel metastasis inhibiting lnc RNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Mol. Med. 2016 8 9 1052 1064 10.15252/emmm.201606198 27485121
    [Google Scholar]
  20. Zeng X.Y. Xie H. Yuan J. M2-like tumor-associated macrophages-secreted EGF promotes epithelial ovarian cancer metastasis via activating EGFR-ERK signaling and suppressing lncRNA LIMT expression. Cancer Biol. Ther. 2019 20 7 956 966 10.1080/15384047.2018.1564567 31062668
    [Google Scholar]
  21. Song J. Liu Q. Han L. Hsa_circ_0009092/miR-665/NLK signaling axis suppresses colorectal cancer progression via recruiting TAMs in the tumor microenvironment. J. Exp. Clin. Cancer Res. 2023 42 1 319 10.1186/s13046‑023‑02887‑8 38008713
    [Google Scholar]
  22. Tang H. Long Q. Zhuang K. miR‐665 promotes the progression of gastric adenocarcinoma via elevating FAK activation through targeting SOCS3 and is negatively regulated by lncRNA MEG3. J. Cell. Physiol. 2020 235 5 4709 4719 10.1002/jcp.29349 31650535
    [Google Scholar]
  23. Tang X. Zhang W. Ye Y. LncRNA HOTAIR contributes to sorafenib resistance through suppressing mIR‐217 in hepatic carcinoma. BioMed Res. Int. 2020 2020 1 9515071 10.1155/2020/9515071 32462038
    [Google Scholar]
  24. Gong J. Han G. Chen Z. CircDCAF8 promotes the progression of hepatocellular carcinoma through miR-217/NAP1L1 Axis, and induces angiogenesis and regorafenib resistance via exosome-mediated transfer. J. Transl. Med. 2024 22 1 517 10.1186/s12967‑024‑05233‑4 38816735
    [Google Scholar]
  25. Wang S. Tong H. Su T. CircTP63 promotes cell proliferation and invasion by regulating EZH2 via sponging miR-217 in gallbladder cancer. Cancer Cell Int. 2021 21 1 608 10.1186/s12935‑021‑02316‑w 34789260
    [Google Scholar]
  26. Vargas J.N.S. Hamasaki M. Kawabata T. Youle R.J. Yoshimori T. The mechanisms and roles of selective autophagy in mammals. Nat. Rev. Mol. Cell Biol. 2023 24 3 167 185 10.1038/s41580‑022‑00542‑2 36302887
    [Google Scholar]
  27. Yamamoto H. Zhang S. Mizushima N. Autophagy genes in biology and disease. Nat. Rev. Genet. 2023 24 6 382 400 10.1038/s41576‑022‑00562‑w 36635405
    [Google Scholar]
  28. Wu N. Zheng W. Zhou Y. Autophagy in aging-related diseases and cancer: Principles, regulatory mechanisms and therapeutic potential. Ageing Res. Rev. 2024 100 102428 10.1016/j.arr.2024.102428 39038742
    [Google Scholar]
  29. Debnath J. Gammoh N. Ryan K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023 24 8 560 575 10.1038/s41580‑023‑00585‑z 36864290
    [Google Scholar]
  30. Zhen Y. Stenmark H. Autophagosome Biogenesis. Cells 2023 12 4 668 10.3390/cells12040668 36831335
    [Google Scholar]
  31. Huang X. Yao J. Liu L. S-acylation of p62 promotes p62 droplet recruitment into autophagosomes in mammalian autophagy. Mol. Cell 2023 83 19 3485 3501.e11 10.1016/j.molcel.2023.09.004 37802024
    [Google Scholar]
  32. Jing Z. Ye X. Ma X. SNGH16 regulates cell autophagy to promote Sorafenib Resistance through suppressing miR‐23b‐3p via sponging EGR1 in hepatocellular carcinoma. Cancer Med. 2020 9 12 4324 4338 10.1002/cam4.3020 32324343
    [Google Scholar]
  33. Huang C. Shu L. Zhang H. Zhu X. Huang G. Xu J. Circ_ZNF512-mediated mir-181d-5p inhibition limits cardiomyocyte autophagy and promotes myocardial ischemia/reperfusion injury through an EGR1/mTORC1/TFEB-based mechanism. J. Med. Chem. 2022 65 3 1808 1821 10.1021/acs.jmedchem.1c00745 35041407
    [Google Scholar]
  34. Hayashi M. Yamada S. Kurimoto K. miR-23b-3p plays an oncogenic role in hepatocellular carcinoma. Ann. Surg. Oncol. 2021 28 6 3416 3426 10.1245/s10434‑020‑09283‑y 33140250
    [Google Scholar]
  35. Li G. Zhang Z. Chen Z. Liu B. Wu H. LncRNA DLEU2 is activated by STAT1 and induces gastric cancer development via targeting miR-23b-3p/NOTCH2 axis and Notch signaling pathway. Life Sci. 2021 277 119419 10.1016/j.lfs.2021.119419 33785336
    [Google Scholar]
  36. Chen L. Sun L. Dai X. LncRNA CRNDE promotes ATG4B-mediated autophagy and alleviates the sensitivity of sorafenib in hepatocellular carcinoma cells. Front. Cell Dev. Biol. 2021 9 687524 10.3389/fcell.2021.687524 34409031
    [Google Scholar]
  37. Sun C. Chen Y. Gu Q. UBE3C tunes autophagy via ATG4B ubiquitination. Autophagy 2024 20 3 645 658 10.1080/15548627.2023.2299514 38146933
    [Google Scholar]
  38. Li X. Zhou Y. Yang L. LncRNA NEAT1 promotes autophagy via regulating miR‐204/ATG3 and enhanced cell resistance to sorafenib in hepatocellular carcinoma. J. Cell. Physiol. 2020 235 4 3402 3413 10.1002/jcp.29230 31549407
    [Google Scholar]
  39. Mallén-Ponce M.J. Pérez-Pérez M.E. Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii. Plant Physiol. 2023 194 1 359 375 10.1093/plphys/kiad520 37772945
    [Google Scholar]
  40. Zou Z. Liu X. Yu J. Nuclear miR-204-3p mitigates metabolic dysfunction-associated steatotic liver disease in mice. J. Hepatol. 2024 80 6 834 845 10.1016/j.jhep.2024.01.029 38331323
    [Google Scholar]
  41. Zhou M. Zhang G. Hu J. Rutin attenuates sorafenib-induced chemoresistance and autophagy in hepatocellular carcinoma by regulating BANCR/miRNA-590-5P/OLR1 axis. Int. J. Biol. Sci. 2021 17 13 3595 3607 10.7150/ijbs.62471 34512168
    [Google Scholar]
  42. Dixon S.J. Lemberg K.M. Lamprecht M.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell 2012 149 5 1060 1072 10.1016/j.cell.2012.03.042 22632970
    [Google Scholar]
  43. Liang D. Minikes A.M. Jiang X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 2022 82 12 2215 2227 10.1016/j.molcel.2022.03.022 35390277
    [Google Scholar]
  44. Yang C. Lu T. Liu M. Tiliroside targets TBK1 to induce ferroptosis and sensitize hepatocellular carcinoma to sorafenib. Phytomedicine 2023 111 154668 10.1016/j.phymed.2023.154668 36657316
    [Google Scholar]
  45. Lian Y. Yang J. Lian Y. Xiao C. Hu X. Xu H. DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun. 2018 38 1 1 11 10.1186/s40880‑018‑0333‑9 30367681
    [Google Scholar]
  46. Shi Z. Li Z. Jin B. Loss of LncRNA DUXAP8 synergistically enhanced sorafenib induced ferroptosis in hepatocellular carcinoma via SLC7A11 de‐palmitoylation. Clin. Transl. Med. 2023 13 6 e1300 10.1002/ctm2.1300 37337470
    [Google Scholar]
  47. Ye Y. Chen A. Li L. Repression of the antiporter SLC7A11/glutathione/glutathione peroxidase 4 axis drives ferroptosis of vascular smooth muscle cells to facilitate vascular calcification. Kidney Int. 2022 102 6 1259 1275 10.1016/j.kint.2022.07.034 36063875
    [Google Scholar]
  48. Jiang T. Xiao Y. Zhou J. Arbutin alleviates fatty liver by inhibiting ferroptosis via FTO/SLC7A11 pathway. Redox Biol. 2023 68 102963 10.1016/j.redox.2023.102963
    [Google Scholar]
  49. Li X. Li Y. Lian P. Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum. Exp. Toxicol. 2023 42 9603271221142818 10.1177/09603271221142818
    [Google Scholar]
  50. Wang Y. Yan S. Liu X. PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway. Cell Death Differ. 2022 29 10 1982 1995 10.1038/s41418‑022‑00990‑5 35383293
    [Google Scholar]
  51. Wang Y. Zheng L. Shang W. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 2022 29 11 2190 2202 10.1038/s41418‑022‑01008‑w 35534546
    [Google Scholar]
  52. Yu Q. Zhang N. Gan X. EGCG attenuated acute myocardial infarction by inhibiting ferroptosis via miR-450b-5p/ACSL4 axis. Phytomedicine 2023 119 154999 10.1016/j.phymed.2023.154999 37597361
    [Google Scholar]
  53. Zheng Y. Xu L. Hassan M. Bayesian modeling identifies PLAG1 as a key regulator of proliferation and survival in rhabdomyosarcoma cells. Mol. Cancer Res. 2020 18 3 364 374 10.1158/1541‑7786.MCR‑19‑0764 31757836
    [Google Scholar]
  54. Li J. Li Y. Wang D. Liao R. Wu Z. PLAG1 interacts with GPX4 to conquer vulnerability to sorafenib induced ferroptosis through a PVT1/miR-195-5p axis-dependent manner in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2024 43 1 143 10.1186/s13046‑024‑03061‑4 38745179
    [Google Scholar]
  55. Chelakkot C. Chelakkot V.S. Shin Y. Song K. Modulating glycolysis to improve cancer therapy. Int. J. Mol. Sci. 2023 24 3 2606 10.3390/ijms24032606 36768924
    [Google Scholar]
  56. Li M. Yu J. Ju L. USP43 stabilizes c-Myc to promote glycolysis and metastasis in bladder cancer. Cell Death Dis. 2024 15 1 44 10.1038/s41419‑024‑06446‑7 38218970
    [Google Scholar]
  57. Zhang X. Zhao L. Ying K. TUG1 protects against ferroptosis of hepatic stellate cells by upregulating PDK4-mediated glycolysis. Chem. Biol. Interact. 2023 383 110673 10.1016/j.cbi.2023.110673 37582412
    [Google Scholar]
  58. He Y. Wang X. Lu W. PGK1 contributes to tumorigenesis and sorafenib resistance of renal clear cell carcinoma via activating CXCR4/ERK signaling pathway and accelerating glycolysis. Cell Death Dis. 2022 13 2 118 10.1038/s41419‑022‑04576‑4 35121728
    [Google Scholar]
  59. Pan M. Luo M. Liu L. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J. Exp. Clin. Cancer Res. 2024 43 1 35 10.1186/s13046‑024‑02957‑5 38287371
    [Google Scholar]
  60. Li R. Li S. Shen L. SNHG1, interacting with SND1, contributes to sorafenib resistance of liver cancer cells by increasing m6A‐mediated SLC7A11 expression and promoting aerobic glycolysis. Environ. Toxicol. 2023 37927237
    [Google Scholar]
  61. Zheng J. Zhang Q. Zhao Z. Epigenetically silenced lncRNA SNAI3-AS1 promotes ferroptosis in glioma via perturbing the m6A-dependent recognition of Nrf2 mRNA mediated by SND1. J. Exp. Clin. Cancer Res. 2023 42 1 127 10.1186/s13046‑023‑02684‑3
    [Google Scholar]
  62. An Y. Duan H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 2022 21 1 14 10.1186/s12943‑022‑01500‑4 35022030
    [Google Scholar]
  63. Bu L. Zhang Z. Chen J. High-fat diet promotes liver tumorigenesis via palmitoylation and activation of AKT. Gut 2024 73 7 1156 1168 10.1136/gutjnl‑2023‑330826 38191266
    [Google Scholar]
  64. Yu L. Wei J. Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol. 2022 85 69 94 10.1016/j.semcancer.2021.06.019 34175443
    [Google Scholar]
  65. Guo N. Wang X. Xu M. Bai J. Yu H. Zhang L. PI3K/AKT signaling pathway: Molecular mechanisms and therapeutic potential in depression. Pharmacol. Res. 2024 206 107300 10.1016/j.phrs.2024.107300 38992850
    [Google Scholar]
  66. Tufail M. Wan W.D. Jiang C. Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem. Biol. Interact. 2024 396 111055 10.1016/j.cbi.2024.111055 38763348
    [Google Scholar]
  67. Tsuchiya H. Shinonaga R. Sakaguchi H. Kitagawa Y. Yoshida K. NEAT1-SOD2 axis confers sorafenib and lenvatinib resistance by activating AKT in liver cancer cell lines. Curr. Issues Mol. Biol. 2023 45 2 1073 1085 10.3390/cimb45020071 36826016
    [Google Scholar]
  68. Li W. Dong X. He C. LncRNA SNHG1 contributes to sorafenib resistance by activating the Akt pathway and is positively regulated by miR-21 in hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res. 2019 38 1 183 10.1186/s13046‑019‑1177‑0 31053148
    [Google Scholar]
  69. Zhou Y. Huang Y. Dai T. LncRNA TTN-AS1 intensifies sorafenib resistance in hepatocellular carcinoma by sponging miR-16-5p and upregulation of cyclin E1. Biomed. Pharmacother. 2021 133 111030 10.1016/j.biopha.2020.111030 33378944
    [Google Scholar]
  70. Hu Y. Xu Y. Zhang T. Cisplatin-activated ERβ/DCAF8 positive feedback loop induces chemoresistance in non-small cell lung cancer via PTEN/Akt axis. Drug Resist. Updat. 2023 71 101014 10.1016/j.drup.2023.101014
    [Google Scholar]
  71. Chen Y. Xiang D. Zhao X. Chu X. Upregulation of lncRNA NIFK-AS1 in hepatocellular carcinoma by m6A methylation promotes disease progression and sorafenib resistance. Hum. Cell 2021 34 6 1800 1811 10.1007/s13577‑021‑00587‑z 34374933
    [Google Scholar]
  72. Yang S-j. Wang D-d. Zhong S-l. Chen W-q. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/β-catenin (cyclin D1) axis. Cell Death Dis. 2021 12 5 420 10.1038/s41419‑021‑03680‑1
    [Google Scholar]
  73. Cheng L. Deepak R.N.V.K. Wang G. Hepatic mitochondrial NAD+ transporter SLC25A47 activates AMPKα mediating lipid metabolism and tumorigenesis. Hepatology 2023 78 6 1828 1842 10.1097/HEP.0000000000000314 36804859
    [Google Scholar]
  74. Fan J. To K.K.W. Chen Z.S. Fu L. ABC transporters affects tumor immune microenvironment to regulate cancer immunotherapy and multidrug resistance. Drug Resist. Updat. 2023 66 100905 10.1016/j.drup.2022.100905 36463807
    [Google Scholar]
  75. Schlessinger A. Zatorski N. Hutchinson K. Colas C. Targeting SLC transporters: Small molecules as modulators and therapeutic opportunities. Trends Biochem. Sci. 2023 48 9 801 814 10.1016/j.tibs.2023.05.011 37355450
    [Google Scholar]
  76. He F. Zhang P. Liu J. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J. Hepatol. 2023 79 2 362 377 10.1016/j.jhep.2023.03.016 36996941
    [Google Scholar]
  77. Yang D. Liu H. Cai Y. Branched-chain amino acid catabolism breaks glutamine addiction to sustain hepatocellular carcinoma progression. Cell Rep. 2022 41 8 111691 10.1016/j.celrep.2022.111691 36417878
    [Google Scholar]
  78. Wang X. Chen Y. Wang X. Stem Cell factor SOX2 confers ferroptosis resistance in lung cancer via upregulation of SLC7A11. Cancer Res. 2021 81 20 5217 5229 10.1158/0008‑5472.CAN‑21‑0567 34385181
    [Google Scholar]
  79. Shi C.J. Pang F.X. Lei Y.H. 5-methylcytosine methylation of MALAT1 promotes resistance to sorafenib in hepatocellular carcinoma through ELAVL1/SLC7A11-mediated ferroptosis. Drug Resist. Updat. 2025 78 101181 10.1016/j.drup.2024.101181 39657434
    [Google Scholar]
  80. Chen Q. Zheng W. Guan J. SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ. 2023 30 1 137 151 10.1038/s41418‑022‑01051‑7 35995846
    [Google Scholar]
  81. Haratake N. Ozawa H. Morimoto Y. MUC1-C Is a common driver of acquired osimertinib resistance in NSCLC. J. Thorac. Oncol. 2024 19 3 434 450 10.1016/j.jtho.2023.10.017 37924972
    [Google Scholar]
  82. Jin W. Liao X. Lv Y. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis. 2017 8 8 e2980 e0 10.1038/cddis.2017.378 28796259
    [Google Scholar]
  83. Tang Q. Li X. Chen Y. Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP‐TUG1/miR‐4726‐5p/MUC1 pathway. Mol. Carcinog. 2022 61 4 417 432 10.1002/mc.23389 35040191
    [Google Scholar]
  84. Chan Y.T. Wu J. Lu Y. Loss of lncRNA LINC01056 leads to sorafenib resistance in HCC. Mol. Cancer 2024 23 1 74 10.1186/s12943‑024‑01988‑y 38582885
    [Google Scholar]
  85. Tseng C.F. Chen L.T. Wang H.D. Liu Y.H. Shiah S.G. Transcriptional suppression of Dicer by HOXB‐AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. Cancer Sci. 2022 113 5 1601 1612 10.1111/cas.15319 35253323
    [Google Scholar]
  86. Wang Y. Tan K. Hu W. Hou Y. Yang G. LncRNA AC026401.3 interacts with OCT1 to intensify sorafenib and lenvatinib resistance by activating E2F2 signaling in hepatocellular carcinoma. Exp. Cell Res. 2022 420 1 113335 10.1016/j.yexcr.2022.113335 36084669
    [Google Scholar]
  87. Chi X. Chen Z. Chen Y. Hong H. Yu J. Lv L. Upregulation of lncRNA PTOV1‐AS1 in hepatocellular carcinoma contributes to disease progression and sorafenib resistance through regulating miR‐505. J. Biochem. Mol. Toxicol. 2023 37 10 e23437 10.1002/jbt.23437 37352125
    [Google Scholar]
  88. Zhang J. Zhao X. Ma X. Yuan Z. Hu M. KCNQ1OT1 contributes to sorafenib resistance and programmed death ligand 1 mediated immune escape via sponging miR 506 in hepatocellular carcinoma cells. Int. J. Mol. Med. 2020 46 5 1794 1804 10.3892/ijmm.2020.4710 33000204
    [Google Scholar]
  89. AL-Noshokaty TM AL-Noshokaty TM, Mesbah NM, Abo-Elmatty DM, Abulsoud AI, Abdel-Hamed AR. Selenium nanoparticles overcomes sorafenib resistance in thioacetamide induced hepatocellular carcinoma in rats by modulation of mTOR, NF-κB pathways and LncRNA-AF085935/GPC3 axis. Life Sci. 2022 303 120675 10.1016/j.lfs.2022.120675 35640776
    [Google Scholar]
  90. Song W. Zheng C. Liu M. TRERNA1 upregulation mediated by HBx promotes sorafenib resistance and cell proliferation in HCC via targeting NRAS by sponging miR-22-3p. Mol. Ther. 2021 29 8 2601 2616 10.1016/j.ymthe.2021.04.011 33839325
    [Google Scholar]
  91. Sui C. Dong Z. Yang C. LncRNA FOXD2‐AS1 as a competitive endogenous RNA against miR‐150‐5p reverses resistance to sorafenib in hepatocellular carcinoma. J. Cell. Mol. Med. 2019 23 9 6024 6033 10.1111/jcmm.14465 31210410
    [Google Scholar]
  92. Liu Y.T. Liu G.Q. Huang J.M. FAM225A promotes sorafenib resistance in hepatocarcinoma cells through modulating miR-130a-5p-CCNG1 interaction network. Biosci. Rep. 2020 40 12 BSR20202054 10.1042/BSR20202054 33245102
    [Google Scholar]
  93. Liu Y.C. Lin Y.H. Chi H.C. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin. Epigenetics 2022 14 1 106 10.1186/s13148‑022‑01326‑3 35999564
    [Google Scholar]
  94. Xu Y. Liu Y. Li Z. Long non coding RNA H19 is involved in sorafenib resistance in hepatocellular carcinoma by upregulating miR 675. Oncol. Rep. 2020 44 1 165 173 10.3892/or.2020.7608 32627034
    [Google Scholar]
  95. Fan L. Huang X. Chen J. Long noncoding RNA MALAT1 contributes to sorafenib resistance by targeting miR-140-5p/] aurora-a signaling in hepatocellular carcinoma. Mol. Cancer Ther. 2020 19 5 1197 1209 10.1158/1535‑7163.MCT‑19‑0203 32220970
    [Google Scholar]
  96. Jin W. Chen L. Cai X. Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol. Rep. 2017 37 1 273 280 10.3892/or.2016.5248 27878301
    [Google Scholar]
  97. Chen S. Xia X. Long noncoding RNA NEAT1 suppresses sorafenib sensitivity of hepatocellular carcinoma cells via regulating miR‐335-c‐Met. J. Cell. Physiol. 2019 234 9 14999 15009 10.1002/jcp.27567 30937906
    [Google Scholar]
  98. Bhattacharjee R. Prabhakar N. Kumar L. Crosstalk between long noncoding RNA and microRNA in Cancer. Cell. Oncol. 2023 46 4 885 908 10.1007/s13402‑023‑00806‑9 37245177
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128371240250619102820
Loading
/content/journals/cpd/10.2174/0113816128371240250619102820
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test