Skip to content
2000
image of Ni-Fe Nanoparticles from Eugenia jambolana Extract Show Enhanced Anti-Biofilm, Anti-Inflammatory, and Antioxidant Effects

Abstract

Introduction

Metallic nanoparticles are of interest for their potent bactericidal and anti-biofilm effects within a favorable therapeutic index. This study reports the green synthesis of bimetallic nickel-iron (Ni-Fe) nanoparticles using extract and evaluates their antimicrobial, anti-biofilm, anti-inflammatory, and antioxidant activities.

Methods

Ni-Fe nanoparticles were synthesized using extract and characterized for crystalline structure, size, stability, zeta potential, and functional groups. Antimicrobial activity was tested against Gram-positive (, ), Gram-negative (, ), and . Anti-biofilm potential was assessed inhibition and dispersion assays, EPS quantification, and visualization. Anti-inflammatory activity was measured through protein denaturation and nitric oxide scavenging assays, while antioxidant capacity was determined using DPPH and HO scavenging tests.

Results

Crystalline, stable Ni-Fe nanoparticles with favorable functional groups were obtained. At 200 µg/mL, they showed broad-spectrum antimicrobial activity. Biofilm formation was reduced by 50% at 250 µg/mL, and dispersion occurred at 10-50 µg/mL, with most susceptible. EPS inhibition at 50 µg/mL was 78% (), 70% (), 73% (), and 91% (). Visualization confirmed strong adherence to biofilms. At 250 µg/mL, protein denaturation inhibition reached 45%, nitric oxide scavenging 42.6%, DPPH scavenging 44%, and HO scavenging 49%.

Discussion

Ni-Fe nanoparticles exhibit strong antimicrobial, anti-biofilm, anti-inflammatory, and antioxidant activities, notably against . High EPS inhibition and biofilm dispersion suggest potential against biofilm-associated, drug-resistant infections.

Conclusion

Green-synthesized Ni-Fe nanoparticles from show multifunctional bioactivities, offering promise for therapeutic applications targeting resistant and biofilm-related infections.

Loading

Article metrics loading...

/content/journals/cpd/10.2174/0113816128394608251005230040
2025-10-29
2025-12-19
Loading full text...

Full text loading...

References

  1. Stoodley P. Sauer K. Davies D.G. Costerton J.W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002 56 1 187 209 10.1146/annurev.micro.56.012302.160705 12142477
    [Google Scholar]
  2. Donlan R.M. Biofilm formation: A clinically relevant microbiological process. Clin. Infect. Dis. 2001 33 8 1387 1392 10.1086/322972 11565080
    [Google Scholar]
  3. Jain A. Gupta Y. Agrawal R. Jain S. Khare P. Biofilms--a microbial life perspective: A critical review. Crit. Rev. Ther. Drug Carrier Syst. 2007 24 5 393 443 10.1615/CritRevTherDrugCarrierSyst.v24.i5.10 18197780
    [Google Scholar]
  4. Dewasthale S. Mani I. Vasdev K. Microbial biofilm: Current challenges in health care industry. J Appl Biotechnol Bioeng 2018 5 3 160 164 10.15406/jabb.2018.05.00132
    [Google Scholar]
  5. Dufour D. Leung V. Lévesque C.M. Bacterial biofilm: Structure, function, and antimicrobial resistance. Endod. Topics 2010 22 1 2 16 10.1111/j.1601‑1546.2012.00277.x
    [Google Scholar]
  6. Rather M.A. Gupta K. Bardhan P. Microbial biofilm: A matter of grave concern for human health and food industry. J. Basic Microbiol. 2021 61 5 380 395 10.1002/jobm.202000678 33615511
    [Google Scholar]
  7. Jamal M. Ahmad W. Andleeb S. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018 81 1 7 11 10.1016/j.jcma.2017.07.012 29042186
    [Google Scholar]
  8. Khatoon Z. McTiernan C.D. Suuronen E.J. Mah T.F. Alarcon E.I. Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon 2018 4 12 01067 10.1016/j.heliyon.2018.e01067 30619958
    [Google Scholar]
  9. Wu H. Moser C. Wang H.Z. Høiby N. Song Z.J. Strategies for combating bacterial biofilm infections. Int. J. Oral Sci. 2015 7 1 1 7 10.1038/ijos.2014.65 25504208
    [Google Scholar]
  10. Oliveira M. Antunes W. Mota S. Madureira-Carvalho Á. Dinis-Oliveira R.J. Dias da Silva D. An overview of the recent advances in antimicrobial resistance. Microorganisms 2024 12 9 1920 10.3390/microorganisms12091920 39338594
    [Google Scholar]
  11. Ahmed S.K. Hussein S. Qurbani K. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health 2024 2 100081 10.1016/j.glmedi.2024.100081
    [Google Scholar]
  12. Wolcott R. Dowd S. The role of biofilms: Are we hitting the right target? Plast. Reconstr. Surg. 2011 127 Suppl. 1 28S 35S 10.1097/PRS.0b013e3181fca244 21200270
    [Google Scholar]
  13. Dsouza F.P. Dinesh S. Sharma S. Understanding the intricacies of microbial biofilm formation and its endurance in chronic infections: A key to advancing biofilm-targeted therapeutic strategies. Arch. Microbiol. 2024 206 2 85 10.1007/s00203‑023‑03802‑7 38300317
    [Google Scholar]
  14. Komolafe O.O. Antibiotic resistance in bacteria - An emerging public health problem. Malawi Med. J. 2004 15 2 63 67 10.4314/mmj.v15i2.10780 27528961
    [Google Scholar]
  15. Han C. Romero N. Fischer S. Dookran J. Berger A. Doiron A.L. Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol. Rev. 2017 6 5 383 404 10.1515/ntrev‑2016‑0054
    [Google Scholar]
  16. Dawan J. Ahn J. Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms 2022 10 7 1385 10.3390/microorganisms10071385 35889104
    [Google Scholar]
  17. Roy R. Tiwari M. Donelli G. Tiwari V. Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 2018 9 1 522 554 10.1080/21505594.2017.1313372 28362216
    [Google Scholar]
  18. Rather M.A. Gupta K. Mandal M. Microbial biofilm: Formation, architecture, antibiotic resistance, and control strategies. Braz. J. Microbiol. 2021 52 4 1701 1718 10.1007/s42770‑021‑00624‑x 34558029
    [Google Scholar]
  19. Ferraz M.P. Advanced nanotechnological approaches for biofilm prevention and control. Appl. Sci. 2024 14 8137 10.3390/app14188137
    [Google Scholar]
  20. Thambirajoo M. Maarof M. Lokanathan Y. Potential of nanoparticles integrated with antibacterial properties in preventing biofilm and antibiotic resistance. Antibiotics 2021 10 11 1338 10.3390/antibiotics10111338 34827276
    [Google Scholar]
  21. Ansari M.A. Alomary M.N. Bioinspired ferromagnetic NiFe2O4 nanoparticles: Eradication of fungal and drug-resistant bacterial pathogens and their established biofilm. Microb. Pathog. 2024 193 106729 10.1016/j.micpath.2024.106729 38851363
    [Google Scholar]
  22. Divya M. Chen J. Durán-Lara E.F. Kim K. Vijayakumar S. Revolutionizing healthcare: Harnessing nano biotechnology with zinc oxide nanoparticles to combat biofilm and bacterial infections-A short review. Microb. Pathog. 2024 191 106679 10.1016/j.micpath.2024.106679 38718953
    [Google Scholar]
  23. Hoseinzadeh E. Makhdoumi P. Taha P. A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Curr. Drug Metab. 2017 18 2 120 128 10.2174/1389200217666161201111146 27908256
    [Google Scholar]
  24. Makabenta J.M.V. Nabawy A. Li C.H. Schmidt-Malan S. Patel R. Rotello V.M. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat. Rev. Microbiol. 2021 19 1 23 36 10.1038/s41579‑020‑0420‑1 32814862
    [Google Scholar]
  25. Altun E. Aydogdu M.O. Chung E. Ren G. Homer-Vanniasinkam S. Edirisinghe M. Metal-based nanoparticles for combating antibiotic resistance. Appl. Phys. Rev. 2021 8 4 041303 10.1063/5.0060299
    [Google Scholar]
  26. Devanga Ragupathi N.K. Veeraraghavan B. Karunakaran E. Monk P.N. Editorial: Biofilm-mediated nosocomial infections and its association with antimicrobial resistance: Detection, prevention, and management. Front. Med. 2022 9 987011 10.3389/fmed.2022.987011 35979211
    [Google Scholar]
  27. Kamat S. Kumari M. Emergence of microbial resistance against nanoparticles: Mechanisms and strategies. Front. Microbiol. 2023 14 1102615 10.3389/fmicb.2023.1102615 36778867
    [Google Scholar]
  28. Mostafazade R. Arabi L. Tazik Z. Akaberi M. Bazzaz B.S.F. Green synthesis of gold, copper, zinc, iron, and other metal nanoparticles by fungal endophytes; characterization, and their biological activity: A review. Biocatal. Agric. Biotechnol. 2024 103307 10.1016/j.bcab.2024.103307
    [Google Scholar]
  29. Sánchez-López E. Gomes D. Esteruelas G. Metal-based nanoparticles as antimicrobial agents: An overview. Nanomaterials 2020 10 2 292 10.3390/nano10020292 32050443
    [Google Scholar]
  30. Chandrakala V. Aruna V. Angajala G. Review on metal nanoparticles as nanocarriers: Current challenges and perspectives in drug delivery systems. Emergent Mater. 2022 5 6 1593 1615 10.1007/s42247‑021‑00335‑x 35005431
    [Google Scholar]
  31. Madkhali O.A. A comprehensive review on potential applications of metallic nanoparticles as antifungal therapies to combat human fungal diseases. Saudi Pharm. J. 2023 31 9 101733 10.1016/j.jsps.2023.101733 37649674
    [Google Scholar]
  32. El-Seedi H.R. El-Shabasy R.M. Khalifa S.A.M. Metal nanoparticles fabricated by green chemistry using natural extracts: Biosynthesis, mechanisms, and applications. RSC Advances 2019 9 42 24539 24559 10.1039/C9RA02225B 35527869
    [Google Scholar]
  33. Fulaz S. Vitale S. Quinn L. Casey E. Nanoparticle–biofilm interactions: The role of the EPS matrix. Trends Microbiol. 2019 27 11 915 926 10.1016/j.tim.2019.07.004 31420126
    [Google Scholar]
  34. Allaker R.P. The use of nanoparticles to control oral biofilm formation. J. Dent. Res. 2010 89 11 1175 1186 10.1177/0022034510377794 20739694
    [Google Scholar]
  35. Joshi A.S. Singh P. Mijakovic I. Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. Int. J. Mol. Sci. 2020 21 20 7658 10.3390/ijms21207658 33081366
    [Google Scholar]
  36. Srinoi P. Chen Y.T. Vittur V. Marquez M.D. Lee T.R. Bimetallic nanoparticles: Enhanced magnetic and optical properties for emerging biological applications. Appl. Sci. 2018 8 7 1106 10.3390/app8071106
    [Google Scholar]
  37. Nyabadza A. McCarthy É. Makhesana M. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv. Colloid Interface Sci. 2023 321 103010 10.1016/j.cis.2023.103010 37804661
    [Google Scholar]
  38. Belenov S.V. Volochaev V.A. Pryadchenko V.V. Phase behavior of Pt–Cu nanoparticles with different architecture upon their thermal treatment. Nanotechnol. Russ. 2017 12 3-4 147 155 10.1134/S1995078017020033
    [Google Scholar]
  39. Arora N. Thangavelu K. Karanikolos G.N. Bimetallic nanoparticles for antimicrobial applications. Front Chem. 2020 8 412 10.3389/fchem.2020.00412 32671014
    [Google Scholar]
  40. Sun Y. Ma J. Ahmad F. Bimetallic coordination polymers: Synthesis and applications in biosensing and biomedicine. Biosensors 2024 14 3 117 10.3390/bios14030117 38534224
    [Google Scholar]
  41. Ying S. Guan Z. Ofoegbu P.C. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022 26 102336 10.1016/j.eti.2022.102336
    [Google Scholar]
  42. Banerjee S. Vishakha K. Das S. Sangma P.D. Mondal S. Ganguli A. Oxidative stress, DNA, and membranes targets as modes of antibacterial and antibiofilm activity of facile synthesized biocompatible keratin-copper nanoparticles against multidrug resistant uro-pathogens. World J. Microbiol. Biotechnol. 2022 38 2 20 10.1007/s11274‑021‑03187‑z 34989880
    [Google Scholar]
  43. Narayanan K.B. Sakthivel N. Han S.S. From chemistry to biology: Applications and advantages of green, biosynthesized/] biofabricated metal- and carbon-based nanoparticles. Fibers Polym. 2021 22 4 877 897 10.1007/s12221‑021‑0595‑8
    [Google Scholar]
  44. Mohanta Y.K. Biswas K. Jena S.K. Hashem A. Corrigendum: Anti-biofilm and antibacterial activities of silver nanoparticles synthesized by the reducing activity of phytoconstituents present in the Indian medicinal plants. Front. Microbiol. 2020 11 1143 10.3389/fmicb.2020.01784
    [Google Scholar]
  45. Kharissova O.V. Dias H.V.R. Kharisov B.I. Pérez B.O. Pérez V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013 31 4 240 248 10.1016/j.tibtech.2013.01.003 23434153
    [Google Scholar]
  46. Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem. 2011 13 10 2638 2650 10.1039/c1gc15386b
    [Google Scholar]
  47. Makarov V.V. Love A.J. Sinitsyna O.V. “Green” nanotechnologies: Synthesis of metal nanoparticles using plants. Acta Nat 2014 6 1 35 44 10.32607/20758251‑2014‑6‑1‑35‑44 24772325
    [Google Scholar]
  48. Dhar P. Nath Dhar D. Medicinal plants of India. World Scientific 2019 10.1142/11358
    [Google Scholar]
  49. Hajoori M. Naik M. Naik K. Evaluation of antimicrobial activity of Eugenia jambolana seed extract againt human pathogens. IJPCBS 2013 3 935 939
    [Google Scholar]
  50. Thirumurugan K. Shihabudeen M.S. Hansi P.D. Antimicrobial activity and phytochemical analysis of selected Indian folk medicinal plants. Steroids 2010 1 430 434
    [Google Scholar]
  51. Ayyanar M. Subash-Babu P. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asian Pac. J. Trop. Biomed. 2012 2 3 240 246 10.1016/S2221‑1691(12)60050‑1 23569906
    [Google Scholar]
  52. Migliato K.F. Baby A.R. Zague V. Ação farmacológica de Syzygium cumini (L.) skeels. Lat. Am. J. Pharm. 2006 25 310 314
    [Google Scholar]
  53. Hosseini S.M. Madaeni S.S. Heidari A.R. Amirimehr A. Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron–nickel oxide nanoparticles. Desalination 2012 284 191 199 10.1016/j.desal.2011.08.057
    [Google Scholar]
  54. Machado S. Pinto S.L. Grosso J.P. Nouws H.P.A. Albergaria J.T. Delerue-Matos C. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ. 2013 445-446 1 8 10.1016/j.scitotenv.2012.12.033 23298788
    [Google Scholar]
  55. Gomathi S. Firdous J. Bharathi V. Anusuya, phytochemical screening of silver nanoparticles extract of Eugenia jambolana using fourier infrared spectroscopy. Int J Res Pharm Sci 2017 8 383 387
    [Google Scholar]
  56. Mohamad A.T. Kaur J. Sidik N.A.C. Rahman S. Nanoparticles: A review on their synthesis, characterization and physicochemical properties for energy technology industry. J Adv Res Fluid Mech Therm Sci 2018 46 1 10
    [Google Scholar]
  57. Buarki F. AbuHassan H. Al Hannan F. Henari F.Z. Green synthesis of iron oxide nanoparticles using Hibiscus rosa sinensis flowers and their antibacterial activity. J. Nanotechnol. 2022 2022 1 6 10.1155/2022/5474645
    [Google Scholar]
  58. Rahman R.A. Chia C.H. Masdor N.A. In vitro evaluation of antibacterial properties of biogenically synthesized zinc oxide nanoparticles on pathogenic paddy bacteria. J. Biomim. Biomater. Biomed. Eng. 2023 59 1 10 10.4028/p‑cu9pvj
    [Google Scholar]
  59. Agarwalla S.V. Ellepola K. Costa M.C.F. Hydrophobicity of graphene as a driving force for inhibiting biofilm formation of pathogenic bacteria and fungi. Dent. Mater. 2019 35 3 403 413 10.1016/j.dental.2018.09.016 30679015
    [Google Scholar]
  60. Kumar V. Parida S.N. Dhar S. Biogenic synthesis of silver nanoparticle by Cytobacillus firmus isolated from the river sediment with potential antimicrobial properties against Edwardsiella tarda. Front. Microbiol. 2024 15 1416411 10.3389/fmicb.2024.1416411 39282556
    [Google Scholar]
  61. Kart N.B. Sulak M. Mutlu D. Kuzucu V. Arslan S. Dogan N.M. Evaluation of anti-biofilm and in vitro wound healing activity of bacterial cellulose loaded with nanoparticles and borax. J. Polym. Environ. 2024 32 5654 5665 10.1007/s10924‑024‑03308‑3
    [Google Scholar]
  62. Valadbeigi H. Sadeghifard N. Kaviar V.H. Haddadi M.H. Ghafourian S. Maleki A. Effect of ZnO nanoparticles on biofilm formation and gene expression of the toxin-antitoxin system in clinical isolates of Pseudomonas aeruginosa. Ann. Clin. Microbiol. Antimicrob. 2023 22 1 89 10.1186/s12941‑023‑00639‑2 37798613
    [Google Scholar]
  63. Vazquez-Armenta F.J. Bernal-Mercado A.T. Tapia-Rodriguez M.R. Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control 2018 90 266 273 10.1016/j.foodcont.2018.02.041
    [Google Scholar]
  64. Sivakamavalli J. Nirosha R. Vaseeharan B. Purification and characterization of a cysteine-rich 14-kDa antibacterial peptide from the granular hemocytes of mangrove crab episesarma tetragonum and its antibiofilm activity. Appl. Biochem. Biotechnol. 2015 176 4 1084 1101 10.1007/s12010‑015‑1631‑1 26059067
    [Google Scholar]
  65. Reddy G.R. Morais A.B. Gandhi N.N. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging assay and bacterial toxicity of protein capped silver nanoparticles for antioxidant and antibacterial applications. Asian J. Chem. 2013 25 16 9249 9254 10.14233/ajchem.2013.15215
    [Google Scholar]
  66. Keshari A. Srivastava A. Verma A. Srivastava R. Free radicals scavenging and protein protective property of Ocimum sanctum (L). Br. J. Pharm. Res. 2016 14 4 1 10 10.9734/BJPR/2016/31445
    [Google Scholar]
  67. Saygi K.O. Cacan E. Antioxidant and cytotoxic activities of silver nanoparticles synthesized using Tilia cordata flowers extract. Mater. Today Commun. 2021 27 102316 10.1016/j.mtcomm.2021.102316
    [Google Scholar]
  68. Elias G. Rao M.N.A. Inhibition of albumin denaturation and antiinflammatory activity of dehydrozingerone and its analogs. Indian J. Exp. Biol. 1988 26 7 540 542 [PMID: 3198157
    [Google Scholar]
  69. Nguyen L. Bhattarai R.M. Teke S. Unlocking enhanced electrochemical performance through oxygen–nitrogen dual functionalization of iron–nickel–sulfide for efficient energy storage systems. J. Mater. Chem. A Mater. Energy Sustain. 2024 12 28 17369 17381 10.1039/D4TA02690J
    [Google Scholar]
  70. Mahdavi B. Paydarfard S. Zangeneh M.M. Goorani S. Seydi N. Zangeneh A. Assessment of antioxidant, cytotoxicity, antibacterial, antifungal, and cutaneous wound healing activities of green synthesized manganese nanoparticles using Ziziphora clinopodioides Lam leaves under in vitro and in vivo condition. Appl. Organomet. Chem. 2020 34 1 5248 10.1002/aoc.5248
    [Google Scholar]
  71. Iqbal J. Abbasi B.A. Mahmood T. Hameed S. Munir A. Kanwal S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl. Organomet. Chem. 2019 33 8 4950 10.1002/aoc.4950
    [Google Scholar]
  72. Baghayeri M. Mahdavi B. Hosseinpor-Mohsen Abadi Z. Farhadi S. Green synthesis of silver nanoparticles using water extract of Salvia leriifolia: Antibacterial studies and applications as catalysts in the electrochemical detection of nitrite. Appl. Organomet. Chem. 2018 32 2 4057 10.1002/aoc.4057
    [Google Scholar]
  73. Muthuchamy M. Govindan R. Shine K. Anti-biofilm investigation of graphene/chitosan nanocomposites against biofilm producing P. aeruginosa and K. pneumoniae. Carbohydr. Polym. 2020 230 115646 10.1016/j.carbpol.2019.115646 31887894
    [Google Scholar]
  74. Rajivgandhi G. Ramachandran G. Maruthupandy M. Vaseeharan B. Manoharan N. Molecular identification and structural characterization of marine endophytic actinomycetes Nocardiopsis sp. GRG 2 (KT 235641) and its antibacterial efficacy against isolated ESBL producing bacteria. Microb. Pathog. 2019 126 138 148 10.1016/j.micpath.2018.10.014 30316902
    [Google Scholar]
  75. Devi R. Singh S. Moond M. Beniwal R. Phytochemical screening and antioxidant potential of Syzygium cumini leaves. Agric. Sci. Dig. 2023 10.18805/ag.D‑5628
    [Google Scholar]
  76. Yousaf S. Zulfiqar S. Shahi M.N. Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Int. 2020 46 3 3750 3758 10.1016/j.ceramint.2019.10.097
    [Google Scholar]
  77. Moumen A. Fattouhi M. Abderrafi K. El Hafidi M. Ouaskit S. Nickel colloid nanoparticles: Synthesis, characterization, and magnetic properties. J. Cluster Sci. 2019 30 3 581 588 10.1007/s10876‑019‑01517‑8
    [Google Scholar]
  78. Khanzada B. Akthar N. Bhatti M.Z. Green synthesis of gold and iron nanoparticles for targeted delivery: An in vitro and in vivo study. J. Chem. 2021 2021 1581444 10.1155/2021/1581444
    [Google Scholar]
  79. Saha S. Kumar J.S. Chandra Murmu N. Samanta P. Kuila T. Controlled electrodeposition of iron oxide/nickel oxide@Ni for the investigation of the effects of stoichiometry and particle size on energy storage and water splitting applications. J. Mater. Chem. A Mater. Energy Sustain. 2018 6 20 9657 9664 10.1039/C8TA00795K
    [Google Scholar]
  80. Gopinath K. Kumaraguru S. Bhakyaraj K. Green synthesis of silver, gold and silver/gold bimetallic nanoparticles using the Gloriosa superba leaf extract and their antibacterial and antibiofilm activities. Microb. Pathog. 2016 101 1 11 10.1016/j.micpath.2016.10.011 27765621
    [Google Scholar]
  81. Kızılbey K. Köprülü E.N. Temür H. Canım Ateş S. Özer S. Magnetic and biomedical properties of iron nanoparticles synthesized using Vitex agnus-castus extract. Materials 2024 17 24 6064 10.3390/ma17246064 39769664
    [Google Scholar]
  82. Uwaya G.E. Fayemi O.E. Sherif E.S.M. Junaedi H. Ebenso E.E. Synthesis, electrochemical studies, and antimicrobial properties of Fe3O4 nanoparticles from Callistemon viminalis plant extracts. Materials 2020 13 21 4894 10.3390/ma13214894 33142751
    [Google Scholar]
  83. Moges W. Misskire Y. Green synthesis, characterization and antibacterial activities of silver nanoparticles using Sida schimperiana Hochst. ex A. Rich (Chifrig) leaves extract. Discov. Mater. 2025 5 1 34 10.1007/s43939‑025‑00221‑x
    [Google Scholar]
  84. Alshehri A. Malik M.A. Khan Z. Al-Thabaiti S.A. Hasan N. Biofabrication of Fe nanoparticles in aqueous extract of Hibiscus sabdariffa with enhanced photocatalytic activities. RSC Advances 2017 7 40 25149 25159 10.1039/C7RA01251A
    [Google Scholar]
  85. Mamuru S.A. Jaji N. Voltammetric and impedimetric behaviour of phytosynthesized nickel nanoparticles. J. Nanostructure Chem. 2015 5 4 347 356 10.1007/s40097‑015‑0166‑x
    [Google Scholar]
  86. Firisa S.G. Muleta G.G. Yimer A.A. Synthesis of nickel oxide nanoparticles and copper-doped nickel oxide nanocomposites using Phytolacca dodecandra L’Herit leaf extract and evaluation of its antioxidant and photocatalytic activities. ACS Omega 2022 7 49 44720 44732 10.1021/acsomega.2c04042 36530241
    [Google Scholar]
  87. Khan S.A. Shahid S. Ayaz A. Alkahtani J. Elshikh M.S. Riaz T. Phytomolecules-coated NiO nanoparticles synthesis using Abutilon indicum leaf extract: Antioxidant, antibacterial, and anticancer activities. Int. J. Nanomedicine 2021 16 1757 1773 10.2147/IJN.S294012 33688190
    [Google Scholar]
  88. Iqbal J. Abbasi B.A. Ahmad R. Phytogenic synthesis of nickel oxide nanoparticles (NiO) using fresh leaves extract of Rhamnus triquetra (Wall.) and investigation of its multiple in vitro biological potentials. Biomedicines 2020 8 5 117 10.3390/biomedicines8050117 32408532
    [Google Scholar]
  89. Karunakaran G. Jagathambal M. Van Minh N. Kolesnikov E. Kuznetsov D. Green synthesis of NiFe2O4 spinel-structured nanoparticles using hydrangea paniculata flower extract with excellent magnetic property. J. Miner. Met. Mater. Soc. 2018 70 7 1337 1343 10.1007/s11837‑018‑2871‑7
    [Google Scholar]
  90. Viju Kumar V.G. Prem A.A. Green synthesis and characterization of iron oxide nanoparticles using Phyllanthus niruri extract. Orient. J. Chem. 2018 34 2583 2589 10.13005/ojc/340547
    [Google Scholar]
  91. Argueta-Figueroa L. Morales-Luckie R.A. Scougall-Vilchis R.J. Olea-Mejía O.F. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci. 2014 24 4 321 328 10.1016/j.pnsc.2014.07.002
    [Google Scholar]
  92. Rajivgandhi G. Maruthupandy M. Muneeswaran T. Anand M. Manoharan N. Antibiofilm activity of zinc oxide nanosheets (ZnO NSs) using Nocardiopsis sp. GRG1 (KT235640) against MDR strains of gram negative Proteus mirabilis and Escherichia coli. Process Biochem. 2018 67 8 18 10.1016/j.procbio.2018.01.015
    [Google Scholar]
  93. Thy L.T.M. Tuyen N.N.K. Viet N.D. Nickel ferrite nanoparticles‐doped graphene oxide as a heterogeneous Fenton catalyst: Synthesis, characterization, and catalytic application. Vietnam J. Chem. 2022 60 4 532 539 10.1002/vjch.202200005
    [Google Scholar]
  94. Rakshit S. Ghosh S. Chall S. Mati S.S. Moulik S.P. Bhattacharya S.C. Controlled synthesis of spin glass nickel oxide nanoparticles and evaluation of their potential antimicrobial activity: A cost effective and eco friendly approach. RSC Advances 2013 3 42 19348 19356 10.1039/c3ra42628a
    [Google Scholar]
  95. Rabbani A. Haghniaz R. Khan T. Development of bactericidal spinel ferrite nanoparticles with effective biocompatibility for potential wound healing applications. RSC Advances 2021 11 3 1773 1782 10.1039/D0RA08417D 35424142
    [Google Scholar]
  96. Aloufi A.S. Assessment of structural, optical, and antibacterial properties of green Sn(Fe: Ni)O2 nanoparticles synthesized using Azadirachta indica leaf extract. Bioinorg. Chem. Appl. 2023 2023 1 9 10.1155/2023/5494592 36798449
    [Google Scholar]
  97. Nahari M.H. Al Ali A. Asiri A. Green synthesis and characterization of iron nanoparticles synthesized from aqueous leaf extract of Vitex leucoxylon and its biomedical applications. Nanomaterials 2022 12 14 2404 10.3390/nano12142404 35889627
    [Google Scholar]
  98. Uncu Kirtiş E.B. Yiğit Koçak D. Elderviş U. Tuna S. Bayraç C. Green synthesis of iron oxide nanoparticles from extracts of Daucus carota subsp. sativus whole vegetable, peel, pomace, and juice and their application as antibacterial agents and Fenton-like catalysts. Int. J. Food Sci. Technol. 2025 60 1 vvae035 10.1093/ijfood/vvae035
    [Google Scholar]
  99. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J. Control. Release 2016 235 337 351 10.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  100. Lim J. Yeap S.P. Che H.X. Low S.C. Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res. Lett. 2013 8 1 381 10.1186/1556‑276X‑8‑381 24011350
    [Google Scholar]
  101. Gharari Z. Hanachi P. Sadeghinia H. Walker T.R. Eco-friendly green synthesis and characterization of silver nanoparticles by Scutellaria multicaulis leaf extract and its biological activities. Pharmaceuticals 2023 16 7 992 10.3390/ph16070992 37513904
    [Google Scholar]
  102. Abdulhadi O.O. Rahmman I.A.A.A. Obaid A.S. Synthesis and characterization of nickel nanoparticles formed by solution cold plasma jet. J. Phys. Conf. Ser. 2021 12083 10.1088/1742‑6596/2114/1/012083
    [Google Scholar]
  103. Reddy N. Rapisarda M. Properties and applications of nanoparticles from plant proteins. Materials 2021 14 13 3607 10.3390/ma14133607 34203348
    [Google Scholar]
  104. Shalaby E.A. Shanab S.M.M. El-Raheem W.M.A. Hanafy E.A. Biological activities and antioxidant potential of different biosynthesized nanoparticles of Moringa oleifera. Sci. Rep. 2022 12 1 18400 10.1038/s41598‑022‑23164‑2 36319823
    [Google Scholar]
  105. Chandrasekaran M. Kim K. Chun S. Antibacterial activity of chitosan nanoparticles: A review. Processes 2020 8 9 1173 10.3390/pr8091173
    [Google Scholar]
  106. Valiyeva G.G. Bavasso I. Di Palma L. Hajiyeva S.R. Ramazanov M.A. Hajiyeva F.V. Synthesis of fe/ni bimetallic nanoparticles and application to the catalytic removal of nitrates from water. Nanomaterials 2019 9 8 1130 10.3390/nano9081130 31390768
    [Google Scholar]
  107. Winsett J. Moilanen A. Paudel K. Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Appl. Sci. 2019 1 12 1636 10.1007/s42452‑019‑1699‑2
    [Google Scholar]
  108. Qasim S. Zafar A. Saif M.S. Green synthesis of iron oxide nanorods using Withania coagulans extract improved photocatalytic degradation and antimicrobial activity. J. Photochem. Photobiol. B 2020 204 111784 10.1016/j.jphotobiol.2020.111784 31954266
    [Google Scholar]
  109. Jain R. Sharma G. Kumar S. Dubey A. Gakhar N. Ghosh C. Potential of plant mediated biosynthesis of iron nanoparticles and their application in dye degradation process. J. Air Waste Manag. Assoc. 2023 73 6 490 501 10.1080/10962247.2023.2196964 37155835
    [Google Scholar]
  110. Das B. Dash S.K. Mandal D. Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab. J. Chem. 2017 10 6 862 876 10.1016/j.arabjc.2015.08.008
    [Google Scholar]
  111. Wang L. Hu C. Shao L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine 2017 12 1227 1249 10.2147/IJN.S121956 28243086
    [Google Scholar]
  112. Sahli C. Moya S.E. Lomas J.S. Gravier-Pelletier C. Briandet R. Hémadi M. Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics 2022 12 5 2383 2405 10.7150/thno.67296 35265216
    [Google Scholar]
  113. Lan J. Zou J. Xin H. Nanomedicines as disruptors or inhibitors of biofilms: Opportunities in addressing antimicrobial resistance. J. Control. Release 2025 381 113589 10.1016/j.jconrel.2025.113589 40032007
    [Google Scholar]
  114. Ishaq K. Saka A.A. Kamardeen A.O. Ahmed A. Characterization and antibacterial activity of nickel ferrite doped α-alumina nanoparticle. Eng Sci Technol Int J 2017 20 2 563 569 10.1016/j.jestch.2016.12.008
    [Google Scholar]
  115. Grossman M. Principles and practice of pediatric infectious diseases. Clin. Infect. Dis. 1997 25 1277 7 10.1086/516117
    [Google Scholar]
  116. Huang G. Biology of the major human fungal pathogen Candida albicans. Molecular Medical Microbiology. Elsevier 2024 2867 2875 10.1016/B978‑0‑12‑818619‑0.00060‑5
    [Google Scholar]
  117. Turner N.A. Sharma-Kuinkel B.K. Maskarinec S.A. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019 17 4 203 218 10.1038/s41579‑018‑0147‑4 30737488
    [Google Scholar]
  118. Apetroaie-Constantin C. Mikkola R. Andersson M.A. Bacillus subtilis and B. mojavensis strains connected to food poisoning produce the heat stable toxin amylosin. J. Appl. Microbiol. 2009 106 6 1976 1985 10.1111/j.1365‑2672.2009.04167.x 19228254
    [Google Scholar]
  119. Moradali M.F. Ghods S. Rehm B.H.A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 2017 7 39 10.3389/fcimb.2017.00039 28261568
    [Google Scholar]
  120. Kaper J.B. Nataro J.P. Mobley H.L.T. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004 2 2 123 140 10.1038/nrmicro818 15040260
    [Google Scholar]
  121. Ventola C.L. The antibiotic resistance crisis: Part 1: Causes and threats. P&T 2015 40 4 277 283 [PMID: 25859123
    [Google Scholar]
  122. Hajipour M.J. Fromm K.M. Akbar Ashkarran A. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012 30 10 499 511 10.1016/j.tibtech.2012.06.004 22884769
    [Google Scholar]
  123. Lemire J.A. Harrison J.J. Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013 11 6 371 384 10.1038/nrmicro3028 23669886
    [Google Scholar]
  124. Sakarikou C. Kostoglou D. Simões M. Giaouris E. Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Res. Int. 2020 128 108806 10.1016/j.foodres.2019.108806 31955766
    [Google Scholar]
  125. Guo J. Qin S. Wei Y. Silver nanoparticles exert concentration‐dependent influences on biofilm development and architecture. Cell Prolif. 2019 52 4 12616 10.1111/cpr.12616 31050052
    [Google Scholar]
  126. Awasthi A. Sharma P. Jangir L. Dose dependent enhanced antibacterial effects and reduced biofilm activity against Bacillus subtilis in presence of ZnO nanoparticles. Mater. Sci. Eng. C 2020 113 111021 10.1016/j.msec.2020.111021 32487374
    [Google Scholar]
  127. Mohanta Y.K. Chakrabartty I. Mishra A.K. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front. Microbiol. 2023 13 1028086 10.3389/fmicb.2022.1028086 36938129
    [Google Scholar]
  128. Altaf M. Zeyad M.T. Hashmi M.A. Effective inhibition and eradication of pathogenic biofilms by titanium dioxide nanoparticles synthesized using Carum copticum extract. RSC Advances 2021 11 31 19248 19257 10.1039/D1RA02876F 35478667
    [Google Scholar]
  129. Al-Maliki Q.A. Taj-Aldeen W.R. Antibacterial and antibiofilm activity of bacteria mediated synthesized Fe3O4 nanoparticles using bacillus coagulans. J Nanostruct 2021 11 782 789 10.22052/JNS.2021.04.015
    [Google Scholar]
  130. Kumar L. Bisen M. Harjai K. Advances in nanotechnology for biofilm inhibition. ACS Omega 2023 8 24 21391 21409 10.1021/acsomega.3c02239 37360468
    [Google Scholar]
  131. Huang J. Liu Y. Yang L. Zhou F. Synthesis of sulfonated chitosan and its antibiofilm formation activity against E. coli and S. aureus. Int. J. Biol. Macromol. 2019 129 980 988 10.1016/j.ijbiomac.2019.02.079 30772414
    [Google Scholar]
  132. Srinivasan R. Devi K.R. Kannappan A. Pandian S.K. Ravi A.V. Piper betle and its bioactive metabolite phytol mitigates quorum sensing mediated virulence factors and biofilm of nosocomial pathogen Serratia marcescens in vitro. J. Ethnopharmacol. 2016 193 592 603 10.1016/j.jep.2016.10.017 27721053
    [Google Scholar]
  133. Ikuma K. Decho A.W. Lau B.L.T. When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles. Front. Microbiol. 2015 6 591 10.3389/fmicb.2015.00591 26136732
    [Google Scholar]
  134. Esfahani M.B. Khodavandi A. Alizadeh F. Bahador N. Antibacterial and anti-biofilm activities of microbial synthesized silver and magnetic iron oxide nanoparticles against pseudomonas aeruginosa. IEEE Trans. Nanobiosci. 2023 22 4 956 966 10.1109/TNB.2023.3268138 37071524
    [Google Scholar]
  135. Zhang Y. Mahdavi B. Mohammadhosseini M. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and anti-esophageal carcinoma properties. Arab. J. Chem. 2021 14 5 103105 10.1016/j.arabjc.2021.103105
    [Google Scholar]
  136. Shokri S. Shariatifar N. Molaee-Aghaee E. Synthesis and characterization of a novel magnetic chitosan–nickel ferrite nanocomposite for antibacterial and antioxidant properties. Sci. Rep. 2023 13 1 15777 10.1038/s41598‑023‑42974‑6 37737259
    [Google Scholar]
  137. Shnawa B.H. Jalil P.J. Hamad S.M. Ahmed M.H. Antioxidant, protoscolicidal, hemocompatibility, and antibacterial activity of nickel oxide nanoparticles synthesized by Ziziphus spina-christi. Bionanoscience 2022 12 4 1264 1278 10.1007/s12668‑022‑01028‑3
    [Google Scholar]
  138. Kunjan F. Shanmugam R. Govindharaj S. Evaluation of free radical scavenging and antimicrobial activity of coleus amboinicus-mediated iron oxide nanoparticles. Cureus 2024 16 3 55472 10.7759/cureus.55472 38571817
    [Google Scholar]
  139. Shanmugam R. Tharani M. Abullais S.S. Patil S.R. Karobari M.I. Black seed assisted synthesis, characterization, free radical scavenging, antimicrobial and anti-inflammatory activity of iron oxide nanoparticles. BMC Complement. Med. Ther. 2024 24 1 241 10.1186/s12906‑024‑04552‑9 38902620
    [Google Scholar]
  140. Jegadeesan G.B. Srimathi K. Santosh Srinivas N. Manishkanna S. Vignesh D. Green synthesis of iron oxide nanoparticles using Terminalia bellirica and Moringa oleifera fruit and leaf extracts: Antioxidant, antibacterial and thermoacoustic properties. Biocatal. Agric. Biotechnol. 2019 21 101354 10.1016/j.bcab.2019.101354
    [Google Scholar]
  141. Bouafia A. Laouini S.E. Khelef A. Tedjani M.L. Guemari F. Effect of ferric chloride concentration on the type of magnetite (Fe3O4) nanoparticles biosynthesized by aqueous leaves extract of artemisia and assessment of their antioxidant activities. J. Cluster Sci. 2021 32 4 1033 1041 10.1007/s10876‑020‑01868‑7
    [Google Scholar]
  142. Varghese R.M. S AK, Shanmugam R. Comparative anti-inflammatory activity of silver and zinc oxide nanoparticles synthesized using Ocimum tenuiflorum and Ocimum gratissimum herbal formulations. Cureus 2024 16 1 52995 10.7759/cureus.52995 38406168
    [Google Scholar]
/content/journals/cpd/10.2174/0113816128394608251005230040
Loading
/content/journals/cpd/10.2174/0113816128394608251005230040
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test