Full text loading...
Metallic nanoparticles are of interest for their potent bactericidal and anti-biofilm effects within a favorable therapeutic index. This study reports the green synthesis of bimetallic nickel-iron (Ni-Fe) nanoparticles using Eugenia jambolana extract and evaluates their antimicrobial, anti-biofilm, anti-inflammatory, and antioxidant activities.
Ni-Fe nanoparticles were synthesized using E. jambolana extract and characterized for crystalline structure, size, stability, zeta potential, and functional groups. Antimicrobial activity was tested against Gram-positive (Bacillus subtilis, Staphylococcus aureus), Gram-negative (Escherichia coli, Pseudomonas aeruginosa), and Candida albicans. Anti-biofilm potential was assessed via inhibition and dispersion assays, EPS quantification, and in situ visualization. Anti-inflammatory activity was measured through protein denaturation and nitric oxide scavenging assays, while antioxidant capacity was determined using DPPH and H2O2 scavenging tests.
Crystalline, stable Ni-Fe nanoparticles with favorable functional groups were obtained. At 200 µg/mL, they showed broad-spectrum antimicrobial activity. Biofilm formation was reduced by 50% at 250 µg/mL, and dispersion occurred at 10-50 µg/mL, with S. aureus most susceptible. EPS inhibition at 50 µg/mL was 78% (E. coli), 70% (P. aeruginosa), 73% (B. subtilis), and 91% (S. aureus). Visualization confirmed strong adherence to biofilms. At 250 µg/mL, protein denaturation inhibition reached 45%, nitric oxide scavenging 42.6%, DPPH scavenging 44%, and H2O2 scavenging 49%.
Ni-Fe nanoparticles exhibit strong antimicrobial, anti-biofilm, anti-inflammatory, and antioxidant activities, notably against S. aureus. High EPS inhibition and biofilm dispersion suggest potential against biofilm-associated, drug-resistant infections.
Green-synthesized Ni-Fe nanoparticles from E. jambolana show multifunctional bioactivities, offering promise for therapeutic applications targeting resistant and biofilm-related infections.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements